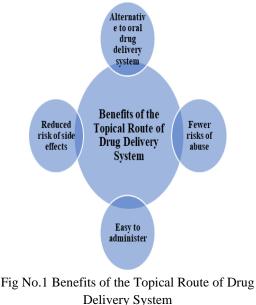
Standardised Evaluation of Ajwain Aqueous Extract Antioxidant Properties and Creation of Herbal Formulation

Prerna Sharma¹, Himanshu Prajapati², Sejal Sapate³, Omkar Pore⁴, Aditya Sankpal⁵, Samiksha Mhatre⁶ ^{1,2,3,4,5,6} St. Wilfred's Institute of Pharmacy, Panvel, Navi Mumbai-410206, Maharashtra, India.

Abstract—Objectives: The EBC promotes the scientific evaluation of herbal medications in the conventional pharmaceutical environment.

Methods: In the current study extracts and formulations were prepared and characterized. These include the extraction (seeds, thickeners and preservatives) and preparation of a peel-off mask. Different extracts are obtained using selective solvents and subjected to safety and efficacy studies, reflecting the potential use of ajwain in pharmaceuticals and cosmetics.

Result: Extract yield was dark brown 13% having ajwain smell and Saponins test was performed on it. It continues to be YES for flavonoids, steroids, glycoside and alkaloids. RF Value: 0.54 OF Toluene: ethyl acetate (7:3). The lotion, identified as a brownish-white cream with a slight vanilla smell, was good for 6 weeks. The values ranged at pH, viscosity and spread ability 5.5–6.5, 147.5–190 cps, and 7.05–7.89 g/cm/s, respectively. The black peel-off face mask was odourless. The formulated peel has moisture content of 14.42%. The PH was seen to be 5.15. The spread ability is 1.9±0.5 cm.


Conclusion: Ajwain extract, because of its antioxidant activity, which has a rich phytochemical in its composition, may also be utilized as a therapeutic agent. It acts as a scavenger of active species that induce oxidative stress, a factor in many diseases. Both formulations yielded acceptable results for topical applications with a recommendation for finding a safe dose for efficacy.

Index Terms—Ajwain extract, Antioxidant, Charcoal, Preservatives, Emulsifiers.

I. INTRODUCTION

A. Herbal Medicine

A key element of all traditional medicinal systems is the use of herbs, which prioritizes overall health over particular diseases or ailments^{1,2}. Although they may have fewer adverse effects than chemical medications, herbal remedies are more affordable and more effective than allopathic ones for some conditions. Compared to pharmaceutical medications, herbal remedies take longer to start working and comprise a variety of elements that must be compatible with the body and free of allergies^{3,4}. Drug delivery systems are technologies created for the targeted delivery of pharmaceuticals. Biomedical engineers have made significant contributions to our understanding of the physiological barriers to efficient drug delivery, leading to the development of innovative therapeutic delivery systems ^{5,6}. A topical drug delivery system applies medication to the skin, typically in the form of lotions, gels, patches, or powders, primarily formulated as creams or ointments⁷.

B. Extraction

Using a selected solvent of choice to remove inert material and obtain the intended therapeutic fraction, standardized extraction techniques are employed. The crude extract can be fractionated for modern medicines, formulated into dosage forms, or used as a medicinal agent^{8,9}.

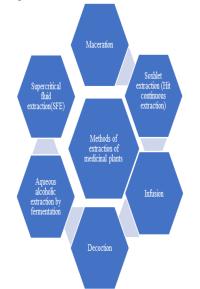


Fig no.2 Methods of extraction of medicinal plants Cosmetic Formulations

The development of new cosmetics based on the unique properties of plant stem cells and the study of the effects of these extracts and phytohormones on animal skin have been a focus for decades. This in minireview addresses the latest evidence-based information of cosmetic uses of plant stem cells and highlights relevant hurdles to overcome prior to the envisagement of effective plant stem cell-derived

Drug profile

topical cosmetics that would lead at least to significant dermatological benefits^{10,11,12}.

C. Benefits of herbal peel-off face mask:

A patient-friendly substitute for oral antibiotics, the peel-off mask lowers dosage schedules while eliminating waste products, dead skin, and blackheads while boosting metabolism and enhancing skin health.^{13,14}.

D. Need

• One major advantage of medicinal plants is that they are safe because they are in balance with nature and have few negative effects.

• Phytochemicals found in herbs, such as flavonoids, terpenoids, alkaloids, phenols, tannins, sesquiterpene lactones, and saponins, contribute to their therapeutic properties.

• Herbal remedies have shown encouraging potential, and the effectiveness of several herbal products has been demonstrated.

E. Materials

This recipe uses Ajwain extract, distilled water, glycerin, cocoa butter, acacia gum, charcoal, and propyl and methylparaben as active ingredients. Glycerin stabilizes the skin, while olive oil provides nourishment and soothing. Acacia gum thickens, charcoal purifies, and paraben prolongs shelf life.

Common Name	Scientific Name	Biological Source & Family	Chemical Constituents	Structure	Ref
Ajwain, Bishop's weed	Trachyspermum ammi	Dried ripe seeds of <i>Trachyspermu</i> <i>m ammi</i> , Apiaceae.	Essential Oils, Fixed Oils.	НО	15

Macroscopic Characteristics

- 1. Colour: Yellow brown/ pale brown
- 2. Odour: Aromatic
- 3. Shape: Small oval-shaped seed-like fruit
- 4. Taste: Pungent

Excipient Profile: For Lotion:

For Lotion:						
Name	Chemical component	Molecular formula & weight	Structure	Density (g/cm ³) (g/mL)	Category	Ref.
Glycerin	Oils/Fats, Fatty Acids, Esters, Glycerin.	C3H8O3 92.024 g/mol	НО ОН ОН	1.261	Humectant	16
Olive oil	Triacylglycero l, Free fatty acid Glycerol, Sterols, and Tocopherols	CH₃CH(NH₂) COOH 1382.2 g/mol	HO O O O O O O O O O O O O O O O O O O	0.917	Emollient	17
Cocoa Butter	Triglycerides, Fatty Acids, Squalene,	861.4 g/mol		0.9	Moisturizer	18
Cetyl Alcohol	1-hexadecanol	C16H34O 242 g/mol	CH3	0.811	Surfactant	19
Emulsifying Wax	Natural oils, Glyceryl Stearate, Tocopherol.	C ₂₄ H ₃₁ FO ₆ 434.50 g/mol		0.9	Emulsifier	19

For peel-off mask:

Name	Chemical component	Molecular formula & weight	Structure	Density (g/cm ³) (g/mL)	Category	Ref
Polyvinyl Alcohol	Ethylene	[C ₂ HCH (OH)] _n 44.05 g/mol	OH -{└H−CH₂}	1.19	Film Former	20
Gum Acacia	L-arabinose, L-rhamnose, D-glucuronic	C ₁₂ H ₃₆ 180.41 g/mol		1.3-1.5	Thickener	21
Charcoal	Hydrogen, Methane,	C ₇ H ₄ O	CI NH O	Less than 1	Cleanser	22

F. Microscopy:

A sharp blade was used to cut thin slices of the transverse section (T.S.) after the seeds had been immersed in water in a petri dish for a few minutes. Slides were then made after the sections had been stained with various chemicals. After mounting the prepared glass slides onto the microscope stage, they were examined at a magnification of 10X. The structures that were seen were documented.

G. Thin Layer chromatography:

An affinity-based technique for compound separation and analysis, TLC is helpful for both qualitative and quantitative study of a variety of substances, including lipids, steroids, and pesticides. The components of the sample migrate according to their affinities for the phases, showing up as distinct patches with measurable retention factors (Rf).^{23,24}.

H. Experimental:

The presence of phytoconstituents was further identified by thin layer chromatography using precoated silica gel 60 F254 plates as stationary phase. The components were best resolved in the screening system toluene: ethyl acetate (7:3). The Rf value of each spot was calculated by this formula:

RF= Distance travelled by solute / Distance travelled by the solvent

I. Formulation

1. Procedure for lotion:

The manufacturing process involved combining the melted oil phase with the heated water phase. An aqueous extract of ajwain was then mixed with glycerine and added to the lotion base. Preservatives and fragrances were added after the mixture had cooled. After testing multiple batches, the best one was selected for final production.

LOTION							
ACTIVITY	INGREDIENTS	C1	C2	C3	C4	C5	
Antioxidant	Ajwain extract	1000 mg					
Humectant	Glycerin	6500 mg					
Base	Water	82.24ml	82.2ml	82.2ml	82.2ml	82.2ml	

Table no. 3. Selection of emollient and fragrance.

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

Emollient	Paraffin oil	16000 mg	-	-	-	-
	Arachis oil	-	16000 mg	-	-	-
	Olive oil	-	-	16000 mg	16000 mg	16000 mg
Moisturizer	Cocoa butter	11.2g	11.2g	11.2g	11.2g	11.2g
Surfactant	Cetyl alcohol	3800 mg				
Emulsifier	Emulsifying wax	4g	4g	4g	4g	4g
Preservative	Methylparaben Propylparaben	100 mg				
Fragranco	Lemon oil	-	-	-	q.s	-
Fragrance	Vanillin	q.s	q.s	q.s	-	q.s

2. Procedure for peel-off mask:

The formulation was prepared by weighting excipients, preparing a thickener and glycerine mixture, dissolving the film former in water, adding cetyl alcohol, glycerine, charcoal, and preservatives.

ACTIVITY	INGREDIENT	F1	F2	F3	F4	F5	F6	F7
Antioxidant	Ajwain	1g	1g	1g	1g	1g	1g	1g
File former	Gelatin	6g	-	6g	6g	-	-	-
		-	6g	-	-	6.5g	6g	6g
	Polyvinyl alcohol							
Thickener	Xanthan gum	2g	2g	-	3g	-	-	-
	Gum acacia	-	-	-	-	3g	2.5g	2g
Surfactant	Cetyl alcohol	3g	3g	3g	3g	3g	3g	3g
Preservative	Methylparaben	0.5g	0.5g	0.5g	0.5g	0.5g	0.5g	0.5g
Cleansing	Charcoal	2g	2g	-	0.5g	0.5g	0.5	0.5
agent	Charcoar							
Base	Water	q.s	q.s	50ml-	50ml-q.s	50ml-	50ml-	50ml-q.s
Dase	tt ater			q.s		q.s	q.s	

II. OPTIMIZATION

1. Lotion:

The formulation in the no. 1, C1, C2, C3, and C4, used different emollients out of which olive oil i.e., C4 had better consistency and absorbency.

In Tables C5 and C6, the fragrance was selected of which C6 showed good results and was non-irritant.

Table no. 5. Evaluation parameters

2. Peel-off face mask:

Formulations in Table F1, and F2, are made with different film formers and F2 i.e. PVA was selected because it showed better evaluation tests.

After that thickener was selected, F5 made the formulation too thick while F6 had better consistency.

Tuble no. 5. Evaluation parameters					
Evaluation parameters for lotion	Evaluation parameter for peel-off mask				
Organoleptic characteristics	Organoleptic properties				
Homogeneity	Consistency				
pH Evaluation	Moisture content				
Viscosity	Folding Endurance				
Smoothness	pH				

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

	Absorbency						Spread ability				
Spread ability						Irritancy					
Table no. 6. Evaluat	ion of lotion.										
Test	C1	C1		C2		C3	C4			C5	
Appearance	Clumps	Clumps		on of es	Good		Good	đ		Good	
pН	5.85		6.14	6.14		5.5	3.4		5.66		
Smoothness	Bad		Mode	rate	Good		Goo	Good		Good	
Absorbance	Poor		Poo	or		Good	Moder	ate		Good	
Irritancy	Non-reacti	ve	Non-rea	active	N	on-reactive	e Irrita	nt	No	on-reactive	
Table no. 7. Evaluat	ion of peel-off r	nask									
Formulations	F1		F2	F3		F4	F5	F	6	F7	
Evaluation	Solidity on cooling	То	oo thick	Too thick		Flaky film	Did not spread evenly	tir	ing ne nded	Good	

III. RESULT AND DISCUSSION

1. Microscopy

From the transverse section of the fruit can be seen two supporting hexagonal bodies, by two carpophores; the epicarps are a single layer of tubular, tangentially elongated cells^{25,26}. The interior is mainly dominated

by endosperms which are tiny polygonal thin-walled cells containing embryos and oil globules. These mesocarps were made of tangentially elongated, rectangular to polygonal moderately thick-walled cells with vitae and carpophores as well as vascular bundles formed by groups of thick-walled radially elongated cells²⁷.

Table no. 8. Results of microscopy

Sr.no.	Reagents	Observation	Characterization
1.	Sudan red III	Red oil globules were seen	Oil globules present
2.	Safranin O	A pinkish-red network of oval-shaped radially elongated cells was seen.	Lignified cells present

2. Phytochemical Screening

Table no. 9. Result of phytochemical screening

	RESULT
Saponin	+
Alkaloid	+
Steroid	+
Glycoside	+
Tannin	+

Carbohydrates	-
Flavonoid	+
Protein	-

3. Extract Yield:

Extract yield was dark brown 13% having ajwain smell and was analyzed for Saponin, Flavonoids, Steroids, Glycoside and Alkaloid in its aqueous form.

4. TLC:

Table no. 10. Optimized TLC profile

Solvent system	Spot color	Rf value	Phytoconstituents
Toluene: Ethyl acetate (7:3)	Brown	0.54	Thymol, γ-terpenes

5. For Lotion:

It was brownish white in appearance and remained stable throughout the 6 weeks of study along with faint vanilla odour produced by its added fragrance. The viscosity was found to be 147.5 to 190 cps, spread ability ranged from 7.05 to 7.89 g.cm/s and the pH was found to be ranging from 5.5 to 6.5.

7. Optimization for lotion:

Table no. 11. Optimized batch for lotion

6. For peel-off face mask:

Black and odourless colour of the herbal peel-off face mask. As per the formula moisture content of formulated peel is 14.42% (Weight taken=0.721 gm, Dry weight=0.617 gm; Moisture= W-D/W*100) The PH was found to be 5.15. The spread ability was 1.9 ± 0.5 cm.

Ingredients	Quantity	Activity
Ajwain extract	1000 mg	Antioxidant
Glycerin	6500 mg	Humectant
Purified water	82.20 ml	Base
Olea europaea oil	16 ml	Emollient
Theobroma oil	11200 mg	Moisturizer
Hexadecanol	3800 mg	Surfactant
Emulsifier wax	3800 mg	Emulsifier
Methyl paraben	1000 mg	Preservative
Vanilla	q.s	Fragrance

8. Optimization for peel-off face mask:

Table no. 12. Optimized batch of peel-off face mask

1 1		
INGREDIENTS	QUANTITY	ACTIVITY
Ajwain extract	1 gm	Antioxidant
Polyvinyl alcohol	6 gm	Film former
Gum acacia	1.0 gm	Thickener
Cetyl alcohol	3 gm	Surfactant
Methylparaben	0.25 gm	Preservative
Propylparaben	0.25 gm	Preservative
Charcoal	2 gm	Cleansing agent
Water	50 gm q.s.	Base

IV. CONCLUSION

The initial phytochemical screening was carried out in the current study. This could demonstrate that there are several constituents like saponins, alkaloids, flavonoids, glycosides and steroids. Flavonoid can work as an antioxidant. The outcome of type of study is the choice and formulation of optimum dose for therapeutic purpose. The component tested showed considerable antioxidant activity according to the results analyzed. Good physio-chemical parameters were observed in the both formulations.

V. ACKNOWLEDGEMENT

Sincere appreciation to St. Wilfred's Institute of Pharmacy, for providing the necessary in-house facilities and Prof. Priyanka Mohite.

Conflict of Interest

The authors declare they have no competing interests.

REFERENCES

 Shi, Y.; Zhang, C.; Li, X. Traditional Medicine in India. Journal of Traditional Chinese Medical Sciences 2021, 8, S51–S55. https://doi.org/10.1016/j.jtcms.2020.06.007.

- [2] Smith, H. E.; Jones, C. Interpersonal Dimensions of Personalized Medicine for Chronic Obstructive Pulmonary Disease. In Implementing Precision Medicine in Best Practices of Chronic Airway Diseases; Elsevier, 2019; pp 153–158. https://doi.org/10.1016/B978-0-12-813471-9.00025-6.
- [3] Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4. https://doi.org/10.3389/fphar.2013.00177.
- [4] Hossain, C. M.; Gera, M.; Ali, K. A. CURRENT STATUS AND CHALLENGES OF HERBAL DRUG DEVELOPMENT AND REGULATORY ASPECT: A GLOBAL PERSPECTIVE. 2022, 15 (12).
- [5] Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26 (19), 5905. https://doi.org/10.3390/molecules26195905.
- [6] Achar, A.; Myers, R.; Ghosh, C. Drug Delivery Challenges in Brain Disorders across the Blood– Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021, 9 (12), 1834. https://doi.org/10.3390/biomedicines9121834.
- [7] Cheng, Y.-C.; Li, T. S.; Su, H. L.; Lee, P. C.; Wang, H.-M. D. Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020, 25 (21), 5051. https://doi.org/10.3390/molecules25215051.
- [8] Abubakar, A.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J Pharm Bioall Sci 2020, 12 (1), 1. https://doi.org/10.4103/jpbs.JPBS_175_19.
- [9] Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.; Latha, L. Extraction, Isolation and Characterization of Bioactive Compounds from Plants' Extracts. Afr. J. Trad. Compl. Alt. Med. 2010, 8 (1). https://doi.org/10.4314/ajtcam.v8i1.60483.
- [10] Yogeshri J. Jibhkate; Abhijit P. Awachat; R.T. Lohiya; Milind J Umekar; Atul T. Hemke; Krishna R. Gupta. Extraction: An Important Tool in the Pharmaceutical Field. Int. J. Sci. Res. Arch. 2023, 10 (1), 555–568. https://doi.org/10.30574/ijsra.2023.10.1.0768.

- [11] Mahanta, B. P.; Bora, P. K.; Kemprai, P.; Borah, G.; Lal, M.; Haldar, S. Thermolabile Essential Oils, Aromas and Flavours: Degradation Pathways, Effect of Thermal Processing and Alteration of Sensory Quality. Food Research International 2021, 145, 110404. https://doi.org/10.1016/j.foodres.2021.110404.
- [12] Trehan, S.; Michniak-Kohn, B.; Beri, K. Plant Stem Cells in Cosmetics: Current Trends and Future Directions. Future Sci. OA 2017, 3 (4), FSO226. https://doi.org/10.4155/fsoa-2017-0026.
- [13] FORMULATION AND EVALUATION OF ACTIVATED CHARCOAL PEEL OFF MASK. IJPRT 2019, 9 (2). https://doi.org/10.31838/ijprt/09.02.06.
- [14] Muaadh A. Mohamed Ali1*, B. M. K. Development and Characterization of Peel-Off Gel Masks Incorporating Activated Charcoal and Salicylic Acid for Enhanced Skin Radiance and Rejuvenation. 2024. https://doi.org/10.5281/ZENODO.13294605.
- [15] Anwar, S.; Ahmed, N.; Habibatni, S.; Abusamra, Y. Ajwain (Trachyspermum Ammi L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier, 2016; pp 181–192. https://doi.org/10.1016/B978-0-12-416641-7.00019-5.
- [16] Glycerin | C3H8O3 | CID 753 PubChem.
- [17] Boskou, D. Olive Oil: Chemistry and Technology, Second Edition; AOCS Publishing, 2006. https://doi.org/10.1201/9781439832028.
- [18] Loke, Y. H.; Phang, H. C.; Mohamad, N.; Kee, P. E.; Chew, Y.-L.; Lee, S.-K.; Goh, C. F.; Yeo, C. I.; Liew, K. B. Cocoa Butter: Evolution from Natural Food Ingredient to Pharmaceutical Excipient and Drug Delivery System. Planta Med 2024, 90 (11), 824–833. https://doi.org/10.1055/a-2359-8097.
- [19] Are Emulsifying Wax and Cetyl Alcohol Interchangeable? | Soapmaking Forum - Soap & Candle Forums.
- [20] Polyvinyl Alcohol: Properties, Production Process and Uses_Chemicalbook.
- [21] Ashour, M. A.; Fatima, W.; Imran, Mohd.;Ghoneim, M. M.; Alshehri, S.; Shakeel, F. AReview on the Main Phytoconstituents,Traditional Uses, Inventions, and PatentLiterature of Gum Arabic Emphasizing Acacia

Seyal. Molecules 2022, 27 (4), 1171. https://doi.org/10.3390/molecules27041171.

- [22] Sturm, L.; Severengiz, S.; Salokhe, D. S.; Bhatia, G. Criteria-Driven Comparison of Hydrogen, Charcoal and Liquefied Petroleum Gas as Cooking Fuels Based on a Systematic Literature Review. In Sustainable Manufacturing as a Driver for Growth; Kohl, H., Seliger, G., Dietrich, F., Mur, S., Eds.; Lecture Notes in Mechanical Engineering; Springer Nature Switzerland: Cham, 2025; pp 81–88. https://doi.org/10.1007/978-3-031-77429-4_10.
- [23] Balu Rathod*, B. S. B. Review on To Study of Thin Layer Chromatography of Tofacitinib Citrate. 2024. https://doi.org/10.5281/ZENODO.12706367.
- [24] Pandhare, R. B.; Kulkarni, R. N.; Deshmukh, V. K.; Mohite, P. B.; Pawar, A. R. High-Performance Thin Layer Chromatography: A Powerful Analytical Technique in Pharmaceutical Drug Discovery. JPBS 2021, 9 (1), 7–14. https://doi.org/10.18231/j.jpbs.2021.002.
- [25] Prathap, Dr. B.; V, Periyanayagi.; S, Nathiya.; P,
 N. Priya.; K, Nithish.; V, Prabha. AN
 OVERVIEW OF AJWAIN
 (TRACHYSPERMUM AMMI). In Futuristic
 Trends in Pharmacy & Nursing Volume 3 Book
 5; Singh, Dr. M., Rajasekhar, D. S., Ara, S., M, P.,
 Eds.; Iterative International Publishers, Selfypage
 Developers Pvt Ltd, 2024; pp 323–340.
 https://doi.org/10.58532/V3BAPN5CH31.
- [26] Bairwa, R.; Rajawat, B.; Sodha, R.
 Trachyspermum Ammi. Phcog Rev 2012, 6 (11), 56. https://doi.org/10.4103/0973-7847.95871.
- [27] Wasim Akram, S. A.; Arokiarajan, M. S.; Christopher, J. J.; Jameel, M.; Saquib, M.; Saripally, T. S. K.; Anwar, N.; Asif, M.; Ahmed K, K. Antimicrobial and Antioxidant Study of Combined Essential Oils of Anethum Sowa Kurz. and Trachyspermum Ammi (L.) along with Quality Determination, Comparative Histo-Anatomical Features, GC–MS and HPTLC Chemometrics. Sci Rep 2024, 14 (1), 27010. https://doi.org/10.1038/s41598-024-75773-8.