
© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

IJIRT 172822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1130

Gesture Controlled Virtual Mouse using Deep Learning

Shaik Shahnaz Begum1, Ranga Jyothika Vijaya Sravya2, Siddabattula Madhu3, Pilla Pavan Sailendra4
,

Dr.D. Kavitha5

1,2,3,4Student, Prasad V Potluri Siddhartha Institute of Technology
5Associate Professor, Prasad V Potluri Siddhartha Institute of Technology

Abstract—As human-computer interaction is evolving

rapidly, new approaches to touchless device control are

becoming essential. Our system implements computer

vision and machine learning techniques to create

foundational technologies for future AR applications.

Gesture-controlled virtual mouse system comprises

three main components: gesture recognition, gesture

training, and control implementation. Our system

enables users to control computer operations through

hand gestures captured by a webcam. At its core, the

system uses a hand landmark detection model that

identifies 21 key points on the hand, enabling precise

tracking of finger positions and movements. The gesture

recognition module analyzes these landmarks to classify

hand poses into predefined gestures, while the custom

gesture training component allows users to define and

save their own gesture mappings. Our project provides

real-time gesture detection and control by utilizing

MediaPipe for hand tracking with the help of Computer

Vision (CV) for video capturing and Machine Learning

(ML) algorithms for customization. The implementation

combines MediaPipe and Pybind11 to track hand

movements accurately for smooth real-time detection.

Our system offers intuitive cursor control, adjustable

system parameters, and support for multiple hand

tracking with dynamic gesture recognition. This

comprehensive approach enables fluid and natural

human-computer interaction.

I. INTRODUCTION

Imagine using natural motions that flow through the

air to control a computer in the contemporary digital

era instead of a mouse or touchpad. This goal is

realized by our project gesture-controlled virtual

mouse technology, which uses natural hand gestures

to revolutionize computer interaction. by combining

machine learning with cutting- edge computer vision

technology. We have developed a system that can

precisely translate human hand movements into

computer commands in real time. Using your

standard webcam, the system detects 21 distinct spots

on your hand and learns to identify your distinct

motions for various functions, ranging from basic

clicks to adjusting brightness and volume. You can

teach our solution your favorite hand gestures, which

makes it genuinely unique.

Our technology provides a hands-free option that is

both effective and convenient, whether you're in a

hospital operating room that requires sterile

control, presenting a presentation, or just want a

more comfortable method to use your computer. Our

concept is a viable choice for anyone interested in

entering the future of computer interaction because

it can be done using any common webcam.

Gesture controlled system is helpful for both

personal and professional use since it can adjust

to the preferences of each user while still

retaining excellent

accuracy and responsiveness.

Our gesture-controlled virtual mouse is a significant

advance in integrating technology more organically

into our daily lives as we transition to more user-

friendly approaches

 to human-computer interaction.

II. RELATED WORKS

Several foundational studies have contributed to the

development of gesture-controlled interfaces while

also pointing up areas for development:

HMM-based gesture recognition with

Forward/Viterbi algorithms and Baum-Welch

training was introduced by Rabiner and Juang (1986)

[1]. Through Python-Arduino connection, their

Arduino-ultrasonic sensor technology made it

possible to control basic media. Although it was

novel for interactive applications, its precision was

limited.

Liou and Hsieh (2018) [2] identified six hand

gestures (two static, four dynamic) by combining

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

IJIRT 172822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1131

face-based skin color identification with motion

history imaging. Their system's accuracy was 94.1%

across five test participants using face-based ROI

analysis and Haar-like features. One of Liou and

Hsieh's model's limitations is that it only includes six

preset gestures.

"Hand Gesture Controlled Computer Mouse" was

created by Kuraparthi et al. (2019) [3] utilizing image

processing methods. Their method implemented

simple motions for mouse control and used OpenCV

for hand detection and tracking. Despite being novel,

it had trouble being accurate in complicated

backgrounds and different lighting conditions.

Using ultrasonic sensors and an Arduino Uno,

Kulkarni and Potdar (2019) [4] created an affordable

RADAR-like object detecting system. Using a

Raspberry Pi 3 for data processing and a SIM808 for

SMS notifications of object distance, angle, and

timestamps, their solution combined IoT hardware. It

was only capable of proximity sensing, but it worked

well for simple object detection.

A marker-free, reasonably priced gesture recognition

system for complete HCI operations, such as system

functions and application control, was put into place

by Subramanian et al. (2020) [5]. Although they

prioritized accessibility and wide device

compatibility, their system could only use

programmed gestures.

CNN models were used in the presentation of

"Vision-Based Hand Gesture Recognition System for

Virtual Mouse" by Jain and Meena (2020) [6]. Their

method demonstrated latency problems in real-time

applications and

needed significant computer resources, although

achieving 92% accuracy in gesture detection.

"DeepHand: Real-time Hand Gesture Recognition"

was presented by Park and Kim (2021) [7] utilizing

the MediaPipe framework. Their method handled

numerous motions and showed 96% accuracy in hand

landmark detection. It did not, however, include

system-level integration or customization possibilities.

Using colored fingertip tracking, Dhyanchand and

Reddy (2021) [8] created a virtual mouse system that

achieved 90% detection accuracy in office

illumination (500–600 lux). Their technology

accommodated diverse skin tones and provided basic

mouse capabilities with different colored cap

arrangements. It was inventive, but it needed colored

markers and was light-sensitive.

Both static and dynamic gestures were incorporated

into the "AIController: Adaptive Hand Gesture

Interface" created by Zhang et al. (2022) [9]. Their

94% accurate gesture detection system used transfer

learning, but it needed specialized depth cameras.

Sharma and Patel (2023) [10] proposed

"GestureFlow: Natural Interface Computing"

combining MediaPipe with custom neural networks.

Their implementation supported multi-hand tracking

and achieved low latency, though limited to

predefined gesture sets.

The accessibility focusses of "HandMouse:

Accessible Computer Control" was developed by Liu

et al. (2023) [11]. Despite using common webcams

and achieving 91% accuracy in gesture recognition,

their solution lacked customization choices and

system control functions.

III. MOTIVATION

Our motivation behind developing a gesture-

controlled virtual mouse system stems from the

growing need for touchless human-computer

interaction in various settings. Traditional input

devices like mice and keyboards can be impractical

in sterile environments such as operating rooms, or

challenging for users with mobility limitations. Our

system addresses these needs by enabling natural

hand gesture control using standard webcams,

making computer interaction more accessible and

intuitive. By incorporating MediaPipe's advanced

hand tracking with custom gesture training, we've

created a solution that adapts to individual user

preferences while maintaining high accuracy and

responsiveness. This technology not only enhances

accessibility but also opens new possibilities for

interactive presentations, virtual education, and

hands-free computing across diverse professional and

personal scenarios.

IV. PROBLEM STATEMENT

The development of a gesture-controlled virtual

mouse system addresses critical limitations in current

computer interaction methods. Traditional input

devices pose challenges in sterile environments like

operating rooms, accessibility needs for users with

mobility impairments, and

scenarios requiring hands-free operation. While

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

IJIRT 172822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1132

existing gesture recognition solutions offer

alternatives, they often require specialized hardware,

have limited gesture sets, struggle with

environmental variations, and lack comprehensive

system integration. These systems frequently suffer

from accuracy issues in real-time applications and

high computational demands. Therefore,Gesture

control system focuses on natural human behaviour,

providing easier way for users to interact with

computer. Gesture control can offer an immersive

and futuristic experience, blending seamlessly with

augmented reality (AR) and virtual reality (VR)

systems. Our approach aims to support hands-free

computing by eliminating the need for specialized

equipment while providing reliable, adaptable, and

efficient computer interaction for diverse user needs

and creating co-friendly environments by reducing

plastic for hardware (like mouse). Below definitions

are used throughout research.

Definition 4.1: Computer Vision is used for Image

processing and analysis science utilizing core

techniques like feature detection, pattern recognition,

and image segmentation.

Definition 4.2: Machine Learning: A subset of AI

where computers learn from data and make decisions

or predictions without being explicitly programmed

Definition 4.3: OpenCV: A library for real-time

computer vision tasks like image processing, object

detection, and face recognition.

Definition 4.4: MediaPipe: A framework for building

real- time AI applications, with tools for tasks like

facial detection and hand tracking.

Definition 4.5: PyAutoGUI: A Python library to

automate GUI tasks, controlling the mouse, keyboard,

and screenshots.

Definition 4.6: Screen Brightness Control: The

ability to adjust screen brightness programmatically,

often using libraries like screen-brightness-control.

Definition 4.7: Tkinter: A Python library for creating

simple desktop GUI applications with windows,

buttons, and text boxes.

Definition 4.8: JSON (JavaScript Object Notation) is

a lightweight, text-based data in key value pair

format used to store and exchange data. It's easy for

both humans to read and write, and machines to parse

and generate.

These components work together to enable accurate

hand tracking, gesture recognition, and system

control through natural hand movements.

V. DESIGN AND IMPLEMENTATION

Our project implements a gesture-based computer

control system using computer vision, pyautogui and

mediapipe. The backbone of our system is MediaPipe

for hand landmark detection and PyAutoGUI for

system control. Main controller maintains the camera

feed and processes hand gestures in real-time. It

supports single hand operations (either right or left

only for customization), with customizable gesture

recognition. The system can distinguish between

major (dominant) and minor hands, enabling different

controls for each.

Gesture recognition works by analyzing finger

positions and their relationships. The controller tracks

specific landmarks on the hand to determine finger

states (open/closed) and complex gestures like

pinching. Each recognized gesture maps to specific

system controls such as mouse movement, clicks,

scrolling, brightness adjustment, and volume control.

An enhanced version adds support for custom gesture

training. Users can record new gestures by

demonstrating them to the camera, and the system

saves the finger state patterns in a JSON file. This

allows for personalized controls like right-click, left-

click, double- click, drag-and-drop, and multi-select,

scroll operations.

The training component includes functionality to

manage custom gestures, allowing users to add new

ones or remove existing ones. It records multiple

frames (upto 300 frames) for a gesture to ensure

accurate recognition and uses statistical analysis to

determine the most consistent finger state pattern.

For pinch gestures, it tracks both vertical and

horizontal movements to control various system

parameters. It has another feature to reset the gesture

training data, clearing all custom gestures and

returning the system to its default state. The entire

system is modular, with clear separation between

gesture recognition, control implementation, and

training functionality.

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

IJIRT 172822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1133

Fig 1: Activity diagram for gesture controlled virtual

mouse

Fig 1 illustrates gesture control system architecture,

starting from application initialization with Tkinter.

At the entry point, a controller check determines

whether to proceed with customization or main

control flow. The customization path enables users

to input and store custom

gestures in a JSON file, which can be updated based

on user preferences.

The main control flow begins with video stream

capture using OpenCV, which feeds into MediaPipe

for advanced hand tracking and detection. This

creates a continuous processing loop where video

frames are analyzed for hand presence. When hands

are detected, the system processes feature detection

using MediaPipe coordinate system to identify

specific gestures.

Once gestures are recognized, PyAutoGUI translates

these detected features into corresponding mouse

actions on the computer system. The workflow

maintains a cyclical process of capturing, detecting,

and executing actions, with the JSON storage system

maintaining gesture configurations. This architecture

ensures real-time response while allowing for gesture

customization and system adaptability.

Fig 2: Hand Land marks detection using MediaPipe

[13]

Fig 2 shows hand landmark mapping system used in

hand gesture recognition, particularly with

MediaPipe hand tracking solution. It depicts 21 key

points (numbered 0-20) representing crucial hand

landmarks, with the wrist as point 0 and finger joints

mapped systematically. The mapping includes

metacarpophalangeal (MCP), proximal

interphalangeal (PIP), and distal interphalangeal

(DIP) joints, plus fingertips for each finger. These

landmarks correspond to anatomical features

including the wrist (0), and points along each finger

from base to tip - thumb (1-4), index finger (5-8),

middle finger (9-12), ring finger (13-16), and pinky

(17-20). The points are connected by lines showing

their relationships, creating a skeletal representation

that's used for tracking hand movements and gestures.

Pseudo code for default gestures:

Initialize system and state function initialize ():

start_webcam() initialize_mediapipe_opencv() state =

{

'last_click_time': 0, 'is_dragging': False, 'selection':

None, 'neutral_timeout': 2

}

Main program loop function main ():

state = initialize ()

while not check_stop_condition():

frame = process_frame(capture_webcam_frame())

hands = detect_hands(frame)

if not hands: reset_states(state) continue

Process gestures

gesture = detect_gesture(hands) match gesture:

case 'neutral': # All fingers extended

reset_states(state)

case 'move': # Index + middle up

handle_cursor_movement(hands.position,

state.is_dragging)

case 'click': # Middle up + index bent

handle_click(state.last_click_time)

case 'drag': # Index up + thumb pressed

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

IJIRT 172822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1134

handle_drag(hands.position, state)

case 'select': # Three fingers up

handle_selection(hands.position, state)

case 'system': # System controls

handle_system_controls(gesture, hands)

case 'custom': process_custom_gesture(hands)

Gesture handlers

function handle_click(last_time): current_time =

get_current_time()

if current_time - last_time < 0.3: # Double click

threshold

perform_double_click() else:

perform_single_click() return current_time

function handle_system_controls(gesture, hands):

match gesture:

case 'volume': # Vertical movement

adjust_volume(hands.movement)

case 'brightness': # Horizontal movement

adjust_brightness(hands.movement)

case 'browser': # Pinky + ring open_chrome()

case 'search': # Ring + middle open_search()

case 'email': # Index + pinky open_email()

Start program

main ()

Above pseudo code explains about functionality of

gesture controlled virtual mouse. Firstly, system

begins by initializing components like webcam and

computer vision tools (MediaPipe and OpenCV). The

system maintains a state object that keeps track of

various interaction parameters such as click timing,

dragging status, and selection states, ensuring smooth

and consistent user experience.

The system supports various interactions including

cursor movement (using index and middle fingers),

clicking operations (through finger bends), volume

and brightness controls (via hand movements), and

application launching (using specific finger

combinations). It also handles more complex

operations like drag-and-drop and multiple

selections. A neutral gesture (all fingers extended)

serves as a reset mechanism.

Our project has customization of gesture sets to

accommodate different user needs and preferences.

Code captures stable frame rates between 25-30 FPS

on standard hardware configurations, providing

smooth cursor movement through effective position

dampening algorithms. Our system exhibits some

vulnerability to lighting conditions, with performance

degradation in low-light environments. Similar finger

positions occasionally trigger false positives, and

overlapping hands can create gesture conflicts that

impact recognition accuracy.

VI. RESULTS AND ANALYSIS

Fig 4 is Main application with GUI. Creates tabbed

interface for gesture control and training. Handles

video capture and display. Manages gesture training

workflow. Two-tab interface for main application.

Gesture Controller and Gesture Trainer. In Controller

tab, video feed, start/stop controls, status display are

present.In Trainer tab, recording, removing, and reset

options are present.

Fig 3: Gesture Controller tab

Enhanced gesture controller. Extends base controller

with custom gesture support. Handles trained gesture

recognition. Maps gestures to system actions (clicks,

scrolling, volume, brightness).

Fig 4: Hand Gestures for mouse operations

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

IJIRT 172822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1135

The hand gestures shown in these images gives a

touchless way to control your computer using hand

movements. The purple lines and dots on each hand

help the system track and understand different

gestures.

Starting with a neutral position (all fingers spread),

users can perform various actions: move the cursor

with two fingers pointing, click using single finger

gestures (middle finger for left, index for right), and

double-click using a peace sign.

System adjustments like volume and brightness are

controlled through hand movements up/down and

left/right. Quick gestures like ring and pinky fingers

up launch Chrome, while index and pinky fingers

open email.

Fig 5 is training interface with three options. First,

records new gesture patterns. Second, delete selected

gestures. Third, clear all customized gestures and

default gestures will work.

Fig 5: Gesture Trainer

Training the gestures and by recording user given

gesture. Saves gesture data to JSON replace default

gestures with customized gestures.

Fig 6: Training the gesture.

Here in fig 6, user can choose hands either left or

right. User has to give the feature they want to

replace with (e.g: left for left click) as input. In fig 7,

system records user given gesture upto 300 frames

and save the gesture in JSON file.

Fig 7: Record the gesture

Fig 8: Remove gesture

In fig 8, user can select the gesture they want to

remove. In fig 9, 10 users clear all the customized

gestures. We can see the status for all operations in

gesture trainer tab at bottom.

Fig 9: Clear all the gestures

© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002

IJIRT 172822 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1136

Fig 10: After, clearing all the gestures.

VII. CONCULSION

Our project work demonstrates robust hand gesture

recognition for computer control. It supports both

default and custom gestures, enabling natural

interaction through hand movements for cursor

control, system adjustments, and application

launching.

While facing challenges in low-light conditions and

complex gesture recognition, the system's

adaptability to different users and customization

options proves its practical value. The

implementation balances accessibility with

functionality, making it suitable for hands-free

computer interaction and accessibility applications.

Our project work establishes a viable foundation for

gesture-based interfaces, with clear paths for

enhancement in lighting adaptation, conflict

resolution, and resource optimization.

REFERENCES

[1] L. R. Rabiner and B. H. Juang, "An introduction

to hidden Markov models," IEEE ASSP

Magazine, vol. 3, no. 1, pp. 4-16, Jan 1986.

[2] D. H. Liou and C. C. Hsieh, "A Real Time Hand

Gesture Recognition System Using Motion

History Image," 2018 2nd International

Conference on Signal Processing and

Communication Systems, pp. 394-399.

[3] S. Kuraparthi, M. Kollati, and K. Kora, "Hand

Gesture Controlled Computer Mouse,"

International Journal of Advanced Research in

Computer Science, vol. 10, no. 2, pp. 23-27,

2019.

[4] A. U. Kulkarni and A. M. Potdar, "RADAR

based Object Detector using Ultrasonic Sensor,"

International Journal of Engineering Research &

Technology, vol. 8, no. 6, 2019.

[5] A. Subramanian, A. Haria, J. S. Nayak, N.

Asokkumar, and S. Poddar, "Hand gesture

recognition for human computer interaction,"

Journal of Physics: Conference Series, vol. 1427,

2020.

[6] A. Jain and R. Meena, "Vision-Based Hand

Gesture Recognition System for Virtual Mouse,"

International Journal of Recent Technology and

Engineering, vol. 9, no. 1, 2020.

[7] J. Park and S. Kim, "DeepHand: Real-time Hand

Gesture Recognition using MediaPipe," IEEE

Access, vol. 9, pp. 123034-123043, 2021.

[8] S. Dhyanchand and P. Reddy, "Virtual Mouse

System Using Colored Fingertip Tracking,"

International Journal of Engineering Research &

Technology, vol. 10, no. 3, 2021.

[9] L. Zhang, X. Wang, and Y. Liu, "AIController:

Adaptive Hand Gesture Interface," IEEE

Transactions on Human-Machine Systems, vol.

52, no. 1, pp. 89-98, 2022.

[10] R. Sharma and V. Patel, "GestureFlow: Natural

Interface Computing," IEEE Sensors Journal,

vol. 23, no. 4, pp. 3456-3467, 2023.

[11] K. Liu, J. Chen, and M. Wang, "HandMouse:

Accessible Computer Control," International

Journal of Human-Computer Interaction, vol. 39,

no. 2, pp. 245-259, 2023.

[12] M. M. Akhtar, B. Thakur, P. Raj, G. Kumar, and

P. Yadav, "Computer Cursor Control through

Hand Gestures using Machine Learning,"

International Journal of Research Publication and

Reviews, vol. 3, no. 10, pp. 1571-1576, Oct.

2022.

[13] Shukla, A. R. (2022). AI virtual mouse using

hand gesture recognition. International Journal of

Research Publication and Reviews, 168–173.

https://doi.org/10.55248/gengpi.2022.3.10.13

