
© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 862

VOXVISOR

V. Avinash1, K. Dinesh Charan Raj2, Ch. Naveena3, A. Madhavika Santhoshi4, A. Jai Vardhan5

1,2,3,4,5 Department of Artificial Intelligence and Machine Learning, Raghu Institute of Technology,

Visakhapatnam, Andhra Pradesh, India

Abstract—The communication barrier between hearing

and non-hearing individuals, particularly those with

speech impairments, remains a significant challenge.

Traditional sign language interpretation methods, often

reliant on manual techniques, are time-consuming and

limited in their ability to adapt to diverse signing styles.

To address these limitations, we propose a deep learning-

based system, Voxvisor, for real-time sign language

recognition and translation into audible speech. Voxvisor

incorporates advanced computer vision techniques,

including key-point detection, optical flow, and YOLO

(You Only Look Once) feature extraction, to accurately

identify and classify sign language gestures. By

leveraging deep learning architectures such as CNNs,

RNNs, and LSTMs, Voxvisor can effectively learn from

a comprehensive dataset of sign language videos,

capturing both spatial and temporal characteristics of

gestures. Compared to existing manual methods, our

approach offers several advantages: real-time

recognition, adaptability to various signing styles,

improved accuracy. By bridging the communication gap

between hearing and non-hearing individuals, Voxvisor

has the potential to significantly improve the quality of

life for those with speech impairments and promote

social inclusion.

Index Terms—Deep learning, YOLOv5 (You Only Look

Once), Optical flow, Real-time recognition, Sign gesture

interpreter.

I. INTRODUCTION

Sign language plays a crucial role in communication

for the deaf and hard-of-hearing community.

However, there are often significant barriers to

effective communication between deaf and hearing

individuals. It is essential to bridge this gap to promote

inclusivity and accessibility. This project focuses on

creating a reliable sign language gesture recognition

system utilizes the YOLOv5 object detection

framework developed by Ultralytics [1] as the

foundation for our sign language gesture recognition

system. While YOLOv5 provides a robust and

efficient base model, this study focuses on adapting

the model for sign language data, optimizing

hyperparameters, evaluating performance on a new

dataset.

YOLOv5 has shown outstanding performance in real-

time object detection tasks, making it an excellent

choice for this purpose. By utilizing the advantages of

YOLOv5, including its high accuracy and speed, we

aim to develop a system capable of accurately and

efficiently recognizing a wide range of sign language

gestures.

This research will aid in the advancement of assistive

technologies for the deaf community. If successfully

implemented, this system could enhance

communication in various environments, such as

education, healthcare, and social interactions.

This paper follows as mentioned structure to go

through the modern approach in finding the solution to

bridge the communication barrier between the hearing

and non-hearing people. Section II mentions the

background study, research and survey of different

literatures. Section III provides the materials and

methodologies used to collect dataset and

preprocessing them to attain the high performance of

the Yolov5 model. Section IV offers the case study of

the results and the performance of the YOLOv5

model. Section VI presents the conclusion and future

scope of Indian Sign Language.

II. BACKGROUND STUDY

Indian Sign Language recognition can be performed

using data from various sources, such as videos,

photographs, wearable sensors, and more. Numerous

research studies have explored hand gesture

recognition. Early approaches to this field often

involved the use of hand gloves equipped with cables,

sensors, LED markers, or other devices [3]. These

early methods worked well only when the lighting was

consistent. However, accurately recognizing hand

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 863

gestures can be quite tricky. Researchers have

explored many different features, such as skin color

and hand movement speed, to help identify hand

motions [4]. In spite of these traditional techniques

many authors introduced SLR [22] using Machine

Learning [5], [6]. There are numerous different

techniques and methodologies that belong to this

group, some of the well-known methods include naïve

Bayes, random forest, K-nearest neighbor, logistic

regression and the support vector machine [5], [6]. All

these may include in the training phase, those can be

supervised or unsupervised.

Those basic machine learning approaches have

become older as the new approaches introduced in the

recent times, which are nothing but deep learning

methods and models. Those models include most

famous and powerful algorithms such as recurrent

neural network (RNNs), convolution neural network

(CNN). In [7] the authors trained CNN in addition they

optimized the performance of the CNN by fine-

tunning of the model by changing some of the relevant

hyper-parameters that define training process [7].

In [8] the researchers started with a pre-trained

Inception V3 model, originally developed by Google

and trained on the massive ImageNet dataset. To adapt

this model for their specific task of recognizing

gestures in video frames, they fine-tuned it using the

ImageNet weights as a starting point. In [9] the authors

significant research effort was undertaken to

categorize Indian Sign Language gestures, resulting in

a dataset of 140 classes encompassing finger-spelled

numbers, English alphabets, and common phrases. A

Kinect sensor was utilized to capture the dataset,

acquiring 640x480 RGB images along with their

corresponding depth data. Depth values were

recorded for each pixel, establishing a direct mapping

between image pixels and their depth information.

Given that subjects stood with their hands extended,

the hand in the image exhibited the least depth. This

was validated by applying a pixel mask to filter out

depth values exceeding a specific threshold. However,

this masking process inadvertently excluded the palm

region, which displayed significant inconsistencies.

Consequently, this portion of the dataset was not used

for training the Convolutional Neural Network (CNN).

To address this, unsupervised learning was employed,

specifically the K-means clustering algorithm. SIFT

feature mapping and Gaussian masks were utilized to

extract relevant features and train the dataset. The final

accuracy achieved exceeded 90%.

Nandy et al. [10] classifies the gestures by splitting the

data into segmented features and employs Euclidean

distance and K-Nearest Neighbors. Similar work by

Kumud et al. [11] shows how to do continuous

recognition. Their research proposes extraction of still

frames from videos, pre-processing data, extracting

data frames and other features. Pre-processing is done

by converting the video into RGB images or frames

with same dimension. Skin color segmentation with

the HSV was used to extract skin region and were

converted to binary form. Gradient calculation

between the frames is done to extract the key frames

and oriental histogram is used for features extraction.

Huang et al. [12] developed a sign language

recognition system using a Kinect sensor and 3D

convolutional neural networks. They utilized 3D

CNNs to capture both spatial and temporal features

directly from the raw data, which aids in extracting

meaningful features to handle the significant

variations in hand gestures. This model’s effectiveness

was validated on a real-world dataset comprising 25

signs, achieving an impressive recognition rate of

94.2%. Huang et al. [13] proposed a sign language

recognition system using the RealSense depth camera.

They collected a total of 65,000 image frames

representing 26 alphabet signs, dividing the data into

a training set of 52,000 frames and a testing set of

13,000 frames. The deep neural network model was

trained and classified using a deep belief network,

achieving an impressive accuracy of 98.9% with the

RealSense camera and 97.8% with the Kinect sensor.

Pigou et al. [14] contributed their efforts to a sign

language recognition system using Microsoft Kinect

and a CNN-based approach. In this system, they

employed thresholding, background removal, and

median filtering as preprocessing steps. They

implemented the Nesterov Accelerated Gradient

(NAG) optimizer, achieving a validation accuracy of

91.7% for recognizing Italian gestures. Yang and Zhu

[15] created a system that uses videos to understand

Chinese Sign Language (CSL). This system relies on

a type of artificial intelligence called Convolutional

Neural Networks (CNNs). They gathered data using

40 commonly used words in CSL. Their approach

makes it easier to identify the hands in the videos and

avoids losing important information when analyzing

the signs. They tested two different training methods

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 864

for the AI, called Adagrad and Adadelta, and found

that Adadelta worked better. Bheda and Radpour [12]

created a system that recognizes American Sign

Language (ASL) letters and numbers. Their system

uses a type of artificial intelligence called

Convolutional Neural Networks (CNNs). The CNN

has a specific structure with multiple layers for

processing information. The images used to train the

system were cleaned up using a technique called

background subtraction. This system achieved an

accuracy of 82.5% for recognizing letters and 97% for

recognizing numbers.

The authors of [17] had implemented their custom

convolutional neural networks, for recognizing the

sing from a video frame. The MNIST (Modified

National Institute of Standards and Technology

database) [17]. The MNIST is one of the well-known

datasets, although the system performed well it still

struggles in real-time scenarios with uneven or noisy

backgrounds. Sign Language Recognition System

using Machine Learning [23], the authors made a step

forward by not to just rely on the simple hand gestures

also focused on the facial expressions and key-point

detection. Although their idea was good to see but it is

computationally expensive while compared to other

approaches.

Melek Alaftekin and other authors of [25] utilized

Yolov4-CSP algorithm by adding few add-ons such as

Mish activation function, complete interaction of

union (CioU) loss function and transformer block.

Their system obtained 98.95% precision, 98.15%

recall, 98.55% F1 score and 99.49% mAP results in

9.8ms. This proposed system can able to detect

numbers in Turkish sign language.

III. MATERIALS AND METHODS

The techniques and resources that were used in this

study to achieve the hand gesture recognition that this

paper focused on are assigned to this part. Fig. 1

resembles the flow chart of the methodology for sign

language recognition.

The proposed method was divided into different steps.

Firstly, the hand images were collected from the

various resources from the internet for Indian sign -

language hand gesture recognition and underwent data

augmentation to create a hand motions dataset. The

captured image is passed through an annotation format

to draw a Bounding box-based hand detector to extract

hand regions. Bounding boxes were manually drawn

around specific objects in the images to annotate them.

Once the hand has recognized and transferred to a

better Yolo (You Only Look Once) deep learning

model, then the hand region is extracted. This model

was then optimized and trained on the created datasets.

The dataset has 35 different gesture classes, such as

Alphabets and decimal numbers. To verify the

detection performance, evaluation metrics were

produced. The best model was chosen for the best hand

detection across many images.

A. Dataset Collection
Data 1: This dataset [data set reference] contains about

3000 images annotated with 35 different classes in

different scenarios to make the model to adapt to every

situation as possible.

Data 2: This is a custom dataset which is annotated

with 35 classes i.e. A- Z, 26 English alphabets and 1-

9, 9 decimal numbers. The data set is annotated

manually by drawing a box that locates the gesture.

Then we labelled the dataset in roboflow [roboflow

reference] tool present in the internet.

B. Data Acquisition
In this paper, the ISL images were collected from the

image database for tiny hand gesture recognition. This

dataset [2] has been collected from the open-source

tool available in the internet. There are total of 35

classes with about 2000 images. Our classes started

from 1 to 9 and A to Z, which were finger-pointing

different positions. The Indian Sign gestures in our

dataset are shown in Fig. 2.

Fig. 2. Sample data of each class.

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 865

C. Data Pre-processing
By artificially increasing the dataset, data

augmentation is a key strategy for creating variations

of the training and testing datasets. This step consists

to utilize the augmentation techniques such as

brightness transformation, randomly altering rotation,

motion blur, blurring, and the scale of an input image

necessitates that a model contemplates what an image

subject looks like in a diversity of positions. Each

image was repeated for reading and training, both for

the left and right hand, by flipping it horizontally, and

sometimes capturing the respective image of those

hands to make the set more accurate, using a YOLO

setup with a total of images from the dataset.

Additionally, each image for the testing set was

captured and labelled. Before moving on to post-

processing, it is vital to perform data pre-treatment so

that we can determine the type of data we have

collected and which portions will be relevant for

training, testing, and improving accuracy. This part

presents the system or methods used to classify, select,

and process as well as analyse data and its recognition

of characters is discussed. The following methodology

is employed to collect data in the form of images,

preprocess the data, and then feed the processed data

to our model.
1. Annotating manually: The procedure of annotation,

the training and validation set images were originally

240×240 pixels in size. We utilized the internet tool

Roboflow to construct the bounding boxes for each

image (www.roboflow.com). This page facilitates

making data labels and annotating in the desired

format. The images were annotated using the

Roboflow Annotate, which is a self-serve annotation

tool, and that greatly accelerates the transition from

untrained and deployed computer vision models to raw

images. After manual drawing and categorization of

bounding boxes, this tool made it possible to change

just one annotation entire the whole dataset.
2. Object detection: The object detection model is

trained in this section. We concentrate on the most

recent deep learning-based object detection models,

albeit any detector can be used. In the following part,

we’ll go into more detail about our training methods.

To determine the existence, quantity, and placement of

objects in a picture, object detection models are used.

Drawing a box for each object of interest on each

image was necessary for the image annotation, which

enables us to determine the precise location and

quantity of objects in an image. In contrast to image

classification, where the class placement within the

image is irrelevant because the entire image is

designated as one class, the class location is a

parameter in addition to the class. Bounding boxes and

polygons are examples of labels that can be used to

annotate objects inside a picture. Find the existence of

things in an image using a bounding box and the types

or classes of the objects you find.
A) Input: An image that includes one or more items,

like a photo.
b) Output: One or more bounding boxes with class

labels.
3. Image data labelling with bounding box: We have

also produced a dataset with bounding box so that we

may utilize the characteristics of the deep learning

detection technique. We randomly choose a few

images from each class in the dataset and choose to

label the bounding boxes. The most popular

annotation shape in computer vision is the bounding

box. Angular boxes called bounding boxes are used to

specify where an object is located inside an image.

Both two-dimensional (2D) and three-dimensional

(3D) models are possible (3D). Polygons or

rectangular shapes were manually drawn to annotate

the object’s edges and to mark each of the object’s

vertices. The x_center, y_center, width, and height of

an object’s boundary show its exact location in that

image. As shown in Fig. 3, the rectangular shapes are

used to label different hands.

Fig. 3. Labelling different hand classes with bounding boxes.

D. Labelled Dataset
In a labelled dataset, each element of the unlabelled

data is given a meaningful “label”, “tag” or “class” that

makes it more desired or instructive to identify it.

Bounding box inference in the training detection

model continues until all unlabelled images have been

manually fully tagged. In our model we annotated the

dataset, we introduce seven different gesture classes,

such as English Alphabets and decimal numbers.

E. Structure of YOLO Algorithm

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 866

1. You Only Look Once (YOLO): YOLO means You

Only Look Once is a method that detects all objects in

a frame or image in a single shot. Mainly, YOLO

employs a single, fully convolutional network (FCN)

comprised entirely of convolutional layers to identify

the objects present in an image. The YOLO approach

segments an image into a grid of cells, where each cell

is responsible for object localization, determining the

number of bounding boxes, and computing class

probabilities. The dataset is collected from various

people with various complex backgrounds at different

positions, such as variable illumination, gesture

variations, and low resolution. Labelling images is

essential for good computer vision models. All the

images are annotated and labelled manually with

Roboflow Annotate which represents a self-serve

annotation tool. In this study, we provide a dataset

called “Final_ISL”, to which we add bounding boxes

to roughly 3000 images in order to make use of the

potential of object detection techniques. After the first

step of preprocessing and the manual annotation, the

second one is training the deep learning models using

modern YOLO algorithms YOLO v5. To understand

the algorithms which we are proposing, the diagram

presented in Fig. 1 shows the detection of objects. At

first, the first step in the training process is to gather

the data, and the second is to label it. Our dataset is

annotated using the YOLO format, providing specific

values that are subsequently used during the model's

training. We feed the dataset to the YOLO v5 model

afterwards, after it has been annotated with YOLO

annotation. There are now a variable number of

images in our dataset.

2. YOLO v5 model: The Backbone, Neck, and Head
architectural components of the YOLOv5 network are

shown in Fig. 4.

YOLOv5 Backbone: CSPDarknet, is employed to

extract image features, incorporating cross-stage

partial networks.

YOLOv5 Neck: It makes use of PANet to create a

feature pyramid network that is then passed to the

Head for prediction after the features have been

aggregated.

YOLOv5 Head: Its layers produce predictions for

object detection from the anchor boxes.

YOLOv5 is quick and lightweight, and it uses less

computing power than other current state-of-the-art

architecture models while maintaining accuracy levels

that are comparable to those of current state-of-the-art

detection models. It is significantly faster than other

YOLO versions. YOLOv5 leverages CSPNET as the

basis for extracting feature maps from images. In order

to improve information flow, it also makes use of the

Path Aggregation Network. For the following reasons,

we have chosen YOLOv5 because it incorporates

advantageous features such as an advanced activation

function, a user-friendly guide, hyperparameter

tuning, and data augmentation capabilities. It can be

trained computationally quickly with minimal

resources, thanks to its lightweight architecture. The

size model can be utilized with mobile devices

because it is relatively tiny and light.

YOLOv5 presents several key differences compared

to previous versions in the YOLO series:

1. Multiscale: utilize FPN to improve the feature

extraction network rather than PAN, which will make

the model easier to use and more quickly.

2. Target overlap: identify nearby positions using the

rounding method such that the target is mapped to

several central grid points all around it. Yolov5 is a

continuation of the YOLO series’ most recent

iterations. It is more manageable and, in general,

cozier to utilize throughout training. Its architecture

may be modified with equal ease, and it can be

exported to numerous deployment environments.

Fig. 4. The general architecture of the YOLOv5 network

YOLO models have several algorithmic parameters,

and understanding their impact is critical for

optimizing the model’s performance for specific tasks.

Below are some key parameters in YOLO models and

their effects:

Input Size: This determines the resolution of the input

image. While larger input sizes can improve model

accuracy, they also increase computational cost.

Anchor Boxes: These are predefined boxes of various

shapes and sizes used for predicting object locations

and dimensions. The number and aspect ratio of

anchor boxes play a significant role in the model’s

accuracy.

Batch Size: Training speed can be increased with

larger batch size however; this comes at the cost of

higher memory requirements.

Confidence Threshold: This parameter filters out

predictions with low confidence. Raising the threshold

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 867

reduces false positives but may also increase false

negatives.

NMS Threshold: Non-Maximum Suppression (NMS)

removes overlapping bounding boxes. The NMS

threshold sets the permissible overlap level between

boxes. A higher threshold removes more overlaps but

might also discard some true positives.

Backbone Architecture: The backbone architecture

extracts feature from the input image. Different

architectures vary in complexity and influence both

the accuracy and speed of the model.

CSP: Cross Stage Partial Network

SPP: Spatial Pyramid Pooling

Conv: Convolutional Layer

Concat: Concatenate Function

For example:

Conv1x1, Conv3x3 S2, BottleNeckCSP layers are

integral to feature extraction.

Neck (PANet), Head (YOLO Layer), and Backbone

(CSPDarknet) components collectively enhance

detection efficiency.

Training Parameters: Parameters such as learning rate,

weight decay, and optimizer have a significant impact

on the training process and the model’s overall

performance.

The parameters of YOLO models directly influence

their accuracy, speed, and memory requirements.

Selecting the most suitable parameters for a specific

task demands experimentation and fine-tuning to

achieve optimal results.

IV. EXPERIMENTS AND RESULTS

1. Evaluation Metrics

In this section, we discuss the experiments performed

using Yolov5 algorithm. We implemented and test

the model during our experiments to train it for our

custom dataset which is different from publicly

available datasets. The evaluation metrics are

described after completing the model training and the

model testing. To evaluate the performance of the

proposed hand gesture recognition model, several

metrics were employed, focusing on recognition

accuracy, detection capabilities, and computational

efficiency. Among these, average precision (AP) was

used to assess performance. AP is calculated as the

area under the precision-recall curve across different

detection thresholds. Eq. (1) contains a definition of

the Average Precision (AP) equation.[26]

𝐴𝑃 = ∫ 𝑃𝑟(𝑅𝐶) ⅆ𝑅𝐶

0

1

 (1)

 To assess the model’s accuracy and efficiency, we

calculated precision, recall, and F1-score. Accuracy

is determined by comparing predicted bounding

boxes to ground truth boxes. Additionally, we

employed Equations (2), (3), and (4) to derive

precision, recall, F1-score, and accuracy using True

Positives (TP), False Positives (FP), and False

Negatives (FN). Precision (Pr), as defined in

Equation (2), represents the ratio of TP to all

expected positives (TP+FP). Consequently, it is a

critical metric for evaluating the cost associated with

FP instances.[26]

𝑃𝑟 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

 (2)

If the predicted bounding box doesn’t overlap with

the actual hand region (ground truth), it’s classified

as a False Positive (FP). Conversely, if the prediction

correctly identifies the hand’s location, it’s a True

Positive (TP). Recall measures how well the model

detects all the actual hands in the video. It’s

calculated as the ratio of correctly detected hands

(TP) to the total number of actual hands present (TP

+ FN), and is also known as sensitivity. A False

Negative (FN) occurs when the model fails to detect

a hand that Is actually present in the video frame.[26]

𝑅𝑐 =
𝑇𝑝

𝑇𝑝 ∗ 𝐹𝑁

 (3)

The F1-score gives us a good overall idea of how well

the model performs, taking into account both how

accurately it identifies things (precision) and how

many of the actual things it finds (recall). As shown in

Equation (9), the F1-score considers both of these

aspects. It’s especially useful when we need a good

balance between identifying things correctly and

making sure we find most of them. A perfect F1-score

of 1 means the model is doing both perfectly.[26]

𝑅𝑐 =
2 ∗ 𝑃𝑟 ∗ 𝑅𝑐

𝑃𝑟 ∗ 𝑅𝑐

 (4)

 Mean Average Precision (mAP), a popular metric

for evaluating object detection models, is calculated

by averaging the AP values for all the different object

classes. This gives us a single, overall score that tells

us how well the model performs across all the objects

it’s trained to detect. The Eq. (5) gives the Mean

Average Precision (mAP).[26]

𝑚𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑞)0

𝑞=1

𝑄
 (5)

Where Q is the number of queries in the set, q is the

query for average precision. The mAP is the mean

value of average precision for the detection of all

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 868

classes and is an indicator generally utilized to

estimate how good a model is. The FPS identifies

how many images can be correctly identified in a

single second. GPU utilization refers to the use of

GPU RAM when evaluating various detection

strategies.[26]

2. Results of YOLOv5 Model

The output of the various classes of Indian Sign

Language Detection is shown in Fig. 5. The

bounding box aimed to encompass as much of the

hand as possible. This is especially important when

dealing with large objects, as it helps the model

accurately identify the specific sign being

performed. Essentially, the model zooms in on the

object and then determines the most likely class

based on its characteristics. To evaluate the

effectiveness of different Indian Sign language

detection methods, we performed several

Experiments.

Fig. 6, 7, 8, 9 and 10 shows the Confusion metrics,

F1-Score / F1-Curv, Precision-Confidence Curve,

Recall-Confidence Curve and mAP at 0.5%

respectively. Which shows the outperformance of

the YOLOv5 model in object detection.

Fig. 6. Confusion metrics

Fig. 7. F1-Score / F1-Curve

Fig. 8. Precision-Confidence Curve

Fig. 9. Recall-Confidence Curve

Fig. 10. Precision-Recall Curve

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 869

V. CONCLUSION AND FUTURE SCOPE

This research paper successfully demonstrated the

feasibility of utilizing the YOLOv5 object detection

model for recognizing Indian Sign Language (ISL)

gestures. The model was trained on a dataset of 3000+

images encompassing 1 to 9 decimal numbers and 26

alphabets which in total 35 classes and achieved an

accuracy of 97.7% on the test set. This accuracy level

indicates the model's potential for real-world

applications, such as assistive communication devices

for the deaf community. The YOLOv5 architecture,

with its efficient design and high detection speed,

proved to be suitable for this task. The model was able

to effectively detect and classify various ISL gestures

with a high degree of accuracy, demonstrating its

capability to handle the complexities and nuances of

human hand movements.
This project serves as a foundation for further research

and development in the field of ISL recognition. Some

potential future directions include:

1) Increase the size and diversity of the training dataset

to improve model robustness and generalization.

2) Include more complex gestures, dynamic sequences,

and real-world scenarios with varying lighting and

backgrounds.

3) Implement a system for continuous learning to adapt

the model to new gestures and variations in individual

signing styles.

4) Develop a user-friendly interface for interacting with

the system, such as a mobile application or a wearable

device.

5) Optimize the model for real-time inference on edge

devices like mobile phones and embedded systems.

REFERENCES

[1] Comprehensive Guide to Ultralytics YOLOv5

[2] https://docs.ultralytics.com/yolov5/

[3] Custom Dataset Annotated manually using

roboflow an open-source tool available on

internet.

https://app.roboflow.com/dinesh1229/indian-

sign-language-zklzt/models

[4] M. Oudah, A. Al-Naji, and J. Chahl, “Hand

gesture recognition based on computer vision: a

review of techniques”. Journal of Imaging, vol. 6,

no. 8, pp. 73, 2020.

[5] H. Huang, Y. Chong, C. Nie, and S. Pan, “Hand

gesture recognition with skin detection and deep

learning method”. In Journal of Physics:

Conference Series, vol. 1213, no. 2, pp.

022001,.2019, IOP Publishing.

[6] E. Alpaydin, Introduction to Machine Learning.

Cambridge, MA, USA: MIT Press, 2020.

[7] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-

T. Lin, Learning From Data, vol. 4. New York,

NY, USA: AMLBook, 2012.

[8] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep

learning,’’ Nature, vol. 521, pp. 436–444, May

2015.

[9] D. Konstantinidis, K. Dimitropoulos, and P.

Daras, ‘‘A deep learning approach for analyzing

video and skeletal features in sign language

recognition,’’ in Proc. IEEE Int. Conf. Imag.

Syst. Techn. (IST), Oct. 2018, pp. 1–6.

[10] Mohamed Hisham Jaward, Ming Jin Cheok, Zaid

Omar. “A review of hand gesture and sign

language recognition techniques.”. 2020.

[11] Tessa Verhoef, Patrick Boudreault, Oscar Koller.

“Sign Language Recognition, Generation, and

Translation: An interdisciplinary

Perspective.”.2021.

[12] Lionel Pigou, Sander Dieleman, Pieter-Jan

Kindermans. “Sign Language Recognition Using

Convolutional Neural Network.”.2022.

Applications, vol. 3, August 2019.

[13] Starner T, Weaver J, Pentland A (1998) Real-

time American sign language recognition using

desk and wearable computer-based video. IEEE

Trans Pattern Anal Mach Intel 20:1371–1375.

[14] Huang J, Zhou W, Li H, Li W (2015) Sign language

recognition using 3D convolutional neural

networks. In: IEEE international conference on

multimedia and expo (ICME), pp 1-6.

[15] Huang J, Zhou W, Li H, Li W (2015) Sign

language recognition using real-sense. In: IEEE

China summit and international conference on

signal and information processing (ChinaSIP), pp

166-170.

[16] Pigou L, Dieleman S, Kindermans PJ, Schrauwen

B (2014) Sign language recognition using

convolutional neural networks. In: Workshop at

the European conference on computer vision.

Springer, Cham, pp 572-578.

https://docs.ultralytics.com/yolov5/
https://app.roboflow.com/dinesh1229/indian-sign-language-zklzt/models
https://app.roboflow.com/dinesh1229/indian-sign-language-zklzt/models

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 173613 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 870

[17] Yang S, Zhu Q (2017) Video-based Chinese sign

language recognition using convolutional neural

network. In: IEEE 9th international conference

on communication software and networks

(ICCSN), pp 929-934.

[18] Bheda V, Radpour D (2017) Using deep

convolutional networks for gesture recognition in

American sign language. arXiv preprint

arXiv:1710.06836.

[19] R.S. Sabeenian, S. Sai Bharathwaj, M Mohamed

Aadhil. “Sign Language Recognition Using Deep

Learining and Computer Vision.”.2020.

[20] Tessa Verhoef, Patrick Boudreault, Oscar Koller.

“Sign Language Recognition, Generation, and

Translation: An interdisciplinary

Perspective.”.2021.

[21] Lionel Pigou, Sander Dieleman, Pieter-Jan

Kindermans. “Sign Language Recognition Using

Convolutional Neural Network.”.2022.

Applications, vol. 3, August 2019.

[22] Badhe PC, Kulkarni V. Indian sign language

translator using gesture recognition algorithm.

In2015 IEEE International Conference on

Computer Graphics, Vision and Information

Security (CGVIS) 2015 Nov 2 (pp. 195-200).

IEEE.

[23] Lin HI, Hsu MH, Chen WK. Human hand gesture

recognition using a convolution neural network.

In2014 IEEE International Conference on

Automation Science and Engineering (CASE)

2014 Aug 18 (pp. 1038-1043). IEEE

[24] Muhammad Al-Qurishi, Thariq Khalid, Riad

Souissi. “Deep Learning for Sign Language

Recognition: Current Techniques, Benchmarks,

and Open Issues.”. 2021 Sep 20.

[25] Ankita Wadhawan, Prateek Kumar. “Deep

learning-based sign language recognition system

for static signs.”.2020 Jan 1.

[26] Melek Alaftekin, Ishak Pacal, Kenan Cicek.

“Real-time sign language recognition based on

YOLO algorithm.”.2024 Feb 15.

[27] Soukaina Chraa Mesbahi, Mohamed Adnane

Mahraz, Jamal Riffi, Hamid Tairi. “Hand Gesture

Recognition Based on Various Deep Learning

YOLO Models.”. (IJACSA) International Journal

of Advanced Computer Science and

Applications, Vol. 14, No. 4, 2023

