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Abstract—The communication barrier between hearing 

and non-hearing individuals, particularly those with 

speech impairments, remains a significant challenge. 

Traditional sign language interpretation methods, often 

reliant on manual techniques, are time-consuming and 

limited in their ability to adapt to diverse signing styles. 

To address these limitations, we propose a deep learning-

based system, Voxvisor, for real-time sign language 

recognition and translation into audible speech. Voxvisor 

incorporates advanced computer vision techniques, 

including key-point detection, optical flow, and YOLO 

(You Only Look Once) feature extraction, to accurately 

identify and classify sign language gestures. By 

leveraging deep learning architectures such as CNNs, 

RNNs, and LSTMs, Voxvisor can effectively learn from 

a comprehensive dataset of sign language videos, 

capturing both spatial and temporal characteristics of 

gestures. Compared to existing manual methods, our 

approach offers several advantages: real-time 

recognition, adaptability to various signing styles, 

improved accuracy. By bridging the communication gap 

between hearing and non-hearing individuals, Voxvisor 

has the potential to significantly improve the quality of 

life for those with speech impairments and promote 

social inclusion. 

 

Index Terms—Deep learning, YOLOv5 (You Only Look 

Once), Optical flow, Real-time recognition, Sign gesture 

interpreter. 

 

I. INTRODUCTION 

 

Sign language plays a crucial role in communication 

for the deaf and hard-of-hearing community. 

However, there are often significant barriers to 

effective communication between deaf and hearing 

individuals. It is essential to bridge this gap to promote 

inclusivity and accessibility. This project focuses on 

creating a reliable sign language gesture recognition 

system utilizes the YOLOv5 object detection 

framework developed by Ultralytics [1] as the 

foundation for our sign language gesture recognition 

system. While YOLOv5 provides a robust and 

efficient base model, this study focuses on adapting 

the model for sign language data, optimizing 

hyperparameters, evaluating performance on a new 

dataset. 

YOLOv5 has shown outstanding performance in real-

time object detection tasks, making it an excellent 

choice for this purpose. By utilizing the advantages of 

YOLOv5, including its high accuracy and speed, we 

aim to develop a system capable of accurately and 

efficiently recognizing a wide range of sign language 

gestures. 

This research will aid in the advancement of assistive 

technologies for the deaf community. If successfully 

implemented, this system could enhance 

communication in various environments, such as 

education, healthcare, and social interactions. 

This paper follows as mentioned structure to go 

through the modern approach in finding the solution to 

bridge the communication barrier between the hearing 

and non-hearing people. Section II mentions the 

background study, research and survey of different 

literatures. Section III provides the materials and 

methodologies used to collect dataset and 

preprocessing them to attain the high performance of 

the Yolov5 model. Section IV offers the case study of 

the results and the performance of the YOLOv5 

model. Section VI presents the conclusion and future 

scope of Indian Sign Language. 

 

II. BACKGROUND STUDY 

 

Indian Sign Language recognition can be performed 

using data from various sources, such as videos, 

photographs, wearable sensors, and more. Numerous 

research studies have explored hand gesture 

recognition. Early approaches to this field often 

involved the use of hand gloves equipped with cables, 

sensors, LED markers, or other devices [3]. These 

early methods worked well only when the lighting was 

consistent. However, accurately recognizing hand 
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gestures can be quite tricky. Researchers have 

explored many different features, such as skin color 

and hand movement speed, to help identify hand 

motions [4]. In spite of these traditional techniques 

many authors introduced SLR [22] using Machine 

Learning [5], [6]. There are numerous different 

techniques and methodologies that belong to this 

group, some of the well-known methods include naïve 

Bayes, random forest, K-nearest neighbor, logistic 

regression and the support vector machine [5], [6]. All 

these may include in the training phase, those can be 

supervised or unsupervised. 

Those basic machine learning approaches have 

become older as the new approaches introduced in the 

recent times, which are nothing but deep learning 

methods and models. Those models include most 

famous and powerful algorithms such as recurrent 

neural network (RNNs), convolution neural network 

(CNN). In [7] the authors trained CNN in addition they 

optimized the performance of the CNN by fine-

tunning of the model by changing some of the relevant 

hyper-parameters that define training process [7]. 

In [8] the researchers started with a pre-trained 

Inception V3 model, originally developed by Google 

and trained on the massive ImageNet dataset. To adapt 

this model for their specific task of recognizing 

gestures in video frames, they fine-tuned it using the 

ImageNet weights as a starting point. In [9] the authors 

significant research effort was undertaken to 

categorize Indian Sign Language gestures, resulting in 

a dataset of 140 classes encompassing finger-spelled 

numbers, English alphabets, and common phrases. A 

Kinect sensor was utilized to capture the dataset, 

acquiring 640x480 RGB images along with their 

corresponding depth data. Depth values were 

recorded for each pixel, establishing a direct mapping 

between image pixels and their depth information. 

Given that subjects stood with their hands extended, 

the hand in the image exhibited the least depth. This 

was validated by applying a pixel mask to filter out 

depth values exceeding a specific threshold. However, 

this masking process inadvertently excluded the palm 

region, which displayed significant inconsistencies. 

Consequently, this portion of the dataset was not used 

for training the Convolutional Neural Network (CNN). 

To address this, unsupervised learning was employed, 

specifically the K-means clustering algorithm. SIFT 

feature mapping and Gaussian masks were utilized to 

extract relevant features and train the dataset. The final 

accuracy achieved exceeded 90%. 

Nandy et al. [10] classifies the gestures by splitting the 

data into segmented features and employs Euclidean 

distance and K-Nearest Neighbors. Similar work by 

Kumud et al. [11] shows how to do continuous 

recognition. Their research proposes extraction of still 

frames from videos, pre-processing data, extracting 

data frames and other features. Pre-processing is done 

by converting the video into RGB images or frames 

with same dimension. Skin color segmentation with 

the HSV was used to extract skin region and were 

converted to binary form. Gradient calculation 

between the frames is done to extract the key frames 

and oriental histogram is used for features extraction. 

Huang et al. [12] developed a sign language 

recognition system using a Kinect sensor and 3D 

convolutional neural networks. They utilized 3D 

CNNs to capture both spatial and temporal features 

directly from the raw data, which aids in extracting 

meaningful features to handle the significant 

variations in hand gestures. This model’s effectiveness 

was validated on a real-world dataset comprising 25 

signs, achieving an impressive recognition rate of 

94.2%. Huang et al. [13] proposed a sign language 

recognition system using the RealSense depth camera. 

They collected a total of 65,000 image frames 

representing 26 alphabet signs, dividing the data into 

a training set of 52,000 frames and a testing set of 

13,000 frames. The deep neural network model was 

trained and classified using a deep belief network, 

achieving an impressive accuracy of 98.9% with the 

RealSense camera and 97.8% with the Kinect sensor. 

Pigou et al. [14] contributed their efforts to a sign 

language recognition system using Microsoft Kinect 

and a CNN-based approach. In this system, they 

employed thresholding, background removal, and 

median filtering as preprocessing steps. They 

implemented the Nesterov Accelerated Gradient 

(NAG) optimizer, achieving a validation accuracy of 

91.7% for recognizing Italian gestures. Yang and Zhu 

[15] created a system that uses videos to understand 

Chinese Sign Language (CSL). This system relies on 

a type of artificial intelligence called Convolutional 

Neural Networks (CNNs). They gathered data using 

40 commonly used words in CSL. Their approach 

makes it easier to identify the hands in the videos and 

avoids losing important information when analyzing 

the signs. They tested two different training methods 
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for the AI, called Adagrad and Adadelta, and found 

that Adadelta worked better. Bheda and Radpour [12] 

created a system that recognizes American Sign 

Language (ASL) letters and numbers. Their system 

uses a type of artificial intelligence called 

Convolutional Neural Networks (CNNs). The CNN 

has a specific structure with multiple layers for 

processing information. The images used to train the 

system were cleaned up using a technique called 

background subtraction. This system achieved an 

accuracy of 82.5% for recognizing letters and 97% for 

recognizing numbers. 

The authors of [17] had implemented their custom 

convolutional neural networks, for recognizing the 

sing from a video frame. The MNIST (Modified 

National Institute of Standards and Technology 

database) [17]. The MNIST is one of the well-known 

datasets, although the system performed well it still 

struggles in real-time scenarios with uneven or noisy 

backgrounds. Sign Language Recognition System 

using Machine Learning [23], the authors made a step 

forward by not to just rely on the simple hand gestures 

also focused on the facial expressions and key-point 

detection. Although their idea was good to see but it is 

computationally expensive while compared to other 

approaches.  

Melek Alaftekin and other authors of [25] utilized 

Yolov4-CSP algorithm by adding few add-ons such as 

Mish activation function, complete interaction of 

union (CioU) loss function and transformer block. 

Their system obtained 98.95% precision, 98.15% 

recall, 98.55% F1 score and 99.49% mAP results in 

9.8ms. This proposed system can able to detect 

numbers in Turkish sign language. 

 

III. MATERIALS AND METHODS 

 

The techniques and resources that were used in this 

study to achieve the hand gesture recognition that this 

paper focused on are assigned to this part. Fig. 1 

resembles the flow chart of the methodology for sign 

language recognition. 

The proposed method was divided into different steps. 

Firstly, the hand images were collected from the 

various resources from the internet for Indian sign -

language hand gesture recognition and underwent data 

augmentation to create a hand motions dataset. The 

captured image is passed through an annotation format 

to draw a Bounding box-based hand detector to extract 

hand regions. Bounding boxes were manually drawn 

around specific objects in the images to annotate them. 

Once the hand has recognized and transferred to a 

better Yolo (You Only Look Once) deep learning 

model, then the hand region is extracted. This model 

was then optimized and trained on the created datasets. 

The dataset has 35 different gesture classes, such as 

Alphabets and decimal numbers. To verify the 

detection performance, evaluation metrics were 

produced. The best model was chosen for the best hand 

detection across many images. 
 

A. Dataset Collection  
Data 1: This dataset [data set reference] contains about 

3000 images annotated with 35 different classes in 

different scenarios to make the model to adapt to every 

situation as possible. 

Data 2: This is a custom dataset which is annotated 

with 35 classes i.e. A- Z, 26 English alphabets and 1-

9, 9 decimal numbers. The data set is annotated 

manually by drawing a box that locates the gesture.  

 
Then we labelled the dataset in roboflow [roboflow 

reference] tool present in the internet. 

B. Data Acquisition  
In this paper, the ISL images were collected from the 

image database for tiny hand gesture recognition. This 

dataset [2] has been collected from the open-source 

tool available in the internet. There are total of 35 

classes with about 2000 images. Our classes started 

from 1 to 9 and A to Z, which were finger-pointing 

different positions. The Indian Sign gestures in our 

dataset are shown in Fig. 2.  

 
Fig. 2. Sample data of each class. 
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C. Data Pre-processing  
By artificially increasing the dataset, data 

augmentation is a key strategy for creating variations 

of the training and testing datasets. This step consists 

to utilize the augmentation techniques such as 

brightness transformation, randomly altering rotation, 

motion blur, blurring, and the scale of an input image 

necessitates that a model contemplates what an image 

subject looks like in a diversity of positions. Each 

image was repeated for reading and training, both for 

the left and right hand, by flipping it horizontally, and 

sometimes capturing the respective image of those 

hands to make the set more accurate, using a YOLO 

setup with a total of images from the dataset. 

Additionally, each image for the testing set was 

captured and labelled. Before moving on to post-

processing, it is vital to perform data pre-treatment so 

that we can determine the type of data we have 

collected and which portions will be relevant for 

training, testing, and improving accuracy. This part 

presents the system or methods used to classify, select, 

and process as well as analyse data and its recognition 

of characters is discussed. The following methodology 

is employed to collect data in the form of images, 

preprocess the data, and then feed the processed data 

to our model.  
1.  Annotating manually: The procedure of annotation, 

the training and validation set images were originally 

240×240 pixels in size. We utilized the internet tool 

Roboflow to construct the bounding boxes for each 

image (www.roboflow.com). This page facilitates 

making data labels and annotating in the desired 

format. The images were annotated using the 

Roboflow Annotate, which is a self-serve annotation 

tool, and that greatly accelerates the transition from 

untrained and deployed computer vision models to raw 

images. After manual drawing and categorization of 

bounding boxes, this tool made it possible to change 

just one annotation entire the whole dataset.  
2. Object detection: The object detection model is 

trained in this section. We concentrate on the most 

recent deep learning-based object detection models, 

albeit any detector can be used. In the following part, 

we’ll go into more detail about our training methods. 

To determine the existence, quantity, and placement of 

objects in a picture, object detection models are used. 

Drawing a box for each object of interest on each 

image was necessary for the image annotation, which 

enables us to determine the precise location and 

quantity of objects in an image. In contrast to image 

classification, where the class placement within the 

image is irrelevant because the entire image is 

designated as one class, the class location is a 

parameter in addition to the class. Bounding boxes and 

polygons are examples of labels that can be used to 

annotate objects inside a picture. Find the existence of 

things in an image using a bounding box and the types 

or classes of the objects you find.  
A) Input: An image that includes one or more items, 

like a photo.  
b) Output: One or more bounding boxes with class 

labels. 
3. Image data labelling with bounding box: We have 

also produced a dataset with bounding box so that we 

may utilize the characteristics of the deep learning 

detection technique. We randomly choose a few 

images from each class in the dataset and choose to 

label the bounding boxes. The most popular 

annotation shape in computer vision is the bounding 

box. Angular boxes called bounding boxes are used to 

specify where an object is located inside an image. 

Both two-dimensional (2D) and three-dimensional 

(3D) models are possible (3D). Polygons or 

rectangular shapes were manually drawn to annotate 

the object’s edges and to mark each of the object’s 

vertices. The x_center, y_center, width, and height of 

an object’s boundary show its exact location in that 

image. As shown in Fig. 3, the rectangular shapes are 

used to label different hands.  

 
Fig. 3. Labelling different hand classes with bounding boxes. 

 

D. Labelled Dataset  
In a labelled dataset, each element of the unlabelled 

data is given a meaningful “label”, “tag” or “class” that 

makes it more desired or instructive to identify it. 

Bounding box inference in the training detection 

model continues until all unlabelled images have been 

manually fully tagged. In our model we annotated the 

dataset, we introduce seven different gesture classes, 

such as English Alphabets and decimal numbers.  
 

E. Structure of YOLO Algorithm  
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1.  You Only Look Once (YOLO): YOLO means You 

Only Look Once is a method that detects all objects in 

a frame or image in a single shot. Mainly, YOLO 

employs a single, fully convolutional network (FCN) 

comprised entirely of convolutional layers to identify 

the objects present in an image. The YOLO approach 

segments an image into a grid of cells, where each cell 

is responsible for object localization, determining the 

number of bounding boxes, and computing class 

probabilities. The dataset is collected from various 

people with various complex backgrounds at different 

positions, such as variable illumination, gesture 

variations, and low resolution. Labelling images is 

essential for good computer vision models. All the 

images are annotated and labelled manually with 

Roboflow Annotate which represents a self-serve 

annotation tool. In this study, we provide a dataset 

called “Final_ISL”, to which we add bounding boxes 

to roughly 3000 images in order to make use of the 

potential of object detection techniques. After the first 

step of preprocessing and the manual annotation, the 

second one is training the deep learning models using 

modern YOLO algorithms YOLO v5. To understand 

the algorithms which we are proposing, the diagram 

presented in Fig. 1 shows the detection of objects. At 

first, the first step in the training process is to gather 

the data, and the second is to label it. Our dataset is 

annotated using the YOLO format, providing specific 

values that are subsequently used during the model's 

training. We feed the dataset to the YOLO v5 model 

afterwards, after it has been annotated with YOLO 

annotation. There are now a variable number of 

images in our dataset. 

2.  YOLO v5 model: The Backbone, Neck, and Head  
architectural components of the YOLOv5 network are 

shown in Fig. 4.  

YOLOv5 Backbone: CSPDarknet, is employed to 

extract image features, incorporating cross-stage 

partial networks. 

YOLOv5 Neck: It makes use of PANet to create a 

feature pyramid network that is then passed to the 

Head for prediction after the features have been 

aggregated.  

YOLOv5 Head: Its layers produce predictions for 

object detection from the anchor boxes.  

YOLOv5 is quick and lightweight, and it uses less 

computing power than other current state-of-the-art 

architecture models while maintaining accuracy levels 

that are comparable to those of current state-of-the-art 

detection models. It is significantly faster than other 

YOLO versions. YOLOv5 leverages CSPNET as the 

basis for extracting feature maps from images. In order 

to improve information flow, it also makes use of the 

Path Aggregation Network. For the following reasons, 

we have chosen YOLOv5 because it incorporates 

advantageous features such as an advanced activation 

function, a user-friendly guide, hyperparameter 

tuning, and data augmentation capabilities. It can be 

trained computationally quickly with minimal 

resources, thanks to its lightweight architecture. The 

size model can be utilized with mobile devices 

because it is relatively tiny and light. 

 

YOLOv5 presents several key differences compared 

to previous versions in the YOLO series: 

1. Multiscale: utilize FPN to improve the feature 

extraction network rather than PAN, which will make 

the model easier to use and more quickly. 

2. Target overlap: identify nearby positions using the 

rounding method such that the target is mapped to 

several central grid points all around it. Yolov5 is a 

continuation of the YOLO series’ most recent 

iterations. It is more manageable and, in general, 

cozier to utilize throughout training. Its architecture 

may be modified with equal ease, and it can be 

exported to numerous deployment environments. 

 

 
Fig. 4. The general architecture of the YOLOv5 network 

YOLO models have several algorithmic parameters, 

and understanding their impact is critical for 

optimizing the model’s performance for specific tasks. 

Below are some key parameters in YOLO models and 

their effects: 

Input Size: This determines the resolution of the input 

image. While larger input sizes can improve model 

accuracy, they also increase computational cost. 

Anchor Boxes: These are predefined boxes of various 

shapes and sizes used for predicting object locations 

and dimensions. The number and aspect ratio of 

anchor boxes play a significant role in the model’s 

accuracy. 

Batch Size: Training speed can be increased with 

larger batch size however; this comes at the cost of 

higher memory requirements. 

Confidence Threshold: This parameter filters out 

predictions with low confidence. Raising the threshold 
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reduces false positives but may also increase false 

negatives. 

NMS Threshold: Non-Maximum Suppression (NMS) 

removes overlapping bounding boxes. The NMS 

threshold sets the permissible overlap level between 

boxes. A higher threshold removes more overlaps but 

might also discard some true positives. 

Backbone Architecture: The backbone architecture 

extracts feature from the input image. Different 

architectures vary in complexity and influence both 

the accuracy and speed of the model.  

CSP: Cross Stage Partial Network 

SPP: Spatial Pyramid Pooling 

Conv: Convolutional Layer 

Concat: Concatenate Function 

For example: 

Conv1x1, Conv3x3 S2, BottleNeckCSP layers are 

integral to feature extraction. 

Neck (PANet), Head (YOLO Layer), and Backbone 

(CSPDarknet) components collectively enhance 

detection efficiency. 

Training Parameters: Parameters such as learning rate, 

weight decay, and optimizer have a significant impact 

on the training process and the model’s overall 

performance. 

The parameters of YOLO models directly influence 

their accuracy, speed, and memory requirements. 

Selecting the most suitable parameters for a specific 

task demands experimentation and fine-tuning to 

achieve optimal results. 

 

IV. EXPERIMENTS AND RESULTS 

 

1.  Evaluation Metrics 

In this section, we discuss the experiments performed 

using Yolov5 algorithm. We implemented and test 

the model during our experiments to train it for our 

custom dataset which is different from publicly 

available datasets. The evaluation metrics are 

described after completing the model training and the 

model testing. To evaluate the performance of the 

proposed hand gesture recognition model, several 

metrics were employed, focusing on recognition 

accuracy, detection capabilities, and computational 

efficiency. Among these, average precision (AP) was 

used to assess performance. AP is calculated as the 

area under the precision-recall curve across different 

detection thresholds. Eq. (1) contains a definition of 

the Average Precision (AP) equation.[26] 

𝐴𝑃 = ∫ 𝑃𝑟(𝑅𝐶) ⅆ𝑅𝐶

0

1

                           (1) 

     To assess the model’s accuracy and efficiency, we 

calculated precision, recall, and F1-score. Accuracy 

is determined by comparing predicted bounding 

boxes to ground truth boxes. Additionally, we 

employed Equations (2), (3), and (4) to derive 

precision, recall, F1-score, and accuracy using True 

Positives (TP), False Positives (FP), and False 

Negatives (FN). Precision (Pr), as defined in 

Equation (2), represents the ratio of TP to all 

expected positives (TP+FP). Consequently, it is a 

critical metric for evaluating the cost associated with 

FP instances.[26] 

𝑃𝑟 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

                          (2) 

If the predicted bounding box doesn’t overlap with 

the actual hand region (ground truth), it’s classified 

as a False Positive (FP). Conversely, if the prediction 

correctly identifies the hand’s location, it’s a True 

Positive (TP). Recall measures how well the model 

detects all the actual hands in the video. It’s 

calculated as the ratio of correctly detected hands 

(TP) to the total number of actual hands present (TP 

+ FN), and is also known as sensitivity. A False 

Negative (FN) occurs when the model fails to detect 

a hand that Is actually present in the video frame.[26] 

𝑅𝑐 =
𝑇𝑝

𝑇𝑝 ∗ 𝐹𝑁

                     (3) 

The F1-score gives us a good overall idea of how well 

the model performs, taking into account both how 

accurately it identifies things (precision) and how 

many of the actual things it finds (recall). As shown in 

Equation (9), the F1-score considers both of these 

aspects. It’s especially useful when we need a good 

balance between identifying things correctly and 

making sure we find most of them. A perfect F1-score 

of 1 means the model is doing both perfectly.[26] 

𝑅𝑐 =
2 ∗ 𝑃𝑟 ∗ 𝑅𝑐

𝑃𝑟 ∗ 𝑅𝑐

                  (4) 

     Mean Average Precision (mAP), a popular metric 

for evaluating object detection models, is calculated 

by averaging the AP values for all the different object 

classes. This gives us a single, overall score that tells 

us how well the model performs across all the objects 

it’s trained to detect. The Eq. (5) gives the Mean 

Average Precision (mAP).[26] 

𝑚𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑞)0

𝑞=1

𝑄
                   (5) 

Where Q is the number of queries in the set, q is the 

query for average precision. The mAP is the mean 

value of average precision for the detection of all 
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classes and is an indicator generally utilized to 

estimate how good a model is. The FPS identifies 

how many images can be correctly identified in a 

single second. GPU utilization refers to the use of 

GPU RAM when evaluating various detection 

strategies.[26] 

2.  Results of YOLOv5 Model  

The output of the various classes of Indian Sign 

Language Detection is shown in Fig. 5. The 

bounding box aimed to encompass as much of the 

hand as possible. This is especially important when 

dealing with large objects, as it helps the model 

accurately identify the specific sign being 

performed. Essentially, the model zooms in on the 

object and then determines the most likely class 

based on its characteristics. To evaluate the 

effectiveness of different Indian Sign language 

detection methods, we performed several 

Experiments. 

 

Fig. 6, 7, 8, 9 and 10 shows the Confusion metrics, 

F1-Score / F1-Curv, Precision-Confidence Curve, 

Recall-Confidence Curve and mAP at 0.5% 

respectively. Which shows the outperformance of 

the YOLOv5 model in object detection. 

 
Fig. 6. Confusion metrics 

 

Fig. 7. F1-Score / F1-Curve 

 

Fig. 8. Precision-Confidence Curve 

 

 

Fig. 9. Recall-Confidence Curve 

 

Fig. 10. Precision-Recall Curve 
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V. CONCLUSION AND FUTURE SCOPE 

 

This research paper successfully demonstrated the 

feasibility of utilizing the YOLOv5 object detection 

model for recognizing Indian Sign Language (ISL) 

gestures. The model was trained on a dataset of 3000+ 

images encompassing 1 to 9 decimal numbers and 26 

alphabets which in total 35 classes and achieved an 

accuracy of 97.7% on the test set. This accuracy level 

indicates the model's potential for real-world 

applications, such as assistive communication devices 

for the deaf community. The YOLOv5 architecture, 

with its efficient design and high detection speed, 

proved to be suitable for this task. The model was able 

to effectively detect and classify various ISL gestures 

with a high degree of accuracy, demonstrating its 

capability to handle the complexities and nuances of 

human hand movements.  
This project serves as a foundation for further research 

and development in the field of ISL recognition. Some 

potential future directions include: 

1)  Increase the size and diversity of the training dataset 

to improve model robustness and generalization. 

2)  Include more complex gestures, dynamic sequences, 

and real-world scenarios with varying lighting and 

backgrounds. 

3)  Implement a system for continuous learning to adapt 

the model to new gestures and variations in individual 

signing styles. 

4)  Develop a user-friendly interface for interacting with 

the system, such as a mobile application or a wearable 

device. 

5)  Optimize the model for real-time inference on edge 

devices like mobile phones and embedded systems. 
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