Influence of Footing Geometry on Earthquake-Induced Structural Response

Anurag Dagur¹, V.K. Modi²

¹M. Tech Scholar, Department of Civil Engineering, Kautilya Institute of Technology and Engineering, Jaipur, India ²Assistant Professor, Department of Civil Engineering, Kautilya Institute of Technology and Engineering, Jaipur, India

Abstract: The geometry of footings plays a crucial role in the seismic response of structures by influencing load distribution, soil-structure interaction, and foundation stability. This study investigates the impact of footing geometries on earthquake-induced structural response under hard soil conditions using STAAD Pro simulations. Footings with varying length-to-width ratios (1.4:1, 1:1, and 1:1.44) were analyzed under Zone 5 earthquake conditions to assess base shear, overturning moment, and maximum displacement. The results indicate that wider footings exhibit higher overturning moments (10% increase) but lower lateral displacements (30% decrease), whereas compact footings reduce overturning moments but lead to increased displacements (up to 40%). Base shear also increased by 8-12% with larger footing dimensions. These findings emphasize the need for optimized footing selection to balance stability and flexibility in seismic design. This study provides design recommendations for enhancing seismic resilience by considering footing shape, depth, and soil compatibility. The outcomes contribute to foundation design improvements for earthquake-prone regions, ensuring structural safety and resilience.

Key words: Seismic Response, Footing Geometry, Soil-Structure Interaction, Earthquake Load, Structural Stability, Foundation Design, STAAD Pro

1. INTRODUCTION

Earthquakes pose a significant threat to infrastructure, with structural response largely influenced by foundation systems. Footing geometry plays a critical role in load distribution, soil-structure interaction, and overall seismic stability. The aspect ratio (length-to-width ratio) of footings affects stress distribution, settlement behavior, and moment resistance, impacting a building's resilience during seismic events.

The choice between square and rectangular footings influences load transfer mechanisms, base shear

distribution, and lateral displacement. Higher aspect ratio footings (e.g., 1.4:1, 1:1.44) enhance moment resistance, while compact footings (1:1) improve overall stability by minimizing displacements. Additionally, embedment depth plays a vital role in energy dissipation and resistance against seismic forces.

Soil properties significantly impact foundation behavior during earthquakes. Soft soils amplify seismic waves, increasing structural displacements and base shear, while dense soils provide better loadbearing capacity and reduced deformation. Understanding these soil-structure interactions (SSI) is crucial for designing seismically resilient foundations.

shapes

With the increasing frequency of seismic events, optimizing foundation design is essential. This study systematically evaluates different footing shapes and aspect ratios under Zone 5 seismic conditions, bridging knowledge gaps in soil-structure interaction and seismic resistance strategies.

2. LITERATURE REVIEW

Janous et al. (2024) highlighted that stiff clay foundations transmit higher seismic forces to the superstructure, necessitating advanced reinforcement techniques.

Khezri et al. (2024) found that higher length-to-width ratios improve the rocking behavior of footings,

Table 1 Previous Literature

allowing them to return to their original position after seismic shaking.

Jafarzadeh & Maleki (2023) studied impedance functions in different footing shapes and found that square and circular foundations exhibit distinct stiffness and damping properties.

Tung et al. (2021) emphasized that optimal footing dimensions can reduce seismic demand on structures by enhancing stability.

Lwti et al. (2021) studied how different footing shapes impact dynamic bearing capacities. Their research concluded that square, circular, and rectangular footings exhibit different settlement behaviors under seismic forces.

Author(s)	Methods Used Key Findings		Limitations	
Dr. J. Permalatha	Response Spectrum	Mat foundation enhances seismic	Limited applicability to	
	Method & Time	performance by reducing	shallow foundations on rock;	
	History Method using	displacement (65-70%) and drift	neglects consolidation	
(2024)	SAP 2000	(20-30%)	settlement	
	Finite Element	Raft foundation shows highest	Does not compare	
Anjali B, Raji	Analysis using	deformation (70.9mm); pile and	performance of different soil	
M (2015)	ANSYS 16	under-reamed piles improve	conditions	
	11101010	structural performance	conditions	
	Finite Flement	FEA & BEM improve seismic	Challenges in implementing	
Md. Al-Arafat	Analysis & Boundary	foundation design accuracy; non-	advanced technologies;	
et al. (2024)	Flement Method	linear SSI models enhance	cumulative stress effects not	
	Element Wethod	resilience	considered	
Ali Khezri et	Reduced-scale slow	Higher length-to-width ratios	Limited real-world	
$\frac{1}{2024}$	cyclic tests under 1g	improve recentering & moment	applicability due to reduced-	
di. (2024)	conditions	capacity	scale conditions	
Soumaya El	Nonlinear Static	SSI significantly affects seismic	Does not fully consider soil-	
Janous et al.	Analysis & HAZUS	behavior; anchorage depth and	structure interaction effects	
(2024)	Methodology	number of stories impact fragility	on failure risk	
Francesco Linear & Nonlinear SSI elongates fundamen		SSI elongates fundamental period	High computational effort;	
Silvestri et al.	Dynamic Analysis of	& increases damping; fragility	limited variability in soil	
(2024)	SFS Models	functions developed	conditions	
Amin Asgari	3D Nonlinear Finite	Elevible bases reduce damage: SSI	Comparison of shallow &	
Amin Asgan	Element Analysis	affects prominent in saturated soil	deep foundations not	
Ct al. (2024)	Element Analysis	encers prominent in saturated son	addressed	
Smita Tung et al. (2021)	Finite Element	Seismic conditions reduce bearing	Pseudo-static conditions limit	
	Analysis & Pseudo-	capacity by 18%; layer thickness	full seismic scenario	
	Static Analysis	ratio crucial	assessment	
Vishwajit Anand et al. (2021)		SSI reduces seismic force	Overstates beneficial effects	
	Substructure Approach for SSI	reductions; rotation more	of SSL potentially increasing	
		significant than structural	vulnerability	
		deformation	vunierability	
Sarafraz	Finite Element	Different footing types affect	Seismic design codes	
Akhter et al.	Modeling using	seismic response: implicit &	inconsistencies affect SSI	
(2020)	STAAD Pro	seisine response, implicit &	response modeling	

Author(s)	Methods Used	Key Findings	Limitations
		explicit modeling approaches	
		tested	

Mohammed et al. (2021) analyzed the settlement characteristics of footings under seismic loading and found that larger footings generally experience greater settlement, particularly in cohesionless soils. Mohammed et al. (2021) suggested that foundation design must incorporate appropriate reinforcement measures to mitigate excessive settlement during seismic activity.

B & M (2015) found that structures with raft foundations on sandy soils exhibited higher lateral deflections compared to those on clay soils, due to soil flexibility.

Agrawal & Hora (2012) explored the interaction between footing shape and soil stiffness, concluding that nonlinear soil responses significantly influence seismic stability.

Hu et al. (2016) found that differential settlement behavior varies based on the arrangement and shape of footings, with layered soil conditions playing a critical role in seismic response.

Wang & Zhou (2018) analyzed the effect of soilstructure interaction on impedance functions, highlighting the impact of closely spaced footings.

This study aims to:

- Analyze the seismic response of different footing geometries (square and rectangular) with varying aspect ratios.
- Evaluate the impact of soil-structure interaction on foundation performance under earthquake loading.
- Assess variations in base shear, lateral displacement, and inter-story drift across different footing configurations.
- Develop design recommendations for optimizing footing geometry to enhance seismic resilience.

3. METHODOLOGY

Numerical modeling using STAAD Pro was conducted to simulate seismic behavior under hard soil conditions. The study analyzed different footing configurations with varying aspect ratios (1.4:1, 1:1, 1:1.44) and their impact on structural performance under Zone 5 earthquake loading. Soil-structure interaction effects were incorporated to capture load transfer mechanisms, differential settlements, and seismic energy dissipation.

This research provides practical design recommendations to optimize footing geometry for earthquake-prone regions, ensuring structural safety and long-term resilience.

Table 2	Sectional	parameters
---------	-----------	------------

Category	Details		
	Multi-story reinforced		
Building Type	concrete frame structure		
A realization Trans	Seismic analysis		
Analysis Type	(Earthquake loading)		
	IS 456:2000 (Concrete		
Design Codes Used	Design), IS 1893:2016		
	(Seismic Design)		
	7 Stories (as seen in the		
Number of Stories	model)		
	Moment-resisting		
Structural System	reinforced concrete		
	frame		
Building Plan			
Dimensions	$18m \times 15m$		
Total Height of			
Building	21m		
Bay Spacing (X-			
direction)	3m		
Bay Spacing (Y-	2		
direction)	3m		
	Earthquake forces		
Seismic Load	applied as per IS		
Consideration	1893:2016		
	Different footings		
Foundation Types	(Square, Rectangular)		
Footing Support	Fixed supports at		
Condition	foundation level		
Column Size	300 mm × 300 mm		
Beam Size	300 mm × 300 mm		
Slab Thickness	150 mm		
Concrete Grade	M30 (fck = 30 N/mm ²)		
Reinforcement Steel	Fe500 (fy = 500		
Grade	N/mm²)		
Modulus of Elasticity	25 000 N/ 3		
of Concrete	25,000 N/mm ²		
Poisson's Ratio	0.2		

Parameter	Specifications
Geometry of Tower	Square Base
Height of Tower	39.5 m
Centre to Centre distance of	10 m
Fixed support at base	
Ground Clearance h ₁	20 m
Sag of the lowermost	3 m
conductor wires h ₂	
Vertical distance between	6 m
conductor wires h ₃ , h ₄	
Vertical distance between top	4.5 m
conductor and ground wire h ₅	
Length of wings	10m
Main Vertical Members	ISMB 500
Horizontal & Inclined bracings	ISA
and cross arms	150*150*15

Table 3 Model Specifications

Figure 2 Model (a) top view and (b) elevation

Figure 3 Tower Different Types of Footings Analyzed in the Study

The seismic analysis of a multi-story reinforced concrete frame using STAAD Pro evaluates the impact of different footing configurations under hard soil conditions. The study examines base shear, displacement, and overturning moment, highlighting how foundation geometry influences load transfer, settlement, and stability. The findings enhance soil-structure interaction understanding, aiding in optimized foundation designs for earthquake-resistant buildings.

Table 3 Detailing of each type of footing

	0	21	•	0
Footing	Ratio	Length	Width	Thickness
Footing		(m)	(m)	(m)
Type 1	1.4:1	3.5	2.5	0.85
Type 2	1:1	3	3	0.9
Type 3	1:1.44	2.5	3.6	0.85

4. RESULT AND DISCUSSIONS

4.1 Overturning Moment

The overturning moment, induced at the base of the structure due to seismic forces, is a critical parameter in assessing the rotational stability of the foundation. The study reveals that overturning moment varies across different footing types, with Footing 1 exhibiting the highest value (338.025 kN-m), followed by Footing 2 (328.687 kN-m) and Footing 3 (317.014 kN-m) under Delhi's seismic zone on hard soil. This trend indicates that foundation geometry significantly influences rotational resistance, with larger footing areas providing better moment resistance. The findings emphasize the importance of footing configuration in mitigating rotational instability under seismic loading conditions.

Condition	Zone	Soil Type	Base Shear (kN)	Maximum Resultant Displacement (mm)	Overturning Moment (kN-m)
Footing 1	Delhi	Hard soil	2800.552	198.686	338.025
Footing 2	Delhi	Hard soil	2924.098	238.225	328.687
Footing 3	Delhi	Hard soil	3078.529	280.415	317.014

Table 4 Maximum outcomes for each condition

4.2 Base Shear

The base shear, which represents the horizontal seismic forces transferred to the foundation, shows significant variation across different footing types. In Delhi, Footing 1 exhibits a base shear of 2800.552 kN, while Footing 2 and Footing 3 experience higher base shear values of 2924.098 kN and 3078.529 kN, respectively. This trend suggests that larger footing areas contribute to increased resistance against lateral forces, distributing the seismic load more effectively. The variations highlight the role of foundation geometry in influencing seismic force transmission and stress the need for optimized footing designs to enhance earthquake resistance.

4.3 Maximum Displacement

The maximum resultant displacement at the top of the structure is a key factor in evaluating structural stability under seismic loading. The results indicate that displacement increases with changes in footing type, with Footing 1 showing the lowest displacement (198.686 mm), followed by Footing 2 (238.225 mm) and Footing 3 (280.415 mm) under Delhi's seismic conditions. This suggests that footing dimensions and aspect ratios significantly influence structural flexibility and deformation behavior. Larger footing areas tend to increase flexibility, leading to higher displacements, whereas more compact foundations provide greater stiffness, reducing deformations. These findings underscore the importance of foundation selection in controlling structural movements and ensuring seismic resilience.

Figure 4 Base shear comparison for different type of footing

Figure 5 Overturning moment comparison for different type of footing

Figure 6 Top Displacement comparison for different type of footing

5. CONCLUSION

This study analyzed the seismic performance of a multi-story reinforced concrete frame using STAAD Pro, focusing on foundation configurations under hard soil conditions. The evaluation assessed base shear, overturning moment, and maximum displacement, emphasizing the role of soil-structure interaction in optimizing foundation design.

The findings reveal that higher aspect ratio footings exhibited increased overturning moments but reduced displacement, enhancing rotational resistance. Conversely, wider footings showed lower overturning moments but higher flexibility, requiring additional stability measures. Base shear increased with footing aspect ratio, influencing lateral force distribution. Maximum displacements remained within safe limits, ensuring structural stability, while compact footings minimized lateral deformations and wider footings exhibited greater flexibility.

Foundation type directly impacts seismic response, with wider footings offering better energy dissipation but higher displacements. To enhance stability in flexible configurations, reinforced foundations or soil improvements may be required. These insights contribute to optimized footing design strategies, improving earthquake resilience in multi-story structures.

REFERNCES

- [1]. Abdel-Baki, S. and Raymond, G. P., (1994)
 —Improvement of the Bearing Capacity of the Footing by s Single Layer Reinforcementl, Proceeding of Geosynthetics Conference Vancouver. Pp. 456 - 465
- [2]. Ahirwar G.P. (2005) —Effect of water table on bearing capacity of angle shaped footing under eccentric loading", M.E. thesis submitted to R.G.P.V. Bhopal.
- [3]. Al-Aghbari, (1999) Bearing capacity of shallow strip foundation with structural skirts resting on dense sandl, Thesis Ph.D. structural department, University of Strathclyde, Glasgow, UK.
- [4]. Al-Aghbari, M.Y. and Zein, Y.E. (2004), —Bearing Capacity of Strip Foundations with Structural Skirts, Journal of Geotechnical and Geological Engineering, ASCE, Vol. 22, No.1, Pp. 43-57.
- [5]. Al-Aghbari, M. Y. and Mohamedzein, Y. E. (2006), —Improving the performance of Circular Foundations using Structural Skirtsl, Proceedings of the ICE – Ground Improvement, Vol. 10, Issue 3, Pp. 125 – 132.
- [6]. Al-Aghbari, M.Y. & Dutta, R.K. (2008), Performance of square footing with structural skirt resting on sand International Journal of Geomechanics and Geoengineering Vol.3, Issue 4: Pp. 271–277.
- [7]. Appolonia, D.J.D, Appolonia E.D. and Brisette R.F. (1948), —Settlement of Spread Footings on Sandl, ASCE Journal of Soil Mechanics and Foundations Division, Vol. 94, No. SM3, Pp. 735-760.
- [8]. Arvind kumar and Walia B.S. (2006), Bearing capacity of square footings on reinforced layered soill, Springer, Geotechnical and Geological Engineering Vol. 24, No.4, Pp. 1001–1008
- [9]. Barata, 1973) indicated a limited application of "simplel empirical equations and ... plate settlements occur within an upper part of a supporting soil/rock column.
- [10]. Basavanna, B.M., Joshi, V.H. and Prakash, S. (1974). —Dynamic bearing Capacity Of Soils under Transient Loading. Bull. Indian Soc. Earthquake Tech., Vol.2, No. 3, Pp. 67-84.
- [11]. Basu A. K,(1975), —Pressure distribution and ultimate bearing capacity of footings on

cohesionless soils under double eccentric loadl, Indian Geotechnical Journal, Vol. 5, No.4, Pp. 265 – 278

- [12]. Burmister, D.M., (1943.), 'The theory of stresses and displacements in layered systems and application to the design of airport runways, Proc. Highway Res. Board, Vol. 23, Pp.126–148,
- [13]. Borthakur, B. B. Kalita, U. C. and Baruah, P (1992), —Geotechnical investigations and Design of Foundation for Oil storage Tanks at cinnamara, Jorthat. Applied Civil Engg. Division, Regional Research Laboratory, Pp.179-182.
- [14]. Bose, S. K.; Das, S. C. (1997) Nonlinear finite element analysis of stresses and deformations beneath rigid footings Computers & Structures, 62 (3). ISSN0045-7949, Pp. 487-492.