New Mathematical Physics for Energy Change Explanation (Corrected)

Souravlal Singha¹ Ipgme&r

Abstract—here no=1^0, yes=1^1, true=1 and false =0. Main body

I. INTRODUCTION

Energy, a fundamental concept in physics, is often regarded as a static quantity. However, the notion of changing this energy state can be reinterpreted through a new algebraic lens. This paper illustrates how we can manipulate the static energy of a body, using numerical representation that correspond to no and yes values.

Static energy example

Let us consider a body (body A) with an initial static energy of 76 calories. Our goal is to adjust this energy to 78 calories.

Current energy state E=76 calories Target energy state Et =78 calories Algebraic Representation: To transform to 78 calories from 76 calories, we utilize our new algebraic definitions

78cal =no=1^0

78cal=1^0=1^1 Or,78cal =1^1 Or,78cal =yes

78cal =(1^0)*(1^0)=1^1

And 78cal=(1^0)/(1^0)=1^1

In these ways 78cal become yes from no.

Through these representations, we demonstrate that it is feasible to conceptualization changes in energy states using our algebraic framework.

II. CONCLUSIONS

so, we can see that it makes sense to say 1^1 =yes and 1^0 =no.

It can explain energy change.