

Nanoparticle-Based Drug Formulation for Solubility Enhancement: A Brief Review

Mohammed Arsh Sayyed¹, Mrs. Zeba Mohammed Fasihuddin Shaikh², Mr. Mujeeb Muhamadhusen Shaikh³

M.C.E Society's Allana Collage of Pharmacy Pune

Abstract—One of the major challenges in pharmaceutical drug development is the poor water solubility of many active pharmaceutical ingredients (APIs), which significantly impacts their bioavailability and overall therapeutic effectiveness. Nanoparticle-based drug delivery systems have emerged as a promising strategy to overcome this limitation by enhancing solubility and dissolution rates. This review explores the application of the nanoprecipitation technique in the formulation of Ibuprofen nanoparticles, a widely used nonsteroidal anti-inflammatory drug (NSAID) that exhibits low aqueous solubility. The study emphasizes the role of polymeric stabilizers such as polyvinyl alcohol (PVA) and polyethylene glycol (PEG) in maintaining nanoparticle stability and preventing aggregation. Various analytical techniques, particularly UV-Vis spectroscopy, were employed to assess solubility improvements through spectral shifts and changes in absorbance intensity. The results demonstrated a bathochromic shift and increased absorbance, confirming enhanced dissolution. Additionally, the formation of a colloidal suspension was validated by the Tyndall effect, further supporting the nanoparticle stability. The findings indicate that the nanoprecipitation method offers a simple, scalable, and cost-effective approach for improving the aqueous solubility of poorly soluble drugs. Future prospects include industrial-scale formulation, optimization of large-scale production techniques, and clinical applications of nanoparticle-based drug delivery systems to enhance therapeutic outcomes and patient compliance

I. INTRODUCTION

Oral drug delivery is the most widely used method of drug administration, but it is often hindered by the poor solubility of numerous active pharmaceutical ingredients (APIs). According to the Biopharmaceutics Classification System (BCS), approximately 40% of marketed drugs and up to 70% of potential drug candidates fall under BCS Class II (low solubility, high permeability) or Class IV (low solubility, low permeability) [1]. Nanotechnology has

been extensively investigated as a means to overcome solubility-related limitations by utilizing nanoparticles, which offer a higher surface area-to-volume ratio and improved dissolution rates.

Nanoprecipitation is a straightforward and cost-effective approach for formulating polymeric nanoparticles to improve solubility. In this study, Ibuprofen, a BCS Class II drug, was processed into nanoparticles using the nanoprecipitation method, with PVA and PEG as stabilizers. UV-Vis spectroscopy was employed to evaluate changes in solubility through absorbance variations and wavelength shifts.

Methodology

Materials

Active Pharmaceutical Ingredient (API): Ibuprofen
Polymers: Polyvinyl alcohol (PVA), Polyethylene glycol (PEG 4000)

Solvents: Acetone, Distilled Water

Equipment: Sonicator, Centrifuge, UV-Vis Spectrophotometer, Magnetic Stirrer

Nanoprecipitation Method

Preparation of Drug Solution: 50 mg of Ibuprofen was dissolved in 10 mL of acetone.

Preparation of Stabilizer Solution: 500 mg of PVA and 250 mg of PEG were dissolved in 50 mL of distilled water under continuous stirring.

Nanoparticle Formation: The Ibuprofen solution was gradually introduced dropwise into the stabilizer solution under constant stirring at 1000 rpm.

Sonication: The resulting suspension was subjected to sonication for 10 minutes to ensure uniform nanoparticle dispersion.

Centrifugation: The suspension was centrifuged at 15,000 rpm for 30 minutes to isolate the nanoparticles.

Re-suspension & Analysis: The recovered nanoparticles were re-suspended in distilled water and characterized using UV-Vis spectroscopy.

II. RESULTS & DISCUSSION

UV-Vis spectroscopy revealed a bathochromic shift in absorption, moving from ~220 nm (pure Ibuprofen) to ~260 nm (nanoparticle formulation), indicating enhanced solubility [2]. Additionally, the absorbance intensity of the nanoparticle formulation was notably higher than that of pure Ibuprofen, confirming an increase in dissolution properties. The presence of the Tyndall effect in the suspension further confirmed the colloidal nature of the prepared nanoparticles. The use of PVA and PEG as stabilizers played a critical role in preventing nanoparticle aggregation and improving dispersion in aqueous media. The nanoprecipitation technique provided a reproducible and scalable strategy for enhancing the solubility of hydrophobic drugs without requiring high-energy input.

III. FUTURE PROSPECTS

Future studies could focus on:

Alternative Stabilizing Agents: Investigating different polymeric carriers such as PLGA and Chitosan to further optimize drug release properties.

Targeted Drug Delivery: Modifying nanoparticles with functionalized ligands for site-specific drug targeting. **Industrial Scale-Up:** Refining large-scale production techniques for commercial pharmaceutical applications.

Clinical Investigations: Conducting pharmacokinetic and in vivo bioavailability studies to validate nanoparticle efficacy in human subjects.

IV. CONCLUSION

The nanoprecipitation method successfully improved the solubility of Ibuprofen by converting it into polymeric nanoparticles. UV-Vis spectroscopy confirmed this enhancement by demonstrating a bathochromic shift and increased absorbance intensity. These findings suggest that nanoparticle-based drug formulations hold substantial promise for increasing drug bioavailability and optimizing therapeutic outcomes.

REFERENCES

- [1] Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. *Pharm Res.* 1995;12(3):413-420.
- [2] Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. *Int J Pharm.* 2013;453(1):215-224.
- [3] Farrag Y, Nasra MMA, El-Sheikh SM. Formulation and optimization of quinoa starch nanoparticles: enhancing solubility of poorly water-soluble drugs. *Int J Biol Macromol.* 2020; 165:2732-2741
- [4] El-Sheikh SM, Nasra MMA, Farrag Y. Development of a nanoprecipitation method for the entrapment of a hydrophilic drug into Eudragit RL 100 nanoparticles. *Int J Pharm.* 2017;534(1-2):325-332
- [5] Jabbar A, Balouch AA, Nafady A, Raza M. Understanding the UV-Vis spectroscopy for nanoparticles. *J Nanomater Mol Nanotechnol.* 2024;9(3):1-5
- [6] Jain AK, Thakur K, Kush P, Jain UK. Development and characterization of ketoconazole nanoparticles for topical delivery. *Int J Drug Dev Res.* 2011;3(4):191-198.
- [7] Kumar S, Randhawa JK. High molecular weight polyvinylpyrrolidone-based nanoparticles for enhanced solubility of hydrophobic drugs. *Int J Pharm.* 2013;446(1-2):168-174.
- [8] Patel VR, Agrawal YK. Nanosuspension: an approach to enhance solubility of drugs. *J Adv Pharm Technol Res.* 2011;2(2):81-87.
- [9] Kumar S, Gupta SK, Sharma PK. Solubility enhancement of aceclofenac by nanocrystallization. *Int J Pharm Pharm Sci.* 2011;3(1):79-81.
- [10] Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. *J Biotechnol.* 2004;113(1-3):151-170.
- [11] Kumar A, Jakhmola A, Pandey RK, Goswami L. Nanoparticle-based drug delivery system: advantages and applications. *Indian J Sci Technol.* 2014;7(9):1236-1242.

[12] Kumar S, Gupta SK, Sharma PK. Solubility enhancement of celecoxib using β -cyclodextrin inclusion complexes. *Eur J Pharm Biopharm.* 2011;78(1):36-42.

[13] Mohanraj VJ, Chen Y. Nanoparticles—a review. *Trop J Pharm Res.* 2006;5(1):561-.

[14] Soppimath KS, Kulkarni AR, Aminabhavi TM. Encapsulation of antihypertensive drugs in cellulose-based matrix microspheres: characterization and release kinetics of microspheres and tableted microspheres. *J Microencapsul.* 2001;18(6):733-744.

[15] Kumar S, Randhawa JK. High molecular weight polyvinylpyrrolidone-based nanoparticles for enhanced solubility of hydrophobic drugs. *Int J Pharm.* 2013;446(1-2):168-174.

[16] Kumar S, Gupta SK, Sharma PK. Solubility enhancement of aceclofenac by nanocrystallization. *Int J Pharm Pharm Sci.* 2011;3(1):79-81.

[17] Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. *J Biotechnol.* 2004;113(1-3):151-170.

[18] Kumar A, Jakhmola A, Pandey RK, Goswami L. Nanoparticle-based drug delivery system: advantages and applications. *Indian J Sci Technol.* 2014;7(9):1236-1242.

[19] Kumar S, Gupta SK, Sharma PK. Solubility enhancement of celecoxib using β -cyclodextrin inclusion complexes. *Eur J Pharm Biopharm.* 2011;78(1):36-42.

[20] Mohanraj VJ, Chen Y. Nanoparticles—a review. *Trop J Pharm Res.* 2006;5(1):561-573.

[21] Soppimath KS, Kulkarni AR, Aminabhavi TM. Encapsulation of antihypertensive drugs in cellulose-based matrix microspheres: characterization and release kinetics of microspheres and tableted microspheres. *J Microencapsul.* 2001;18(6):733-744.

[22] Kumar S, Randhawa JK. High molecular weight polyvinylpyrrolidone-based nanoparticles for enhanced solubility of hydrophobic drugs. *Int J Pharm.* 2013;446(1-2):168-174.

[23] Kumar S, Gupta SK, Sharma PK. Solubility enhancement of aceclofenac by nanocrystallization. *Int J Pharm Pharm Sci.* 2011;3(1):79-81.

[24] Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. *J Biotechnol.* 2004;113(1-3):151-170.

[25] Kumar A, Jakhmola A, Pandey RK, Goswami L. Nanoparticle-based drug delivery system: advantages and applications. *Indian J Sci Technol.* 2014;7(9):1236-1242.

[26] Kumar S, Gupta SK, Sharma PK. Solubility enhancement of celecoxib using β -cyclodextrin inclusion complexes. *Eur J Pharm Biopharm.* 2011;78(1):36-42.

[27] Mohanraj VJ, Chen Y. Nanoparticles—a review. *Trop J Pharm Res.* 2006;5(1):561-573.