
© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4685

Android Malware Detection Using Optimal Ensemble

Learning Approach For Cyber Security

P. Pallavi1, P. Harshitha Syamala2, P. Sanjay Kumar3, M. Siva Manikanta4, Mr. K. Sudhakar 5

1,2,3,4 Department of Information Technology, Vishnu Institute of Technology
5Assistant professor, Department of Information Technology, Vishnu Institute of Technology

Abstract: Malware attacks have increased due to the

growing use of Android devices, endangering user data

and system integrity. Identification of malware using

machine learning can analyse large datasets and

identify patterns that point to malicious behaviour, it

has become increasingly popular. To increase detection

accuracy and reduce false positives, this study suggests

an ideal ensemble learning strategy that makes use of

the advantages of several classifiers. The model uses

methods for feature extraction, selection, and

classification that are tailored for the detection of

Android malware.

The effectiveness of the suggested system in recognising

different malware types is demonstrated by

experimental results, guaranteeing strong cyber

security.

Index terms: Android Malware Detection, Cyber

Security, Optimal Ensemble Learning, Machine

Learning .

I.INTRODUCTION

Android devices have become a prime target for

cyberattacks due to their explosive growth. Malware

presents serious risks, such as system compromise,

financial loss, and data theft. Conventional malware

detection techniques based on signatures find it

difficult to stay up with changing threats. A

promising substitute is offered by machine learning

techniques, which make it possible to identify novel

and unidentified malware. However, issues like high

false positives, computational overhead, and

malware's dynamic nature call for creative fixes. In

order to improve detection performance and

adaptability to emerging threats, this paper presents

an optimal ensemble learning approach that

combines the advantages of several models.

 Key Features and Capabilities:

1. Malware Analysis: The system utilizes static,

dynamic, and hybrid analysis methods to

perform comprehensive feature extraction,

ensuring a detailed understanding of Android

malware behaviour.

2. Optimal Ensemble Learning: Diverse

classifiers are combined using advanced

ensemble techniques to enhance accuracy

and significantly reduce false positives.

3. Scalability: The system is appropriate for

real-time malware detection applications

since it is built to manage big datasets

effectively.

4. Feature Optimization: To improve model

performance and lower computational

overhead, feature selection techniques are

used to determine which attributes are most

pertinent for classification.

5. Robust Detection: The system effectively

identifies zero-day and polymorphic

malware, ensuring robust security against

evolving threats.

6. Real-Time Processing: Optimized models

and efficient algorithms enable real-time

detection of malicious behavior in Android

applications.

7. Multi-Domain Usability: Applicable across

various cyber security domains, the system

can be integrated into both enterprise-level

and personal Android security solutions.

8. Enhanced Accessibility: The lightweight

design ensures accessibility and deployment

feasibility on resource-constrained Android

devices.

9. Error Minimization: The ensemble learning

approach minimizes errors associated with

individual classifiers, delivering consistent

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4686

and reliable detection results.

10. Scalability and Adaptability: The

architecture is scalable to accommodate

increasing malware datasets and adaptable

for future enhancements, such as integration

with threat intelligence platforms and support

for emerging malware types.

II. LITERATURE REVIEW

Android devices have become a popular target for

malware attacks due to their rapid proliferation,

which poses serious risks to user privacy, data

integrity, and device functionality. Machine learning

has become a viable substitute in recent years, thanks

to its capacity to recognise intricate patterns and

identify threats that were previously unidentified.

Nevertheless, stand-alone machine learning models

like Neural Networks, Decision Trees, and Support

Vector Machines (SVM) frequently have low

adaptability and high false-positive rates. The ability

of ensemble learning techniques, like Random

Forest, Gradient Boosting, Hist Gradient Boosting,

and XGBoost, to combine multiple classifiers and

increase detection accuracy and robustness has been

investigated as a solution to these drawbacks. By

putting forth an ideal ensemble learning framework

that combines static, dynamic, and hybrid learning,

this study aims to get past these obstacles offering a

comprehensive, scalable, and effective solution for

Android malware detection.

1. Traditional Approaches: Signature-based

methods, such as those employed by

conventional antivirus software, rely on known

malware signatures for detection. While

effective for previously identified threats, these

methods fail to adapt to rapidly evolving

malware, rendering them ineffective against

zero-day and polymorphic attacks.

2. Machine Learning in Malware Detection:

Methods such as Neural Networks, Support

Vector Machines (SVM), and Decision Trees

have been extensively employed in malware

detection. These methods have proven to be

effective in spotting intricate patterns in malware

behaviour. They frequently have high false

positive rates, though, which reduces their

dependability in practical applications.

3. Ensemble Learning: To increase overall

detection accuracy, ensemble learning

techniques like Random Forest, Gradient

Boosting, and XGBoost combine several

classifiers. These models minimise the

drawbacks of individual classifiers while

utilising their advantages. Ensemble approaches

have demonstrated potential for improving

malware detection systems' resilience and

lowering false positives.

4. Challenges in Existing Systems: Despite

advancements, existing malware detection

systems face several challenges:

a. Lack of Adaptability: Limited ability to

detect new and unknown malware types.

b. High Computational Costs: Resource-

intensive models are unsuitable for real-

time malware detection.

c. Limited Accuracy: Difficulty in

identifying complex, obfuscated, or

polymorphic malware.

5. Proposed Solutions: Addressing these

challenges requires the integration of ensemble

learning techniques with optimized feature

selection and hybrid analysis approaches. This

study aims to develop a scalable, adaptable, and

efficient system that overcomes the limitations

of traditional and current machine learning-

based solutions.

III. EXISTING SYSTEM

The majority of the current Android malware

detection systems rely on conventional techniques

like standalone machine learning models or

signature-based detection, which present a number of

difficulties in terms of computational efficiency,

accuracy, and adaptability. The main characteristics

and drawbacks of the current methods for malware

detection on Android platforms are highlighted in this

section.

1. Static Analysis

 Features: Relies on extracting features such

as permissions, API calls, and manifest file

attributes from APK files. This method is

lightweight and does not require executing

the app, making it faster and resource-

efficient.

 Limitations: Highly vulnerable to

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4687

obfuscation techniques employed by

malware developers, which can mask

critical features and bypass detection.

2. Dynamic Analysis

 Features: Observes app behavior in a

controlled sandbox environment,

monitoring runtime actions such as

network activity, file modifications, and

API usage. This approach provides insights

into the actual behavior of the application.

 Limitations: Time-consuming and

resource-intensive, as it requires setting up

and maintaining a sandbox. It also struggles

to scale for large datasets or real-time

detection needs.

3. Hybrid Analysis

 Features: Combines static and dynamic

methods to leverage the strengths of both

approaches, improving accuracy and

robustness.

 Limitations: High detection computational

overhead due to the integration of both

methods, making it less suitable for

resource-constrained environments or real-

time applications.

Identified Challenges in Existing Systems

 Difficulty in adapting to obfuscated and

polymorphic malware.

 High computational costs for dynamic and

hybrid analysis methods.

 Limited scalability for real-time malware

detection in resource-constrained settings.

IV. PROPOSED SYSTEM

The proposed solution introduces a comprehensive

and efficient Android malware detection framework,

addressing the limitations of existing systems

through the integration of optimal ensemble learning

and advanced analysis techniques.

Key Components:

1. Static, Dynamic, and Hybrid Analysis: Static

features (e.g., permissions, API calls) and

dynamic behaviors (e.g., network activity,

file access) are extracted and combined for

robust detection.

2. Optimal Ensemble Learning: Utilizes

advanced ensemble methods like Random

Forest and XGBoost to combine diverse

classifiers, enhancing accuracy and reducing

false positives.

3. Scalable Architecture: Designed to handle

large datasets and real-time applications

efficiently, enabling deployment in both

enterprise and resource-constrained

environments.

4. Feature Optimization: Reduces

computational overhead while preserving

high accuracy by using feature selection

techniques to find the most pertinent

attributes.

5. Accessibility and Usability: Lightweight

design ensures usability on Android devices

with limited resources, making the system

practical for widespread adoption.

Advantages Over Existing Systems:

1. Enhanced Detection Accuracy: Combines

static, dynamic, and hybrid analysis methods

with optimal ensemble learning, significantly

reducing false positives and improving the

overall accuracy of malware detection.

2. Resilience to Obfuscation: By leveraging

dynamic analysis and hybrid approaches, the

system can detect obfuscated and

polymorphic malware that traditional

signature-based and static analysis methods

often fail to identify.

3. Real-Time Capability: Optimized

architecture and ensemble learning

techniques enable real time malware

detection, overcoming the computational

delays commonly associated with dynamic

and hybrid analysis methods.

4. Scalability: Since the system can effectively

manage big datasets, it can be used for

enterprise-level applications and widespread

deployment without sacrificing performance.

5. Feature Optimization: Feature optimisation

lowers computational overhead while

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4688

preserving strong detection capabilities by

utilising sophisticated feature selection

techniques to determine the most pertinent

attributes for classification.

6. Robustness Against Zero-Day Threats: The

integration of static, dynamic, and hybrid

analysis ensures comprehensive coverage,

enabling the system to detect zero-day and

previously unseen malware effectively.

7. Reduced Computational Overhead: By

optimizing the combination of static and

dynamic methods and applying feature

optimization, the system minimizes resource

consumption compared to traditional hybrid

analysis techniques.

8. Improved Accessibility: Lightweight design

ensures compatibility with resource-

constrained environments, including low-end

Android devices, facilitating widespread

adoption.

9. Customizable and Adaptive: The system is

kept current and effective against changing

malware trends thanks to its modular design,

which makes it simple to integrate new

features and adjust to new threats.

10. Lower False Positive Rate: Ensemble

learning methods mitigate the weaknesses of

individual classifiers, providing a more

balanced and reliable detection framework

compared to standalone machine learning

models.

11. Comprehensive Analysis: The system

provides a deeper understanding of malware

behaviour by combining static signatures

with runtime behaviour analysis, offering a

holistic detection approach not commonly

found in existing systems.

Proposed Workflow:

1. Data Collection: Collect features manually

from Android APK files using static,

dynamic, and hybrid analysis methods.

2. Feature Extraction: Extract relevant features

such as API calls, permissions, network

activity, and file operations.

3. Ensemble Learning: Combine diverse

classifiers (e.g., Random Forest,

GradientBoost, XGBoost) to improve

detection accuracy.

4. Detection and Classification: Classify APKs

as benign or malicious based on the

optimized features and classifier outputs.

5. Real-Time Analysis: Process and analyse

malware behaviour in real-time for

immediate threat detection.

Fig.1. Project Workflow

Applications:

1. Android Malware Detection: Detect and

classify Android malware in apps to

protect users from potential threats.

2. Enterprise Security: Enhance mobile

device security in enterprises by

preventing malware infections on Android

devices.

3. Real-Time Threat Detection: Enable real-

time malware analysis for faster response

and mitigation in mobile security systems.

4. Security Tools Integration: Integrate the

system into existing Android security

applications for more comprehensive

protection.

V. SYSTEM ARCHITECTURE

Fig.2. System Architecture

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4689

VI. METHODOLOGY

The methodology outlines the systematic process

followed to design, develop, and implement the

automated Android malware detection system. The

approach integrates state of-the-art machine learning

models, ensemble learning techniques, and

performance optimization methods to deliver an

effective solution. It combines robust data collection

and preprocessing steps, model training with diverse

classifiers, and real-time deployment for seamless

and accurate malware detection, ensuring a user-

friendly and efficient cybersecurity tool.

1. Data Collection and Preprocessing:

 Dataset Selection: Select a well-established

malware dataset for Android devices, such

as the Drebin dataset, which includes

labelled benign and malicious apps.

 Features Extraction: Extract relevant

features from the apps, including:

o Static Features: Permissions requested by

the app, app code (API calls, methods),

and file system data (e.g.,

AndroidManifest.xml).

o Dynamic Features: Behaviour of the app

when executed (e.g., network activity,

system calls).

o Control Flow Features: App code

execution flow, such as function calls,

loops, and conditions.

o Package Information: Information about

the app's name, signature, developer, etc.

 Feature Engineering: Apply feature

selection techniques to remove irrelevant or

redundant features, using methods like

Principal Component Analysis (PCA),

Mutual Information, or Correlation

Heatmap.

Fig.3. Correlation Heatmap

Feature Importance

ANDROID_OS_BINDER 0.327731

SEND_SMS 0.189507

READ_PHONE_STATE 0.173591

READ_SMS 0.028749

WRITE_SMS 0.017558

ACCESS_LOCATION_

EXTRA_COMMANDS

0.028562

ACCESS_NETWORK_STATE 0.028270

ACCESS_COARSE_LOCATION 0.013851

ACCESS_WIFI_STATE 0.030146

WRITE_EXTERNAL_STORAGE 0.013058

ACCESS_FINE_LOCATION 0.016961

Table-1: Feature Importance

 Data Cleaning: Handle missing values,

outliers, or incorrectly labelled data.

2. Model Development:

 Individual Classifiers: Select a set of base

classifiers to train individually, such as:

o Random Forest (RF): A robust ensemble

model, effective for capturing complex

patterns.

𝑃(𝑦 = 1 ∣ 𝑋) = 𝑁1𝑖 = 1∑𝑁𝑓𝑖(𝑋)

where 𝑓𝑖(𝑋) is the prediction from the

𝑖𝑡ℎ decision tree.

o XGBoost (XGB): A gradient boosting

framework known for its efficiency and

performance in handling structured data.

𝐹𝑡 + 1(𝑋) = 𝐹𝑡(𝑋) + 𝜂𝑖 =

1∑𝑁𝛻𝐿(𝑦𝑖, 𝐹𝑡(𝑋𝑖))

Where 𝜂 is the learning rate and 𝛻𝐿(𝑦𝑖

, 𝐹𝑡(𝑋𝑖)) is the gradient of the loss

function.

o HistGradientBoosting(HGB):An

optimized variant of gradient boosting

that efficiently handles large datasets

with missing values and categorical

features.

𝐹𝑚(𝑋) = 𝐹𝑚 − 1(𝑋) + 𝜆𝑗

= 1∑𝐽𝑚𝛾𝑗𝐼(𝑋

∈ 𝑅𝑚𝑗)

where:

 𝐹𝑚(𝑋)is the model at iteration

𝑚.

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4690

 𝐹𝑚 − 1(𝑋)is previous model.

 𝜆 is the rate of learning.

 𝐽𝑚 is the total count of leaf

nodes in

the tree at iteration m.

 𝛾𝑗 is the leaf weight

adjustment for region 𝑅𝑚𝑗.

 𝐼(𝑋 ∈ 𝑅𝑚𝑗) is an indicator

function that checks if 𝑋 belongs

to region 𝑅𝑚𝑗

o Voting Classifier: A meta-model that

aggregates predictions from RF, XGB,

and HGB to make the final classification,

improving overall model stability and

accuracy.

𝑃(𝑦) = 𝑛1𝑖 = 1∑𝑛𝑃𝑖(𝑦)

where 𝑃𝑖(𝑦) represents the

probability predicted by classifier 𝑖.

 Training and Hyperparameter Tuning: Train

the individual models on the training dataset

using standard machine learning libraries

such as Scikit learn or TensorFlow/Keras.

Optimize hyperparameters using techniques

like Grid Search or Random Search.

3. Ensemble Learning Approach:

 Ensemble Method Selection: Select the

best ensemble learning strategy, such as

o Bagging: Applying several copies of a

model that has been trained on various

subsets of the training data. Random

Forest is one example.

o Boosting: Boosting is the process of

successively joining weak learners,

each of whom fixes the mistakes of

the others. For instance, Hist Gradient

Boost and Gradient Boosting.

4. Evaluation and Validation:

 Cross-Validation: Implement K-fold cross

validation to evaluate the model's

performance across different subsets of the

dataset, ensuring robustness and

generalizability.

 Metrics: Use common classification

metrics to assess the model:

o Accuracy: The total proportion of

accurate forecasts.

o Precision: The ratio of actual positive

results to all predicted positive results.

o Recall: The percentage of real

positives that are true positives.

o F1-Score A balanced metric that is

calculated as the harmonic mean of

precision and recall.

o AUC-ROC: The trade-off between

true positive and false positive rates is

measured by the area under the

Receiver Operating Characteristic

curve, or AUC-ROC.

 Confusion Matrix: To comprehend model

performance, visualise the true positive,

false positive, true negative, and false

negative counts.

5. Model Interpretation and Analysis:

 Feature Importance: The feature

importance of the model was not explicitly

analyzed using techniques such as SHAP

(SHapley Additive exPlanations) or LIME

(Local Interpretable Model-agnostic

Explanations) in this study. However,

given the structured nature of the dataset,

each feature was carefully selected based

on domain knowledge and prior research

on Android malware detection. The

ensemble model used, which includes

algorithms such as Random Forest and

XGBoost, inherently assigns importance to

features during the training process. Future

work could involve leveraging SHAP or

LIME to provide deeper insights into the

contribution of each feature toward

classification decisions, thereby improving

interpretability and trust in the model’s

predictions.

 Model Explanation: Help cybersecurity

experts comprehend the underlying

patterns and decision-making of the model

by offering insights into why a specific app

is categorised as legitimate or malicious.

6. Deployment and Testing:

 Deployment Environment: Deploy the

model on a web interface for real-time

malware detection.

 Real-time Detection: Integrate the model

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4691

with an Android app or API that allows

users to enter required data for malware

detection.

 Testing: Validate the model on a set of

unseen test data to assess its generalization

ability in a real world scenario.

VII. RESULT AND DISCUSSION

The Automated Android Malware Detection System

using Ensemble Learning was assessed using

standard performance metrics such as accuracy,

precision, recall, F1-score, and AUC-ROC. A side-

by-side comparison of the suggested system with

current malware detection solutions is also provided,

along with the evaluation's findings for the individual

classifiers and the ensemble model. Confusion

matrices and ROC curves are included in the visual

presentation of the results to aid in interpretation and

offer unambiguous insights into the system's

performance.

Model Parameter Best

Value

Random Forest n_estimators 100

Random Forest max_depth 20

Gradient Boosting n_estimators 100

Gradient Boosting learning_rate 0.1

HistGradientBoosting max_iter 200

XGBoosting n_estimators 100

 Table-2:Hyperparameter Tuning Results

Model Accurac

y

Precisio

n

Reca

ll

F1-

Scor

e

Random

Forest

90.6% 90.2% 83.7

%

86.8

%

Gradient

Boosting

90.0% 87.6% 84.8

%

86.2

%

HistGradie

nt

Boosting

90.6% 89.9% 84% 86.9

%

XGBoost 90.6% 90% 83.9

%

86.8

%

Voting

Classifier

90.7% 89.5% 85% 87.2

%

Table-3:Comparison of metrics

Fig.4. ROC curve

VIII. CONCLUSION

The ability to combine multiple machine learning

models to improve the detection accuracy of

malicious applications is effectively demonstrated by

the Android Malware Detection System using

Ensemble Learning. The system outperformed

individual models by combining classifiers such as

Decision Trees, Random Forest, and Boosting

techniques into an ideal ensemble approach. AUC-

ROC, F1-score, recall, accuracy, precision, and other

evaluation metrics demonstrated the system's ability

to reliably differentiate between malicious and

benign apps, offering a strong means of boosting

Android device security. Along with demonstrating

the value of ensemble learning in cybersecurity, the

system highlights how crucial it is to combine static,

dynamic, and control flow features for more thorough

malware detection. Results were shown visually

using ROC curves and confusion matrices, which

gave a clear understanding of the model's

performance for further improvement.

IX. FUTURE WORK

While the proposed system demonstrates promising

results, several avenues for future work could further

enhance its capabilities:

1. Improved Feature Engineering: Incorporating

additional features, such as network traffic

analysis and more in-depth behaviour profiling,

could further improve detection accuracy.

2. Adversarial Attack Resistance: Investigating the

robustness of the model against adversarial

3. Real-time Malware Detection: Developing an

optimized system for real-time malware

detection on Android devices, including

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4692

integrating the model into mobile applications,

would significantly improve user protection.

4. Deep Learning Integration: Exploring the

potential of deep learning techniques, such as

Convolutional Neural Networks (CNNs) for

image-based feature extraction or Recurrent

Neural Networks (RNNs) for dynamic

behavioral analysis, could provide even more

sophisticated malware detection methods.

5. Larger, More Diverse Datasets: Expanding the

dataset to include a wider variety of malware

samples and benign apps from different sources

can improve the system's generalizability and

resilience against new threats.

REFERENCES

[1] Jaehyeong Lee, Hyuk Jang, Sungmin Ha,

Yourim Yoon. (2021)Android Malware

Detection Using Machine Learning with Feature

Selection Based on the Genetic Algorithm.

[2] Zhou, Y., & Jiang, X. (2012). Dissecting

Android Malware: Characterization and

Evolution. In Proceedings of the 2012 ACM

conference on Computer and Communications

Security (pp. 95-106).

[3] S. Arp, M. Spreitzenbarth, H. B. Gascon, F. L.

Kruegel, and E. Kirda. (2014). DREBIN:

Effective and Explainable Detection of Android

Malware in Your Pocket. In Proceedings of the

21st ACM SIGSAC Conference on Computer

and Communications Security, 2014.

[4] Zhou, Y., & Zhang, X. (2014). Android Malware

Detection: A Survey. International Journal of

Computer Applications, 94(4), 21-27.

[5] Liu, X., & Wang, J. (2017). A Survey of

Machine Learning for Android Malware

Detection. Computer Science and Information

Systems, 14(2), 361-378.

[6] Ruj, S., & Saha, S. (2016). Malware Detection in

Android Devices: A Survey and Classification.

International Journal of Computer Applications,

137(7), 1-6.

[7] Altyet Taha, Omar Baruka (2022) Android

Malware Classification Using Optimised

Ensemble Learning Based on Genetic

Algorithms

