© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

Android Malware Detection Using Optimal Ensemble
Learning Approach For Cyber Security

P. Pallavi, P. Harshitha Syamala?, P. Sanjay Kumar?, M. Siva Manikanta*, Mr. K. Sudhakar ®°
1234 Department of Information Technology, Vishnu Institute of Technology
>Assistant professor, Department of Information Technology, Vishnu Institute of Technology

Abstract: Malware attacks have increased due to the
growing use of Android devices, endangering user data
and system integrity. Identification of malware using
machine learning can analyse large datasets and
identify patterns that point to malicious behaviour, it
has become increasingly popular. To increase detection
accuracy and reduce false positives, this study suggests
an ideal ensemble learning strategy that makes use of
the advantages of several classifiers. The model uses
methods for feature extraction, selection, and
classification that are tailored for the detection of
Android malware.

The effectiveness of the suggested system in recognising
different malware types is demonstrated by
experimental results, guaranteeing strong cyber
security.

Index terms: Android Malware Detection, Cyber
Security, Optimal Ensemble Learning, Machine
Learning .

I.INTRODUCTION

Android devices have become a prime target for
cyberattacks due to their explosive growth. Malware
presents serious risks, such as system compromise,
financial loss, and data theft. Conventional malware
detection techniques based on signatures find it
difficult to stay up with changing threats. A
promising substitute is offered by machine learning
techniques, which make it possible to identify novel
and unidentified malware. However, issues like high
false positives, computational overhead, and
malware's dynamic nature call for creative fixes. In
order to improve detection performance and
adaptability to emerging threats, this paper presents
an optimal ensemble learning approach that
combines the advantages of several models.

Key Features and Capabilities:
1. Malware Analysis: The system utilizes static,

dynamic, and hybrid analysis methods to
perform comprehensive feature extraction,

ensuring a detailed understanding of Android
malware behaviour.

Optimal Ensemble Learning: Diverse
classifiers are combined using advanced
ensemble techniques to enhance accuracy
and significantly reduce false positives.

Scalability: The system is appropriate for
real-time malware detection applications
since it is built to manage big datasets
effectively.

Feature Optimization: To improve model
performance and lower computational
overhead, feature selection techniques are
used to determine which attributes are most
pertinent for classification.

Robust Detection: The system effectively
identifies zero-day and polymorphic
malware, ensuring robust security against
evolving threats.

Real-Time Processing: Optimized models
and efficient algorithms enable real-time
detection of malicious behavior in Android
applications.

Multi-Domain Usability: Applicable across
various cyber security domains, the system
can be integrated into both enterprise-level
and personal Android security solutions.

Enhanced Accessibility: The lightweight
design ensures accessibility and deployment
feasibility on resource-constrained Android
devices.

Error Minimization: The ensemble learning
approach minimizes errors associated with
individual classifiers, delivering consistent

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4685

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

and reliable detection results.

10. Scalability = and Adaptability: The
architecture is scalable to accommodate
increasing malware datasets and adaptable
for future enhancements, such as integration
with threat intelligence platforms and support
for emerging malware types.

Il. LITERATURE REVIEW

Android devices have become a popular target for
malware attacks due to their rapid proliferation,
which poses serious risks to user privacy, data
integrity, and device functionality. Machine learning
has become a viable substitute in recent years, thanks
to its capacity to recognise intricate patterns and
identify threats that were previously unidentified.
Nevertheless, stand-alone machine learning models
like Neural Networks, Decision Trees, and Support
Vector Machines (SVM) frequently have low
adaptability and high false-positive rates. The ability
of ensemble learning techniques, like Random
Forest, Gradient Boosting, Hist Gradient Boosting,
and XGBoost, to combine multiple classifiers and
increase detection accuracy and robustness has been
investigated as a solution to these drawbacks. By
putting forth an ideal ensemble learning framework
that combines static, dynamic, and hybrid learning,
this study aims to get past these obstacles offering a
comprehensive, scalable, and effective solution for
Android malware detection.

1. Traditional Approaches: Signature-based
methods, such as those employed by
conventional antivirus software, rely on known
malware signatures for detection. While
effective for previously identified threats, these
methods fail to adapt to rapidly evolving
malware, rendering them ineffective against
zero-day and polymorphic attacks.

2. Machine Learning in Malware Detection:
Methods such as Neural Networks, Support
Vector Machines (SVM), and Decision Trees
have been extensively employed in malware
detection. These methods have proven to be
effective in spotting intricate patterns in malware
behaviour. They frequently have high false
positive rates, though, which reduces their
dependability in practical applications.

3. Ensemble Learning: To increase overall
detection accuracy, ensemble learning
techniques like Random Forest, Gradient
Boosting, and XGBoost combine several
classifiers. These models minimise the
drawbacks of individual classifiers while
utilising their advantages. Ensemble approaches
have demonstrated potential for improving
malware detection systems' resilience and
lowering false positives.

4. Challenges in Existing Systems: Despite
advancements, existing malware detection
systems face several challenges:

a. Lack of Adaptability: Limited ability to
detect new and unknown malware types.

b. High Computational Costs: Resource-
intensive models are unsuitable for real-
time malware detection.

c. Limited Accuracy: Difficulty in
identifying complex, obfuscated, or
polymorphic malware.

5. Proposed Solutions: Addressing these
challenges requires the integration of ensemble
learning techniques with optimized feature
selection and hybrid analysis approaches. This
study aims to develop a scalable, adaptable, and
efficient system that overcomes the limitations
of traditional and current machine learning-
based solutions.

I11. EXISTING SYSTEM

The majority of the current Android malware
detection systems rely on conventional techniques
like standalone machine learning models or
signature-based detection, which present a number of
difficulties in terms of computational efficiency,
accuracy, and adaptability. The main characteristics
and drawbacks of the current methods for malware
detection on Android platforms are highlighted in this
section.

1. Static Analysis
e Features: Relies on extracting features such
as permissions, API calls, and manifest file
attributes from APK files. This method is
lightweight and does not require executing
the app, making it faster and resource-
efficient.

e Limitations: Highly vulnerable to

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4686

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

obfuscation techniques employed by
malware developers, which can mask
critical features and bypass detection.

2. Dynamic Analysis

Features: Observes app behavior in a
controlled sandbox environment,
monitoring runtime actions such as
network activity, file modifications, and
API usage. This approach provides insights
into the actual behavior of the application.
Limitations: Time-consuming and
resource-intensive, as it requires setting up
and maintaining a sandbox. It also struggles
to scale for large datasets or real-time
detection needs.

3. Hybrid Analysis

Features: Combines static and dynamic
methods to leverage the strengths of both
approaches, improving accuracy and
robustness.

Limitations: High detection computational
overhead due to the integration of both
methods, making it less suitable for
resource-constrained environments or real-
time applications.

Identified Challenges in Existing Systems

e Difficulty in adapting to obfuscated and
polymorphic malware.

e High computational costs for dynamic and
hybrid analysis methods.

Limited scalability for real-time malware

detection in resource-constrained settings.

IV. PROPOSED SYSTEM

The proposed solution introduces a comprehensive
and efficient Android malware detection framework,
addressing the limitations of existing systems
through the integration of optimal ensemble learning
and advanced analysis techniques.

Key Components:

1.

Static, Dynamic, and Hybrid Analysis: Static
features (e.g., permissions, API calls) and
dynamic behaviors (e.g., network activity,
file access) are extracted and combined for
robust detection.

Optimal Ensemble Learning: Utilizes
advanced ensemble methods like Random
Forest and XGBoost to combine diverse
classifiers, enhancing accuracy and reducing
false positives.

Scalable Architecture: Designed to handle
large datasets and real-time applications
efficiently, enabling deployment in both
enterprise and resource-constrained
environments.

Feature Optimization: Reduces
computational overhead while preserving
high accuracy by using feature selection
techniques to find the most pertinent
attributes.

Accessibility and Usability: Lightweight
design ensures usability on Android devices
with limited resources, making the system
practical for widespread adoption.

Advantages Over Existing Systems:

Enhanced Detection Accuracy: Combines
static, dynamic, and hybrid analysis methods
with optimal ensemble learning, significantly
reducing false positives and improving the
overall accuracy of malware detection.

Resilience to Obfuscation: By leveraging
dynamic analysis and hybrid approaches, the
system can detect obfuscated and
polymorphic malware that traditional
signature-based and static analysis methods
often fail to identify.

Real-Time Capability:
architecture and ensemble learning
techniques enable real time malware
detection, overcoming the computational
delays commonly associated with dynamic
and hybrid analysis methods.

Optimized

Scalability: Since the system can effectively
manage big datasets, it can be used for
enterprise-level applications and widespread
deployment without sacrificing performance.

Feature Optimization: Feature optimisation
lowers computational overhead while

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4687

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

preserving strong detection capabilities by
utilising sophisticated feature selection
techniques to determine the most pertinent
attributes for classification.

Ensemble Learning: Combine diverse
classifiers (e.q., Random Forest,
GradientBoost, XGBoost) to improve
detection accuracy.

Detection and Classification: Classify APKs

6. Robustness Against Zero-Day Threats: The as benign or malicious based on the
integration of static, dynamic, and hybrid optimized features and classifier outputs.
analysis ensures comprehensive coverage, Real-Time Analysis: Process and analyse
enabling the system to detect zero-day and malware behaviour in real-time for
previously unseen malware effectively. immediate threat detection.

7. Reduced Computational Overhead: By Features o
optimizing the combination of static and Static Pairs §
dynamic methods and applying feature { it Haten S || Ny,
optimization, the system minimizes resource | " E _
consumption compared to traditional hybrid e Systom Cals §
analysis techniques. | 3

i |

8. Improved Accessibility: Lightweight design l :

P . @W;wm » —» Rw.l'si ' ‘
ensures compatibility ~ with resource- U1 I
Companison

constrained environments, including low-end
Android devices, facilitating widespread
adoption.

Fig.1. Project Workflow

Applications:

9. Customizable and Adaptive: The system is
kept current and effective against changing
malware trends thanks to its modular design,
which makes it simple to integrate new
features and adjust to new threats.

1. Android Malware Detection: Detect and
classify Android malware in apps to
protect users from potential threats.

2. Enterprise Security: Enhance mobile
device security in enterprises by
preventing malware infections on Android
devices.

3. Real-Time Threat Detection: Enable real-
time malware analysis for faster response
and mitigation in mobile security systems.

4. Security Tools Integration: Integrate the
system into existing Android security
applications for more comprehensive
protection.

10. Lower False Positive Rate: Ensemble
learning methods mitigate the weaknesses of
individual classifiers, providing a more
balanced and reliable detection framework
compared to standalone machine learning
models.

11. Comprehensive Analysis: The system
provides a deeper understanding of malware
behaviour by combining static signatures
with runtime behaviour analysis, offering a
holistic detection approach not commonly
found in existing systems. .

V. SYSTEM ARCHITECTURE

Machine Learning
Proposed Workflow: (WEKA

S

) DecmanTabie Rusasend conin

bt | e

1. Data Collection: Collect features manually
from Android APK files using static,
dynamic, and hybrid analysis methods.

2. Feature Extraction: Extract relevant features
such as API calls, permissions, network

P

Lo
Evaluation

Faature Selection

L L Q——

activity, and file operations. Fig.2. System Architecture

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4688

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

VI. METHODOLOGY

The methodology outlines the systematic process
followed to design, develop, and implement the
automated Android malware detection system. The
approach integrates state of-the-art machine learning
models, ensemble learning techniques, and
performance optimization methods to deliver an
effective solution. It combines robust data collection
and preprocessing steps, model training with diverse
classifiers, and real-time deployment for seamless
and accurate malware detection, ensuring a user-
friendly and efficient cybersecurity tool.

1. Data Collection and Preprocessing:

e Dataset Selection: Select a well-established
malware dataset for Android devices, such

as the Drebin dataset, which includes
labelled benign and malicious apps.
e Features Extraction: Extract relevant

features from the apps, including:

o Static Features: Permissions requested by
the app, app code (API calls, methods),
and file system data (e.q.,
AndroidManifest.xml).

o Dynamic Features: Behaviour of the app
when executed (e.g., network activity,
system calls).

o Control Flow Features: App code
execution flow, such as function calls,
loops, and conditions.

o Package Information: Information about
the app's name, signature, developer, etc.

e Feature Engineering: Apply feature
selection techniques to remove irrelevant or
redundant features, using methods like

Principal Component Analysis (PCA),
Mutual Information, or Correlation
Heatmap.

Fig.3. Correlation Heatmap

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

Feature Importance
ANDROID_OS_BINDER 0.327731
SEND_SMS 0.189507
READ_PHONE_STATE 0.173591
READ_SMS 0.028749
WRITE_SMS 0.017558
ACCESS_LOCATION_ 0.028562
EXTRA_COMMANDS
ACCESS_NETWORK_STATE 0.028270
ACCESS_COARSE_LOCATION 0.013851
ACCESS_WIFI_STATE 0.030146
WRITE_EXTERNAL_STORAGE 0.013058
ACCESS_FINE_LOCATION 0.016961

2.

Table-1: Feature Importance

Data Cleaning: Handle missing values,
outliers, or incorrectly labelled data.

Model Development:

Individual Classifiers: Select a set of base
classifiers to train individually, such as:

o Random Forest (RF): A robust ensemble

model, effective for capturing complex
patterns.
P(y=11X)=N1i=13Nfi(X)
where fi(X) is the prediction from the
ith decision tree.

o XGBoost (XGB): A gradient boosting

framework known for its efficiency and
performance in handling structured data.
Ft +1(X) = Ft(X) +ni =
1Y NVL(yi, Ft(Xi))
Where 7 is the learning rate and VL (yi
,Ft(Xi)) is the gradient of the loss
function.

o HistGradientBoosting(HGB):An

optimized variant of gradient boosting
that efficiently handles large datasets
with missing values and categorical
features.

Fm(X) =Fm—1(X) + Aj

= 1Y Jmyjl(X
€ Rmj)
where:
= Fm(X)is the model at iteration
m.

4689

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

» Fm — 1(X)is previous model.

= Ais the rate of learning.

= Jm is the total count of leaf
nodes in
the tree at iteration m.

= yjisthe leaf weight
adjustment for region Rmj.

» J(X€Rmj)is an indicator
function that checks if X belongs
to region Rmj

o Voting Classifier: A meta-model that
aggregates predictions from RF, XGB,
and HGB to make the final classification,
improving overall model stability and
accuracy.

P(y) = nli = 1Y nPi(y)
where Pi(y) represents the
probability predicted by classifier i.

e Training and Hyperparameter Tuning: Train
the individual models on the training dataset
using standard machine learning libraries
such as Scikit learn or TensorFlow/Keras.
Optimize hyperparameters using techniques
like Grid Search or Random Search.

3. Ensemble Learning Approach:

e Ensemble Method Selection: Select the
best ensemble learning strategy, such as

o Bagging: Applying several copies of a
model that has been trained on various
subsets of the training data. Random
Forest is one example.

o Boosting: Boosting is the process of
successively joining weak learners,
each of whom fixes the mistakes of
the others. For instance, Hist Gradient
Boost and Gradient Boosting.

4. Evaluation and Validation:

e Cross-Validation: Implement K-fold cross
validation to evaluate the model's
performance across different subsets of the
dataset, ensuring robustness and
generalizability.

e Metrics: Use common classification
metrics to assess the model:

o Accuracy: The total proportion of

accurate forecasts.

o Precision: The ratio of actual positive
results to all predicted positive results.

o Recall: The percentage of real
positives that are true positives.

o F1-Score A balanced metric that is
calculated as the harmonic mean of
precision and recall.

o AUC-ROC: The trade-off between
true positive and false positive rates is
measured by the area under the
Receiver Operating Characteristic
curve, or AUC-ROC.

Confusion Matrix: To comprehend model

performance, visualise the true positive,

false positive, true negative, and false
negative counts.

Model Interpretation and Analysis:

Feature Importance: The feature
importance of the model was not explicitly
analyzed using techniques such as SHAP
(SHapley Additive exPlanations) or LIME
(Local Interpretable Model-agnostic
Explanations) in this study. However,
given the structured nature of the dataset,
each feature was carefully selected based
on domain knowledge and prior research
on Android malware detection. The
ensemble model used, which includes
algorithms such as Random Forest and
XGBoost, inherently assigns importance to
features during the training process. Future
work could involve leveraging SHAP or
LIME to provide deeper insights into the
contribution of each feature toward
classification decisions, thereby improving
interpretability and trust in the model’s
predictions.

Model Explanation: Help cybersecurity
experts comprehend the underlying
patterns and decision-making of the model
by offering insights into why a specific app
is categorised as legitimate or malicious.

Deployment and Testing:

Deployment Environment: Deploy the
model on a web interface for real-time
malware detection.

Real-time Detection: Integrate the model

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4690

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

with an Android app or API that allows
users to enter required data for malware
detection.

e Testing: Validate the model on a set of
unseen test data to assess its generalization
ability in a real world scenario.

VII. RESULT AND DISCUSSION

The Automated Android Malware Detection System
using Ensemble Learning was assessed using
standard performance metrics such as accuracy,
precision, recall, F1-score, and AUC-ROC. A side-
by-side comparison of the suggested system with
current malware detection solutions is also provided,
along with the evaluation's findings for the individual
classifiers and the ensemble model. Confusion
matrices and ROC curves are included in the visual
presentation of the results to aid in interpretation and
offer unambiguous insights into the system's
performance.

Model Parameter Best
Value
n_estimators | 100

Random Forest

Random Forest
Gradient Boosting
Gradient Boosting
HistGradientBoosting
XGBoosting

max_depth 20

n_estimators | 100
learning_rate | 0.1
max_iter 200
n_estimators | 100

Table-2:Hyperparameter Tuning Results

Model Accurac | Precisio | Reca | F1-
y n I Scor
e
Random 90.6% 90.2% | 83.7 | 86.8
Forest % %
Gradient 90.0% 87.6% | 84.8 | 86.2
Boosting % %
HistGradie | 90.6% 89.9% | 84% | 86.9
nt %
Boosting
XGBoost 90.6% 90% 839 | 86.8
% %
Voting 90.7% 89.5% | 85% | 87.2
Classifier %

Table-3:Comparison of metrics

ROC Curve for Malware Detection Models

0.8 s

e
o
s

N,

o
S
L

True Positive Rate
N,

e —— Random Forest (AUC = 0.96)
0.2+ e Gradient Boosting (AUC = 0.95)
I —— XGBoost (AUC = 0.96)

e —— HistGradientBoosting (AUC = 0.95)
P —— \oting Classifier (AUC = 0.96)
0.0 === Random Guess

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Fig.4. ROC curve
VIIl. CONCLUSION

The ability to combine multiple machine learning
models to improve the detection accuracy of
malicious applications is effectively demonstrated by
the Android Malware Detection System using
Ensemble Learning. The system outperformed
individual models by combining classifiers such as
Decision Trees, Random Forest, and Boosting
techniques into an ideal ensemble approach. AUC-
ROC, F1-score, recall, accuracy, precision, and other
evaluation metrics demonstrated the system'’s ability
to reliably differentiate between malicious and
benign apps, offering a strong means of boosting
Android device security. Along with demonstrating
the value of ensemble learning in cybersecurity, the
system highlights how crucial it is to combine static,
dynamic, and control flow features for more thorough
malware detection. Results were shown visually
using ROC curves and confusion matrices, which
gave a clear understanding of the model's
performance for further improvement.

IX. FUTURE WORK

While the proposed system demonstrates promising
results, several avenues for future work could further
enhance its capabilities:

1. Improved Feature Engineering: Incorporating
additional features, such as network traffic
analysis and more in-depth behaviour profiling,
could further improve detection accuracy.

2. Adversarial Attack Resistance: Investigating the
robustness of the model against adversarial

3. Real-time Malware Detection: Developing an
optimized system for real-time malware
detection on Android devices, including

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4691

© March 2025 | IJIRT | Volume 11 Issue 10 | ISSN: 2349-6002

integrating the model into mobile applications,
would significantly improve user protection.

4. Deep Learning Integration: Exploring the
potential of deep learning techniques, such as
Convolutional Neural Networks (CNNs) for
image-based feature extraction or Recurrent
Neural Networks (RNNs) for dynamic
behavioral analysis, could provide even more
sophisticated malware detection methods.

5. Larger, More Diverse Datasets: Expanding the
dataset to include a wider variety of malware
samples and benign apps from different sources
can improve the system's generalizability and
resilience against new threats.

REFERENCES

[1] Jaehyeong Lee, Hyuk Jang, Sungmin Ha,
Yourim Yoon. (2021)Android Malware
Detection Using Machine Learning with Feature
Selection Based on the Genetic Algorithm.

[2] zhou, Y., & Jiang, X. (2012). Dissecting
Android Malware: Characterization and
Evolution. In Proceedings of the 2012 ACM
conference on Computer and Communications
Security (pp. 95-106).

[3] S. Arp, M. Spreitzenbarth, H. B. Gascon, F. L.
Kruegel, and E. Kirda. (2014). DREBIN:
Effective and Explainable Detection of Android
Malware in Your Pocket. In Proceedings of the
21st ACM SIGSAC Conference on Computer
and Communications Security, 2014.

[4] Zhou, Y., & Zhang, X. (2014). Android Malware
Detection: A Survey. International Journal of
Computer Applications, 94(4), 21-27.

[5] Liu, X., & Wang, J. (2017). A Survey of
Machine Learning for Android Malware
Detection. Computer Science and Information
Systems, 14(2), 361-378.

[6] Ruj,S., & Saha, S. (2016). Malware Detection in
Android Devices: A Survey and Classification.
International Journal of Computer Applications,
137(7), 1-6.

[7] Altyet Taha, Omar Baruka (2022) Android
Malware Classification Using Optimised
Ensemble Learning Based on Genetic
Algorithms

IJIRT 174223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4692

