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Abstract—Lithium batteries have established themselves 

as a fundamental element of modern energy storage 

solutions, driving advancements in both personal 

electronics and electric mobility. To ensure the battery’s 

reliability, safety, and cost-effectiveness it is vital to 

accurately predict the Remaining Useful Life (RUL) 

and State of Health (SOH). This study provides an in-

depth analysis of current literature on lithium battery 

RUL and SOH prediction methodologies, factors used. 

It explores various approaches such as data-driven 

models, physics-based techniques, and hybrid methods, 

highlighting their applications, strengths, and 

drawbacks. This review also highlights recent 

achievements in machine learning and artificial 

intelligence regarding battery life prediction methods. 

Issues face such as data accessibility, computational 

demands, and model generalizability, alongside 

recommendations for future research opportunity are 

provided in this paper.  

 

Index Terms—Lithium Battery, RUL, SOH, Lifespan 

prediction, 

 

I. INTRODUCTION 

 

Lithium batteries rechargeable or non-rechargeable 

energy storage device that uses lithium as the primary 

component in its electrochemical composition. These 

are important components in electric vehicles (EVs), 

electronics and renewable energy systems owing to 

their high energy density, lightweight construction, 

high operating storage, No memory effect, durability, 

and long lifespan. 

However, Despite the advantages of lithium battery it 

faces issues like, safety and reliability issues, like 

system failures, malfunctions causing fires etc. Over 

time the battery faces difficulties like capacity 

degradation due to repeated charge and discharge 

cycles, a phenomenon linked to aging occurred by 

irreversible chemical reactions, such as lithium 

deposition and electrolyte decomposition directly 

effecting on their longevity and performance.  

A lithium battery to have long lifespan and perform 

well, there is a need for effective health management 

systems. The capacity degradation effects Remaining 

Useful Life (RUL) of the battery and reliability. This 

degradation is quantified using metrics such as State 

of Health (SOH), which displays the power capability 

and battery's energy. 

 

II. LITERATURE REVIEW 

 

2.1. Planning the reasearch  

We have collected the papers by focusing on specific 

keywords as mentioned above such as "RUL", 'SOH", 

and "Lithium battery life predictions", etc. 

Additionally, we manually searched for several 

additional papers to support our research and review 

process. Our primary goal was to gather a 

comprehensive set of papers that would enable us to 

address the following research questions that we 

planned for deep analysis of the paper collected:  

RQ1: What factors and methods that are used in 

predicting RUL and SOH? 

RQ2: What are the key issues faced while predicting? 

RQ3: What is the future scope for developing? 

  By acquiring detailed answers to the above 

questions, we aim to gain a comprehensive 
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understanding of the processes in each paper. This 

thorough analysis will ultimately lead us to 

conclusions regarding the best methodologies and 

factors used to determine RUL and SOH alongside 

highlighting the issues occurred during process. 

2.2. Conducting the research  

After carefully planning on how to collect the papers, 

we established specific selection and exclusion 

criteria to determine which papers should be included 

and excluded. We initially gathered up to 42 papers 

from various reputable platforms such as IEEE, 

ResearchGate, IJAER, Academia, IJITEE, and 

others. We also applied our selection criteria to 

classify these papers systematically. The selection 

criteria are as follows: 

 

Selection Criteria                                 Excluded 

Criteria 

Paper must have the keywords      Papers with no          

specified.                                        significant resulted 

shall        

                                                        not be included. 

Paper must cover RUL/SOH   Papers before 2010 

shall not be included 

2.3. Analysis 

The eligibility of each paper for inclusion in our 

research was meticulously analyzed and reviewed in 

this stage determining their suitability for our 

research and literature review. The 42 papers 

collected from various websites, went through 

rigorous analysis process, we assessed each paper's 

eligibility. Out of the total collected, 7 papers were 

focused on Low Quality of Research, Papers with 

methodological flaws, or poor choice of factor 

selection which may not provide reliable or valid 

findings, hence were removed.  

 

Additionally, 3 papers that failed to present 

conclusive results were excluded. Later we identified 

2 papers discussed that discussed the importance of 

Battery lifetime prediction without detailing the 

methods or factors involved in prediction process. So, 

we decided to exclude them as our review aims to 

focus on the methodologies, factors used. We also 

caught additional 1 paper, despite being published 

after 2010, discussed outdated methods from the 

2000s and it was excluded to ensure the inclusion of 

the most recent advancements and trends. This 

rigorous selection process resulted in a total of 29 

papers deemed eligible for in-depth review and 

analysis. 

 

 
Fig. 1. Bar chart representation of the eligible papers 

 

III. REMAINING USEFUL LIFE (RUL) 

 

RUL stands for Remaining Useful Life, which refers 

to the anticipated period of functionality or number of 

cycles left that a battery can operate effectively before 

needing maintenance or replacement. It is crucial in 

predictive maintenance, and reliability engineering, 

optimize maintenance schedules, controlling costs, 

and aiding organizations in reducing downtime. 

Sectors such as electric vehicles, aerospace, and 

renewable energy storage systems, understanding and 

predicting the RUL of lithium batteries plays a vital 

role in enhancing the system efficiency and extending 

battery longevity. 

 Variety of factors play a major role in determining 

and predicting lithium battery’s RUL, these factors 

can be classified into operational, environmental, and 

design-related. 

3.1. Operational Conditions: 

This operational conditions explores how was the 

battery used during its lifetime, which includes:  

3.1.1. Depth of Discharge (DoD): The percentage of 

the battery's capacity used during every cycle, is DoD. 

Excessive DoD’s exert additional strain on the 

battery, hastening degradation and diminishing its 

lifespan, whereas maintaining a moderate DoD range 

promotes longer durability. 

3.1.2. Charge and Discharge Rates: The rate at which 

a battery charges and discharges is taken into account 
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here. The higher the C-rates of a battery the excessive 

heat is generated within the battery, causing capacity 

degradation, and damaging the battery’s lifespan. 

While C-rates that are low or moderate remain not 

damaged and have a prolonged lifespan. 

3.1.3. Cycle Count: The total number of charge and 

discharge cycles a battery undergoes also contributes 

to the battery’s capacity and lifetime. The greater 

number of cycles, there will be a gradual decline in 

the battery's capacity. A battery’s longevity is largely 

defined by the maximum cycles it can perform before 

its performance deteriorates beyond a usable 

threshold. 

3.1.4. State of Charge (SoC) Range: Keeping a battery 

fully charged or deeply discharged for longer time 

period, might accelerate battery’s degradation. For 

long-term health, maintaining a moderate SoC range 

is more advisable. 

3.2. Environmental Influences: 

This Environmental Influences explores the external 

factors that influenced the battery during the battery’s 

use and storage, which includes: 

3.2.1. Temperature: The temperature the battery was 

kept in is very crucial as high temperatures accelerates 

the chemical reactions within the battery, leading to 

faster capacity and structural degradations. Whereas at 

low temperatures, can cause harm to batteries, the 

mobility of lithium-ion decreases, reflecting in 

performance fall and causing stress on the battery's 

components.  

3.2.2. Humidity: When batteries come into contact 

with excessive moisture or humidity the metallic parts 

of the batteries tend to corrode, leading to 

performance degradation, reducing efficiency and 

increasing the chance of malfunction. 

3.2.3. Vibration and Mechanical Stress: If the 

applications are exposed to vibrations and shocks such 

as electric vehicles or aerospace products, may face 

physical damage, decreasing efficiency and lifespan. 

3.3. Design-Related Influences: 

This Design-Related Influences explores the design 

and manufacturing choices made during a battery’s 

production, which includes: 

3.3.1. Electrode Materials: The materials used for the 

anode and cathode, which will influence in 

determining the battery's capacity, cycle life, and 

performance rates.  

3.3.2. Electrolyte Composition: The stability and 

composition of the electrolyte affect ion transport and 

overall battery efficiency.  

3.3.3. Cell Balancing: In battery packs with multiple 

cells, imbalances between cells can cause uneven 

degradation. Proper design, including balancing 

circuits, helps maintain uniform performance and 

extend the pack's overall lifespan. 

3.3.4. Thermal Management Systems: A well-

designed thermal management system prevents 

overheating and ensures uniform temperature 

distribution within the battery, reducing thermal stress 

and prolonging life. 

3.3.5. Battery Form Factor and Packaging: The 

physical design of the battery, including its size, 

shape, and protective casing, influences its ability to 

withstand environmental stress and mechanical wear. 

 

IV. STATE OF HEALTH(SOH) 

 

SOH, which stands for State of Health plays a vital 

role in evaluating the performance and longevity of 

batteries. Compared to the initial state of battery i.e., 

before the usage battery, it provides a comprehensive 

measure of the battery's ability to deliver its original 

capacity and performance right now. Accurate SOH 

estimation is key to maintaining the safety and 

functionality of battery-driven technologies like 

electric cars, renewable power systems, and handheld 

gadgets.  

The factors influencing the State of Health of a battery 

can be classified into physical, chemical, and 

environmental factors: 

4.1. Physical Factors: 

This Physical Factors related to the  structural, or 

mechanical properties that impact the battery, which 

includes:  

4.1.1. Charge/Discharge Cycles:  The number and 

depth of charge/discharge cycles the battery went 

under play a crucial role in determining a battery's 

lifespan. The more the dee cycles and high discharge 

rates the faster capacity fade, while shallow cycles 

lead to slower aging. 

4.1.2. Current Rates (C-rates): The internal chemistry 

is influenced by the rate at which a battery is charged 

or discharged. Lithium plating in lithium-ion batteries 

can take place if C-rates are higher, leading to 

capacity loss and safety concerns. 
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4.2. Chemical Factors: 

This Chemical Factors related to the  internal 

chemical reactions and processes that occur within the 

battery, which includes:  

4.2.1. State of Charge (SOC) Range: Continuous 

operation at extreme SOC levels (near 0% or 100%) 

accelerates degradation due to stress on the electrode 

materials. 

4.2.2. Aging Mechanisms: Both calendar aging and 

cycle aging effect aging of a battery. Calendar aging 

refers to the natural degradation of the battery over 

time, even when not in use, while cycle aging is 

directly related to operational use. 

4.3. Environmental Factors: 

This Environmental Factors related to the external 

conditions that influence a battery, which includes:  

4.3.1. Temperature: Surrounding Temperature 

influence the battery’s performance. Excessive heat 

speeds up the degradation, whereas low temperatures 

increase internal resistance and reduce capacity.  

4.3.2. Humidity: The Higher the humidity level the 

higher the moisture ingress, causing corrosion or even 

short circuits. 

4.3.3. Mechanical Vibrations: Environmental stresses, 

such as impacts or vibrations, can compromise the 

battery housing or internal connections. 

 

V. METHODOLOGIES 

 

To Accurately predict State of Health (SOH) and 

Remaining Useful Life (RUL) of batteries, different 

approaches, different methodologies have been 

developed, such as data-driven, model-based 

approaches, and hybrid approaches to achieve the best 

results. 

5.1. Data-Driven Model: 

Data-driven models rely on historical and real-time 

data to identify patterns and trends in battery 

performance instead of their internal physical and 

chemical processes. The flexibility and ability to 

handle complex, nonlinear systems make this model 

popular. 

5.1.1. Machine Learning (ML) Techniques: Machine 

learning algorithms such as Support Vector Machines 

(SVM), Artificial Neural Networks (ANN), and 

Random Forests are widely in use to predict SOH and 

RUL.  

These models use voltage, current, temperature, and 

charge/discharge cycles etc. as input and analysis on 

the patterns to learn correlations between them and 

predict future performances. These models can adapt 

to varying battery chemistries and operating 

conditions. They do not require detailed knowledge of 

internal battery mechanisms, making them versatile.  

5.1.2. Deep Learning (DL): Advanced DL techniques, 

such as Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN), are gaining 

prominence in battery health management due to their 

ability to learn complex, non-linear relationships, and 

temporal patterns from large-scale data.  

Feedforward Neural Networks (FNN), These are the 

simplest type of neural networks, used primarily for 

SOH prediction when the data is non-sequential. 

FNNs can model complex relationships but lack 

temporal modeling capabilities. RNNs, including their 

advanced variants like Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU), are highly 

effective for capturing temporal dependencies in 

sequential battery data. They excel in RUL prediction 

by learning from time-series inputs like voltage and 

temperature profiles during charging and discharging 

cycles. CNNs are increasingly used for battery health 

prediction when the data can be represented as spatial 

or sequential features, they extract local features and 

patterns efficiently. 

 

5.2. Model-Based Techniques:  

Model-based techniques are rooted in the fundamental 

physical and chemical principles governing battery 

behavior. These models are designed based on 

detailed mathematical representations of internal 

processes, making them highly interpretable and 

reliable.  

5.2.1. Equivalent Circuit Models (ECM): ECMs 

simplify battery behavior into electrical components 

like resistors, capacitors, and inductors. These models 

are computationally efficient and suitable for real-time 

applications. By analyzing the parameters of an ECM, 

such as internal resistance or capacitance, SOH can be 

inferred. 

5.2.2. Equivalent Circuit Models (ECM): Physics-

Based Models: These models provide a deeper 

understanding of the degradation mechanisms in 

batteries, such as lithium plating, solid electrolyte 

interphase (SEI) growth, and electrolyte degradation. 

The Doyle–Fuller–Newman (DFN) model is a 

prominent example, capturing electrochemical 

dynamics at a granular level. However, these models 
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are computationally intensive and require precise 

calibration.  

5.2.3. Electrochemical Impedance Spectroscopy (EIS) 

Models: EIS-based models leverage impedance 

measurements across different frequencies to infer 

SOH. They provide insights into battery degradation 

but often require specialized equipment for data 

acquisition. 

5.3. Hybrid Approaches:  

Hybrid approaches integrate data-driven and model-

based methods to combine their strengths and mitigate 

their individual limitations. These methods aim to 

enhance predictive accuracy, robustness, and 

interpretability. 

5.31. Model Parameter Estimation with ML: In this 

approach, data-driven methods are used to estimate 

parameters of a model-based framework dynamically. 

For example, ML algorithms can predict the internal 

resistance or capacity fade of a battery, which is then 

fed into an ECM or physics-based model to improve 

RUL and SOH estimation. 

5.3.2. Residual Modeling: Hybrid methods often use 

physics-based models to generate baseline 

predictions, while data-driven models predict 

residuals or deviations from the baseline. This 

combination can improve accuracy without sacrificing 

interpretability. 

5.3.3. Fusion of Predictions: Another approach 

involves independently generating predictions from 

model-based and data-driven methods and fusing 

them using techniques like weighted averaging or 

Bayesian frameworks. This ensures robustness by 

accounting for complementary strengths of each 

method. 

5.3.4. Physics-Guided Neural Networks: These are 

advanced hybrid methods where physical constraints 

or model equations are embedded directly into the 

architecture or loss function of neural networks. This 

ensures that predictions adhere to physical laws while 

benefiting from the flexibility of neural networks. 

 

VI. KEY ISSUES AND LIMITATIONS 

 

Data-driven methods have demonstrated significant 

promises for RUL and SOH predictions, but they are 

not without drawbacks.  

6.1. Dependence on High-Quality Data: Data-driven 

models require large volumes of high-quality, labeled 

data for effective training. However, obtaining such 

data for batteries is often costly, time-consuming, and 

impractical. Poor-quality or incomplete datasets can 

lead to inaccurate predictions.  

6.2 Generalization Challenges: Machine learning 

(ML) and deep learning (DL) models often struggle to 

generalize across different battery chemistries, 

manufacturers, and operating conditions. A model 

trained on one dataset may fail to perform effectively 

on another due to differences in degradation patterns, 

environmental factors, or operational use cases.  

6.3. Vulnerability to Overfitting: Overfitting is a 

common issue in data-driven approaches, especially 

when working with small datasets. Models that overfit 

learn spurious relationships in the training data, 

leading to poor performance on unseen data.  

6.4. High Computational Requirements: Deep 

learning methods, such as LSTM and CNN models, 

require significant computational resources for 

training and inference. This makes them less suitable 

for real-time applications or scenarios with limited 

computational power, such as embedded systems in 

battery management units.  

6.5. Lack of Long-Term Prediction: Data-driven 

models often focus on short-term predictions and may 

not capture long-term degradation trends effectively. 

Extrapolating beyond the range of available data can 

lead to unreliable RUL estimates, especially for 

batteries operated in conditions not represented in the 

training set.  

Model-Based Techniques provide valuable insights 

into the physical and chemical processes of batteries, 

but they are not without challenges:  

6.6. High Complexity and Computational Burden: 

Physics-based models, such as the Doyle–Fuller–

Newman (DFN) model, involve solving complex 

partial differential equations (PDEs) that describe 

electrochemical processes. This can be 

computationally expensive, making real-time 

applications difficult. Simplified models, like ECMs, 

reduce complexity but sacrifice accuracy and detail.  

6.7. Parameter Sensitivity: These are highly sensitive 

to the accuracy of their parameters, such as internal 

resistance, capacity, and reaction rates. These 

parameters often vary across battery types and 

degrade over time, necessitating frequent 

recalibration. Errors in parameter estimation can 

significantly impact the reliability of RUL and SOH 

predictions.  
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6.8. Incomplete Representation of Aging Mechanisms: 

Although physics-based models aim to capture battery 

degradation mechanisms, they may fail to represent 

all contributing factors comprehensively. For 

example, phenomena like electrolyte decomposition 

or structural changes in electrodes are often 

oversimplified or ignored. This can result in reduced 

accuracy in RUL and SOH predictions.  

Hybrid approaches aim to combine the strengths of 

data-driven and model-based methods, but their 

integration introduces several unique Limitations 

6.9. Increased Complexity: Hybrid methods inherently 

combine the complexities of both data-driven and 

model-based approaches. Developing a cohesive 

framework requires careful integration and fine-tuning 

of both components, which can be time-consuming 

and computationally expensive.  

6.9.1. Computational Overhead: Hybrid models often 

involve running both data-driven algorithms and 

physics-based simulations simultaneously. This 

significantly increases computational demands, 

particularly in real-time applications, where rapid 

predictions are required.  

6.9.2. Challenges in Balancing Components: One of 

the key difficulties in hybrid approaches is finding the 

right balance between the data-driven and model-

based components. Over-reliance on one component 

can undermine the benefits of the other, reducing 

overall performance. For example, excessive 

dependence on data-driven methods may lead to poor 

generalization, while overemphasis on model-based 

methods may limit adaptability.  

6.9.3. Data and Model Integration: Integrating data-

driven outputs with model-based predictions can be 

challenging, especially when the two components 

operate on different timescales or rely on different 

data sources. Ensuring consistency between these 

components requires sophisticated algorithms and 

careful validation.  

6.9.4. Scalability Concerns: While hybrid approaches 

show promise in controlled environments, scaling 

them for real-world applications involving diverse 

battery chemistries, operating conditions, and 

environmental factors remains a significant challenge.  

Hence, every method has its own challenges and 

limitations. Data-driven approaches excel in 

flexibility but suffer from data dependency, 

interpretability issues, and computational 

requirements. Model-based methods provide 

interpretability but are hindered by complexity, 

sensitivity, and rigidity. Whereas Hybrid approaches 

offer a promising middle ground but face challenges 

in integration, complexity, and scalability.  

Each method has its trade-offs, and choosing the right 

approach depends on the specific application 

requirements, data availability, and operational 

constraints. Addressing these limitations is critical for 

advancing battery health management technologies. 

 

VII. FUTURE SCOPE AND DEVELOPMENT 

 

The field of RUL and SOH prediction for batteries is 

evolving rapidly, driven by advances in materials 

science, computational modeling, and artificial 

intelligence. However, significant Limitations remain, 

and there is scope for future development to enhance 

the accuracy, reliability, and practicality of these 

methods. Below are key areas where advancements 

are anticipated: 

7.1. Development of High-Quality, Diverse Datasets:  

The performance of data-driven and hybrid 

approaches depends heavily on the availability of 

large, high-quality datasets. Future efforts should 

focus on creating comprehensive datasets that 

encompass various battery chemistries, 

configurations, and real-world operating conditions.  

7.2. Enhanced Physics-Informed Machine Learning: 

Integrating domain knowledge into data-driven 

models, often referred to as physics-informed machine 

learning, offers a promising pathway for improving 

prediction accuracy and robustness. Combining the 

physical interpretability of model-based methods with 

the pattern-recognition capability of machine learning 

can help address uncertainties and reduce 

computational demands.  

7.3. Cross-Disciplinary Collaboration: The 

challenges in RUL and SOH prediction require 

collaboration between fields like materials science, 

electrical engineering, computer science, and data 

analytics. Future advancements will benefit from, 

Unified Frameworks. 

7.4. Improved Handling of Uncertainty: Accounting 

for uncertainties in both model parameters and 

operational conditions is critical for reliable RUL and 

SOH predictions. Techniques like Bayesian inference 

and Gaussian processes can quantify uncertainty in 

predictions, offering confidence intervals rather than 

point estimates. Combining multiple models to reduce 
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prediction variability and improve robustness against 

unseen data. 

The future of RUL and SOH prediction lies in the 

convergence of advanced data-driven techniques, 

robust physical modeling, and real-time systems 

integration. By addressing current limitations and 

leveraging emerging technologies, researchers can 

develop predictive frameworks that are accurate, 

reliable, and scalable, paving the way for safer and 

more efficient energy storage solutions in the coming 

decades. 

 

VIII. CONCLUSION 

 

Lithium-ion batteries have become indispensable in 

modern energy storage systems, powering everything 

from portable electronics to electric vehicles and 

renewable energy grids. Accurate prediction of battery 

Remaining Useful Life (RUL) and State of Health 

(SOH) is critical to ensuring reliability, safety, and 

efficiency in these applications. This paper provided a 

comprehensive literature survey of the existing 

methodologies for RUL and SOH prediction, focusing 

on data-driven, model-based, and hybrid approaches, 

alongside their key issues, limitations, and future 

potential.  

Given the rapid advancements in lithium-ion battery 

technology and the growing demand for energy 

storage, accurate RUL and SOH prediction is more 

important than ever. The insights from this literature 

survey provide a foundation for future research, 

highlighting the need for innovative, interdisciplinary 

approaches to overcome current limitations and 

unlock the full potential of predictive battery health 

management. This review underscores the critical role 

of RUL and SOH prediction in driving the transition 

toward sustainable, efficient, and safe energy systems, 

paving the way for groundbreaking developments in 

the field.  
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