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Abstract—Precision agriculture represents a paradigm 

shift in farming methodologies, leveraging geospatial 

technologies to optimize crop selection and management 

practices. This paper presents AgroVision, an integrated 

approach to crop recommendation systems utilizing 

multi-dimensional geospatial datasets including 

Normalized Difference Vegetation Index (NDVI), soil 

physicochemical parameters, and meteorological 

variables. The methodology encompasses acquisition of 

satellite imagery from MODIS using Google Earth 

Engine, soil data from ISRIC SoilGrids, and 

climatological parameters from NASA POWER 

datasets. These heterogeneous data streams undergo 

rigorous preprocessing, normalization, and integration 

prior to implementation within a multi-criteria decision 

support framework. The developed system demonstrates 

significant efficacy in generating spatially-explicit crop 

suitability maps with validation accuracy of 95.9% 

across diverse agro-ecological zones. Comparative 

analysis reveals a 23% improvement in prediction 

accuracy over traditional methods and potential yield 

improvements of 18-27% when recommendations are 

implemented. This research contributes to agricultural 

sustainability by enabling data-driven decision-making 

that optimizes resource utilization while maximizing 

productivity and economic returns, thereby addressing 

critical challenges in contemporary agricultural systems. 

 

Index Terms—Crop recommendation system, geospatial 

analysis, machine learning, normalized difference 

vegetation index, precision agriculture, remote sensing, 

soil nutrient mapping, sustainable farming 

 

I. INTRODUCTION 

 

The agricultural sector faces unprecedented challenges 

in the 21st century, including population growth, 

climate change, resource constraints, and 

environmental sustainability concerns. Traditional 

farming practices, characterized by homogeneous 

management of heterogeneous landscapes, have 

proven increasingly inadequate in addressing these 

multifaceted challenges. Precision agriculture has 

emerged as a promising paradigm that leverages 

technological innovations to optimize agricultural 

inputs and management practices according to the 

spatial and temporal variability inherent in agricultural 

systems [1]. 

Central to precision agriculture is the concept of site- 

specific management, which necessitates 

comprehensive understanding of the spatial variability 

in factors influencing crop growth and development. 

Remote sensing technologies, particularly satellite- 

based imagery, have revolutionized our ability to 

monitor and quantify this variability at unprecedented 

spatial and temporal resolutions [2]. The Normalized 

Difference Vegetation Index (NDVI), derived from 

multispectral satellite imagery, provides critical 

insights into vegetation health, biomass, and 

productivity across landscapes [3]. 

Concurrent with advancements in remote sensing, 

significant progress has been made in soil mapping 

technologies. The International Soil Reference and 

Information Centre (ISRIC) SoilGrids platform 

represents a landmark achievement in providing 

globally consistent soil property maps at high spatial 

resolution [4]. These maps encompass critical soil 

parameters including texture, pH, organic carbon 

content, and nutrient status, which fundamentally 

influence crop suitability and productivity. 

Weather patterns, characterized by increasing 

variability and unpredictability due to climate change, 

constitute another critical determinant of agricultural 

productivity. NASA's Prediction of Worldwide 

Energy Resources (POWER) project provides 

meteorological data essential for agricultural decision 

support systems [5]. Integration of these 

meteorological parameters with remote sensing and 

soil data offers unprecedented opportunities for 

developing robust crop recommendation systems. 

This research addresses critical limitations in existing 

approaches to crop selection, which frequently rely on 
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historical practices, local knowledge, or isolated 

datasets. The innovation lies in the integration of 

multi-dimensional geospatial datasets within a 

comprehensive analytical framework to generate 

spatially-explicit crop recommendations. The specific 

objectives include: 

1. Development of a methodological framework for 

integrating NDVI, soil, and weather data for crop 

recommendation. 

2. Implementation of machine learning algorithms 

to identify optimal crop selections based on site-

specific conditions and ensuring global 

scalability. 

3. Validation of the recommendation system 

through comparative analysis with traditional 

approaches and field verification. 

4. Enhancement of land utilization by identifying 

barren and underutilized areas, recommending 

appropriate improvement strategies, and 

providing data-driven crop suggestions to 

maximize agricultural productivity. 

 

II. RELATED WORKS 

 

The application of geospatial technologies and data 

analytics in agriculture has witnessed exponential 

growth in recent years, with numerous studies 

investigating diverse aspects of precision farming. 

This section synthesizes key research trends and 

identifies critical gaps in existing literature. 

Remote sensing applications in agriculture have 

evolved significantly beyond simple vegetation 

monitoring. Weiss et al. [6] demonstrated the efficacy 

of multi-temporal NDVI data in predicting crop yields 

across diverse agro-ecological zones. Their findings 

indicated strong correlations (r² > 0.85) between 

seasonal NDVI profiles and final yields for major 

cereal crops. Building on this foundation, Van 

Klompenburg et al. [7] developed crop-specific NDVI 

response curves that enable identification of optimal 

growth conditions and stress detection. However, 

these studies primarily focused on monitoring existing 

crops rather than informing initial crop selection 

decisions. 

Soil mapping technologies have similarly advanced, 

with increasing emphasis on machine learning 

approaches for predicting soil properties. Hengl et al. 

[8] pioneered the application of ensemble machine 

learning methods for global soil mapping, achieving 

significant improvements in prediction accuracy 

compared to conventional geostatistical approaches. 

Vadivelu et al. [9] extended this work by developing 

crop-specific soil suitability indices based on fuzzy 

logic integration of multiple soil parameters. While 

these studies established crucial methodological 

frameworks, they typically considered soil properties 

in isolation rather than in conjunction with other 

environmental variables. 

Weather data integration in agricultural decision 

support systems represents another active research 

domain. Adeyemi et al. [10] developed weather-based 

crop selection models utilizing historical 

climatological data and crop phenological 

requirements. Their system demonstrated 76% 

accuracy in identifying climatically suitable crops 

across diverse regions. However, the spatial resolution 

of the implemented models (50 km grid cells) limited 

their applicability for farm-level decision-making. 

Machine learning approaches have increasingly 

dominated the landscape of crop recommendation 

systems. Dharmaraj and Vijayanand [11] implemented 

a random forest classification model for crop 

recommendation based on soil parameters, achieving 

82% accuracy across major crop categories. Similarly, 

Priya et al. [12] utilized support vector machines to 

predict suitable crops based on soil and meteorological 

parameters, reporting 79% accuracy in their 

predictions. A notable limitation of these studies was 

the reliance on point-based soil samples rather than 

continuous spatial datasets. 

Integration of multiple data streams represents the 

frontier of precision agriculture research. Chlingaryan 

et al. [13] reviewed methodologies for combining 

satellite imagery, weather data, and soil information 

for yield prediction and management zone delineation. 

They identified critical challenges including data 

heterogeneity, scale mismatches, and computational 

complexity. Venkatesan and Sridharan [14] proposed 

a cloud-based architecture for integration of 

heterogeneous agricultural datasets, demonstrating 

improved computational efficiency and scalability. 

Despite these advancements, significant research gaps 

persist. First, most existing studies focus on isolated 

aspects of precision agriculture rather than developing 

integrated frameworks. Second, there is limited 

research on the spatial transferability of crop 

recommendation models across diverse agro- 

ecological zones, primarily because current 
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approaches are constrained to specific land areas or 

regions. Third, existing methods do not identify barren 

land or provide recommendations for its improvement 

and optimal crop selection, limiting their practical 

utility. Finally, quantification of economic and 

environmental benefits associated with data-driven 

crop selection has received insufficient attention. 

This research addresses these gaps by developing an 

integrated framework that synthesizes multiple 

geospatial datasets, implements machine learning 

algorithms for crop recommendation, and identifies 

barren land with targeted improvement strategies. 

Furthermore, unlike conventional approaches that are 

restricted to specific regions, our framework is 

designed to be globally scalable, ensuring broader 

applicability across diverse agro-ecological zones. 

 

III. METHODOLOGY 

 

A. System Architecture and Data Integration 

Framework 

The AgroVision system implements a sophisticated 

multi-layered architecture that synthesizes 

heterogeneous geospatial data streams within a 

comprehensive analytical framework for precision 

agriculture decision support. This architecture 

encompasses distinct functional components for data 

acquisition, preprocessing, feature extraction, and 

recommendation generation, orchestrated through a 

centralized backend interface. The system's modular 

design facilitates the integration of multidimensional 

agricultural parameters while maintaining 

computational efficiency and scalability 

considerations aligned with established paradigms in 

agricultural informatics [15]. 

The architectural framework comprises four primary 

components: (a) a user interface for geospatial 

coordinate acquisition and result visualization, (b) a 

backend interface facilitating programmatic 

communication with distributed data repositories, (c) 

analytical modules for parameter interpretation and 

agricultural suitability assessment, and (d) a 

recommendation engine implementing multivariate 

crop suitability classification. This modular structure 

enables independent optimization of individual 

components while maintaining system cohesion 

through standardized data interchange protocols [16]. 

The operational workflow, as seen in Fig. 1, initiates 

with the acquisition of precise geographical 

coordinates from the user interface, serving as the 

spatial reference point for subsequent analytical 

processes. These coordinates trigger parallel data 

retrieval operations through API connections to 

multiple remote sensing, pedological, and 

meteorological databases. The retrieved parameters 

undergo normalization and integration within a unified 

analytical framework before transmission to the crop 

recommendation engine, which generates spatially- 

explicit agricultural recommendations and precision 

farming insights. 

 
Fig. 1: Workflow 

 

B. Geospatial Data Acquisition and Processing 

1) Remote Sensing Integration through Google Earth 

Engine 

The system leverages the computational capabilities of 

Google Earth Engine to extract and analyze time- 

series NDVI data derived from MODIS satellite 

imagery. This implementation facilitates efficient 

processing of historical vegetation patterns without 

requiring local storage of extensive satellite imagery 

archives. The NDVI extraction procedure employs the 

established methodology outlined by Gorelick et al. 

[17], implementing temporal compositing techniques 

to mitigate atmospheric interference and phenological 

variability. 

The NDVI parameter serves as a critical indicator of 

vegetation productivity, capturing the integrated 

effects of multiple environmental factors on plant 

growth. The system extracts both instantaneous NDVI 

values for the specified coordinates and temporal 

statistical derivatives (maximum, minimum, mean, 

and coefficient of variation) to characterize land 

productivity potential and stability [18]. These metrics 
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provide essential context for agricultural suitability 

assessment, reflecting historical vegetation 

performance patterns under prevailing environmental 

conditions. 

2) Soil Parameter Extraction and Integration 

Comprehensive soil attribute data is acquired through 

programmatic queries to the ISRIC SoilGrids 

database, a globally consistent digital soil mapping 

product with 250m spatial resolution [4]. The system 

extracts critical soil parameters including pH, nitrogen 

content, phosphorus levels, and potassium availability 

at multiple depth intervals (0-5cm, 5-15cm, 15-30cm), 

enabling stratified analysis of edaphic conditions 

relevant to different crop rooting depths. 

To address potential data availability constraints in 

specific regions, the system implements a 

sophisticated fallback mechanism utilizing OpenCage 

Reverse Geocoder services. This component identifies 

the administrative boundaries corresponding to the 

specified coordinates and retrieves default state-level 

soil parameter estimates from a precompiled database, 

ensuring analytical continuity despite potential 

SoilGrids data limitations. This hierarchical data 

acquisition approach aligns with recommended 

practices for handling spatial data heterogeneity in 

precision agriculture applications [19]. 

3) Meteorological Data Integration 

Climatological parameters crucial for agricultural 

suitability assessment are acquired through API 

connections to NASA POWER (Prediction of 

Worldwide Energy Resources), accessing daily and 

aggregated meteorological data at 0.5° spatial 

resolution [5]. The system extracts multiple 

meteorological variables including temperature 

regimes (minimum, maximum, and average), 

precipitation patterns, relative humidity, and solar 

radiation. 

Temporal aggregation procedures generate both 

instantaneous meteorological conditions and long- 

term climatological statistics, enabling assessment of 

both immediate growing conditions and long-term 

suitability based on climate stability metrics. This 

dual-temporal approach facilitates comprehensive 

agro-climatic characterization incorporating both 

typical conditions and variability patterns that 

significantly influence agricultural risk profiles [20]. 

C. Analytical Processing and Recommendation 

Engine 

1) NDVI Interpretation and Agricultural Productivity 

Assessment 

The extracted NDVI data undergoes analytical 

processing to derive agricultural productivity 

indicators through established interpretation 

methodologies [21]. The system implements 

threshold-based classification of NDVI values to 

characterize vegetation density categories and 

corresponding productivity potential. These 

interpretations incorporate temporal context by 

analyzing NDVI stability metrics and phenological 

patterns to distinguish between natural vegetation and 

agricultural systems with distinctive seasonal 

signatures. This approach leverages established 

relationships between NDVI and agricultural 

productivity documented in extensive remote sensing 

literature [22], [23], enabling informed inference of 

land suitability for diverse crop types. 

 

2) Multivariate Crop Suitability Modelling 

The integrated environmental parameters (NDVI 

metrics, soil attributes, and meteorological variables) 

serve as input features for the crop recommendation 

engine, which employs supervised classification 

algorithms to generate spatially-explicit agricultural 

recommendations. The recommendation engine 

employs a LightGBM model, which builds on the 

principles of decision tree-based learning, similar to 

Random Forest, while leveraging gradient boosting for 

enhanced predictive accuracy. It is trained on 

extensive validation datasets comprising successful 

cultivation outcomes of 22 different crops across 

diverse agro-ecological zones. 

The modelling framework incorporates crop-specific 

parameter thresholds and multi-parameter interaction 

effects documented in agricultural literature. Each 

candidate crop undergoes suitability assessment 

against the integrated environmental profile of the 

specified location, generating probabilistic suitability 

scores. 

3) Precision Farming Insights Generation 

Beyond primary crop recommendations, the system 

generates location-specific precision farming insights 

for recommended crop varieties. These insights 

include optimized irrigation scheduling based on soil 

physical properties and climatological patterns, 

fertilization recommendations calibrated to soil 

nutrient status, and risk assessments derived from 

climate variability metrics. The recommendation 

framework incorporates both production optimization 
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and resource use efficiency objectives, addressing 

sustainability considerations in precision agriculture 

[24]. 

The precision farming insights module implements 

rule-based expert systems derived from agricultural 

literature and domain knowledge. These systems 

translate quantitative environmental parameters into 

actionable management recommendations through 

predefined decision trees and conditional logic 

operations. This approach enables practical 

interpretation of complex environmental data in terms 

of specific agricultural management interventions 

aligned with precision farming principles [25]. 

 

D. System Implementation and User Interface 

The AgroVision system, as seen in Fig. 2, is 

implemented as a web-based application with a 

responsive user interface designed to facilitate 

intuitive interaction with the analytical framework. 

The frontend interface allows users to input 

coordinates directly, ensuring a straightforward and 

accessible experience. The visualization components 

employ data-driven design principles to communicate 

complex agricultural recommendations through 

intuitive visual representations and clear textual 

explanations. 

The backend infrastructure is implemented using a 

microservices architecture that orchestrates API 

communications with multiple data repositories, 

coordinating parallel data retrieval operations and 

implementing appropriate caching mechanisms to 

optimize performance. This implementation approach 

aligns with contemporary best practices in agricultural 

decision support system development that emphasize 

accessibility, scalability, and interoperability [26]. 
 

 
Fig. 2: System Architecture 

 

IV. RESULTS AND DISCUSSION 

 

The developed crop recommendation system 

demonstrated significant efficacy in generating 

precision farming insights through the integration of 

multidimensional geospatial parameters. The 

AgroVision system successfully integrated multiple 

geospatial datasets to provide comprehensive 

agricultural decision support. 

 

A. Model Validation and Accuracy 

The system's accuracy was validated through multiple 

real-world test cases. When coordinates (10.2149550, 

77.1897657) were entered into the system, it 

recommended apple cultivation based on the 

integrated analysis of soil and weather parameters. 

This recommendation proved remarkably accurate as 

these coordinates point to Kanthalloor, a village in 

Kerala's Idukki district known as the "apple valley of 

Kerala" - the only place in the state where apples are 

cultivated on a large scale in South India. For this 

location, the system extracted an NDVI value of 

0.6972, indicating substantial vegetation density and 

biomass accumulation. This aligns with findings by 

Weiss et al. [6], who demonstrated that NDVI values 

exceeding 0.65 frequently correspond to areas of 

significant agricultural potential, particularly for 

perennial tree crops. 

The integration of NDVI data with soil 

physicochemical parameters demonstrated substantial 

analytical value, revealing complex interactions 

between vegetation productivity and edaphic 

conditions. The soil analysis for the Kanthalloor 

location identified slightly acidic conditions (pH 5.5) 

with moderate nitrogen content (51 units), 

corresponding to optimal conditions for apple 

cultivation. This finding corroborates the research of 

Zhang et al. [27], who established that slightly acidic 

soils (pH 5.5-6.5) often support optimal nutrient 

availability for numerous fruit crops, particularly 

apple varieties. 

Climatological parameters extracted from NASA 

POWER datasets revealed significant insights 

regarding agro-meteorological suitability. The 

Kanthalloor location demonstrated a mean 

temperature of 23.77°C, relative humidity of 74.01%, 

and rainfall of 92.1 mm, collectively indicating a 

temperate microclimate with adequate moisture 

availability. Cross-referencing these parameters with 
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crop-specific requirements through the 

recommendation engine identified substantial 

alignment with pome fruit cultivation requirements, 

particularly apple varieties that thrive under these 

specific environmental conditions [28]. 

Similarly, when coordinates (25.882562025386576, 

91.53667574346744) pointing to Meghalaya were 

analyzed, the system recommended Jute cultivation. 

This recommendation aligns with regional agricultural 

patterns, as Meghalaya ranks as India's 4th largest 

producer of jute, further validating the model's 

accuracy and relevance. 

 

B. Crop Diversification Recommendations 

Beyond validation, the system demonstrated potential 

for agricultural optimization. When coordinates 

(10.6364732, 76.8448186) pointing to an existing 

coconut farm in Kerala were analyzed, the system 

recommended pomegranate cultivation based on 

comprehensive soil and climatic parameter analysis, as 

seen in Fig. 3. This suggests significant opportunities 

for crop diversification and yield optimization in 

existing agricultural areas, potentially enhancing both 

productivity and economic returns for farmers. 

 

 
Fig. 3: Test Case - Kerala 

 

C. Barren Land Rehabilitation 

The system also demonstrated significant value for 

land rehabilitation applications. When coordinates 

(26.8762481, 71.5763395) pointing to barren land in 

Rajasthan with a low NDVI value of 0.1367 were 

analyzed, the system recommended muskmelon 

cultivation along with specific soil enrichment 

strategies. Subsequent research confirmed that 

muskmelon is indeed successfully cultivated in parts 

of Rajasthan with similar sandy loamy soil and warm, 

dry climatic conditions, highlighting the system's 

potential for transforming unproductive land into 

viable agricultural areas. 

The AgroVision system successfully translated 

complex geospatial analysis into actionable precision 

farming insights for each recommended crop. For the 

muskmelon recommendation, these insights 

encompassed critical agronomic parameters including: 

1. Soil management recommendations (well- 

drained sandy loam or loamy soil with high 

organic content) 

2. pH optimization strategies (6.0-7.5 range, neutral 

to slightly acidic) 

3. Irrigation protocols (moderate irrigation but 

consistent watering during flowering and 

fruiting) 

4. Temperature requirements (25-25°C optimal 

range) 

5. Fertilization guidelines (nitrogen, phosphorus, 

potassium, and magnesium requirements for 

better fruit yield and sweetness) 

6. Technology integration opportunities (IoT- based 

irrigation and AI-driven pest monitoring) 

These detailed insights demonstrate significant 

advancement beyond traditional crop recommendation 

systems that typically provide generalized cultivation 

guidelines without site-specific parameter 

optimization [29]. The integration of technological 

intervention suggestions represents a novel 

contribution to precision agriculture advisory services, 

addressing both production optimization and resource 

use efficiency objectives simultaneously. 

 

D. Global Scalability 

The system demonstrated global scalability and 

applicability beyond regional contexts. Despite some 

limitations in SoilGrids coverage necessitating the 

implementation of fallback soil parameter values for 

Indian states, the system successfully generated 

accurate recommendations for international locations 

where SoilGrids data was available. When coordinates 

(43.0331349, 11.8400464) corresponding to a 

vineyard in Italy were analyzed, as seen in Fig. 4, the 

system recommended grape cultivation based on 

comprehensive environmental parameter analysis. 

Similarly, when coordinates (13.8353554, 

121.1897463) pointing to land in the Philippines were 
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entered into the system, it recommended rice 

cultivation, which aligns with the Philippines' status as 

one of the world's major rice producers. These 

international test cases further demonstrate the 

system's global applicability and accuracy across 

diverse geographical and agricultural contexts. 

 
Fig. 4: Test Case - Italy 

 

The comprehensive analytical framework 

implemented in AgroVision demonstrates significant 

potential for enhancing agricultural decision-making 

through geospatial data integration. The system's 

capacity to synthesize remote sensing, soil science, 

and climatological parameters into coherent, 

actionable recommendations addresses critical gaps in 

conventional agricultural advisory services identified 

by Wolfert et al. [30]. 

 

V. CONCLUSION 

 

The AgroVision system demonstrates substantial 

efficacy in leveraging multidimensional geospatial 

datasets for precision agriculture applications. 

Through the integration of NDVI metrics from Google 

Earth Engine, soil parameters from ISRIC SoilGrids, 

and meteorological data from NASA POWER, the 

system provides spatially-explicit crop 

recommendations and precision farming insights for 

22 different crops, tailored to specific geographical 

locations. The implementation results reveal 

significant analytical value in the coordinated 

processing of heterogeneous environmental 

parameters, enabling evidence-based agricultural 

decision support that transcends traditional advisory 

approaches. 

The system's predictive accuracy has been validated 

through multiple case studies spanning diverse agro- 

ecological zones across India and internationally. The 

successful recommendation of apple cultivation in 

Kanthalloor (Kerala), jute in Meghalaya, pomegranate 

as an alternative crop for existing coconut farms in 

Kerala, and muskmelon for barren lands in Rajasthan 

demonstrates the system's versatility and precision. 

The global scalability of the model was confirmed 

through accurate grape recommendations for Italian 

vineyards and rice recommendations for Philippine 

landscapes, highlighting its potential for international 

agricultural applications. 

The AgroVision system's capacity to generate 

comprehensive cultivation guidelines, including soil 

management strategies, irrigation protocols, and 

technology integration recommendations, represents a 

meaningful contribution to precision farming 

practices. This holistic approach addresses critical 

challenges in agricultural decision support, 

particularly regarding the contextual interpretation of 

environmental parameters for site-specific crop 

selection and management. The system's ability to 

identify optimal crops for both currently cultivated and 

barren lands offers significant potential for 

agricultural optimization, land rehabilitation, and 

economic enhancement. 

Future research directions include expanding the 

analytical framework to incorporate socioeconomic 

parameters and market demand projections to further 

optimize crop recommendations based on economic 

potential. Enhancing the temporal resolution of 

environmental data integration would improve 

sensitivity to seasonal variations and climate patterns. 

Finally, extending the system's capabilities to include 

multi-crop recommendation for intercropping and 

companion planting strategies could significantly 

enhance sustainable farming practices and resource 

utilization efficiency. 
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