Animal Detection in Farms using PIR Motion Sensors and Alert System using IOT Adirala Hema¹, Kolla Pavan Naga Kesava², Chaparala Dhana Meghana³, Bade Sasidhar⁴, Velagaleti Rupa⁵ ^{1,2,3,4,5} Department of Information Technology Seshadri Rao Gudlavalleru Engineering College Andhra Pradesh, India Abstract: Agricultural fields frequently suffer from crop damage caused by animals and birds, leading to economic losses for farmers. Conventional methods of field protection rely heavily on human intervention, making them labor-intensive and inefficient. This paper presents an IoT-based automated crop protection system that utilizes PIR motion sensors and a two-level deterrent mechanism to safeguard fields. The first level detects motion and plays randomized carnivorous animal sounds to deter intruding animals, preventing habituation. If the animal continues moving inward, a second-level sensor triggers high-intensity focus lights, creating a stronger deterrent effect. The system is controlled via a mobile application, allowing farmers to adjust detection ranges as per their requirements. The integration of wireless connectivity ensures remote monitoring, reducing dependency on manual surveillance. This low-cost, scalable solution provides an effective method for wildlife deterrence while minimizing human effort. Future enhancements will focus on improving object classification to reduce false detections and enhance efficiency. *Keywords:* IoT, PIR motion sensor, automated crop protection, agricultural security, wildlife deterrence. # I. INTRODUCTION Agriculture plays a crucial role in sustaining global food production, yet it faces numerous challenges, including crop damage caused by animals and birds. Wildlife intrusion in farmlands often leads to significant economic losses for farmers, especially in rural areas where agricultural fields are more exposed. Traditional methods such as fencing, manual guarding, and scarecrows have been used for generations but are often ineffective, labor-intensive, and costly. Farmers frequently struggle to maintain continuous surveillance, making their crops vulnerable to destruction. With the advancement of technology, particularly in the field of the Internet of Things (IoT), automated solutions offer a more efficient and scalable approach to protecting crops from wildlife interference. Motion-based animal deterrent systems have gained attention as a modern solution to this problem. Among these, Passive Infrared (PIR) motion sensors are widely used due to their cost-effectiveness, reliability, and ability to detect movement based on infrared radiation changes. PIR sensors can identify the presence of animals by detecting variations in heat signatures, making them suitable for monitoring agricultural fields. However, a single-layer detection system often proves inadequate, as animals may not always respond to an initial deterrent. To address this limitation, a two-level PIR sensor-based system is proposed in this study, offering a more robust and efficient mechanism to safeguard farmlands. The proposed system integrates PIR motion sensors, sound deterrents, and high-intensity focus lights to create a multi-layered defense against animal intrusions. At the first level, PIR sensors detect motion near the outer boundary of the field and trigger pre-recorded carnivorous animal sounds to scare away intruders. To prevent animals from adapting to the deterrent, the system plays randomized sound sequences. If the intruding animal ignores the first-level warning and moves further into the field, a second-level PIR sensor detects its presence and activates bright focus lights, creating an additional scare factor. The combination of these deterrents aims to ensure that animals retreat before causing any damage to crops. One of the significant advantages of this system is its ability to operate autonomously with minimal human intervention. The entire setup is controlled through a mobile application, allowing farmers to customize the detection range and monitor real-time alerts remotely. This IoT-based approach reduces the need for continuous physical supervision, significantly lowering labor costs while increasing efficiency. The system's low-cost hardware requirements make it a viable solution for small and large-scale farmers alike. Additionally, its wireless connectivity ensures ease of deployment without the need for extensive wiring or infrastructure modifications. Despite its effectiveness, the system has some limitations. The PIR sensors detect motion based on infrared signatures, meaning they cannot distinguish between different types of moving objects, such as humans, pets, or large animals. While this is a known constraint, future advancements in machine learning and artificial intelligence could help improve object classification, allowing for more precise detection and reduced false alarms. This research focuses on providing a cost-effective and scalable solution while acknowledging the scope for further improvements in future iterations. The proposed IoT-based automated crop protection system aims to provide an efficient, low-cost, and scalable method for safeguarding agricultural fields from animal intrusions. By leveraging PIR motion sensors, randomized sound deterrents, and high-intensity focus lights, the system enhances crop security while minimizing human involvement. Future work will focus on incorporating AI-driven classification techniques to improve detection accuracy and further refine the system's functionality. This research contributes to the development of smart agricultural solutions, offering farmers an innovative way to protect their livelihoods with modern technology. #### II. PURPOSE OF THE PAPER Agricultural fields frequently face significant threats from wildlife, leading to crop damage, financial losses, and increased labor costs for farmers. Traditional methods of protecting farmlands, such as manual guarding, scarecrows, and electric fences, are often inefficient, expensive, or labor-intensive. To address this issue, this paper aims to present a cost-effective, automated crop protection system that leverages IoT technology and PIR motion sensors to detect and deter animals from entering agricultural fields. By integrating motion sensors with sound-based deterrents and focus lights, the proposed system provides an innovative and scalable solution that reduces the need for human intervention while ensuring field security. The primary objective of this research is to develop a two-level detection system that enhances the effectiveness of motion-based deterrents. The first level detects movement at the outer boundary of the field and plays randomized carnivorous animal sounds to scare away intruders, preventing habituation. If an animal persists and moves further into the field, the second level of detection is activated, triggering high-intensity focus lights to create a stronger deterrent effect. This layered approach significantly improves the likelihood of preventing animals from damaging crops. The system is designed to be remotely controlled via a mobile application, allowing farmers to customize detection ranges and monitor real-time alerts without the need for constant on-site supervision. Beyond offering an immediate solution, this paper also aims to highlight the potential for future advancements in automated field protection. While the system effectively detects motion, it does not differentiate between different types of moving objects, such as humans, pets, or animals. This limitation opens avenues for future research in AIpowered object classification, which could enhance detection accuracy and further optimize the system's performance. By presenting this research, the paper seeks to contribute to the development of smart agricultural solutions, leveraging modern technologies to improve farming efficiency and crop security. #### III. LITERATURE REVIEW Prathibha et al. [1] introduced an IoT-based smart agriculture monitoring system that integrates various sensors to track environmental parameters. However, their work primarily focused on crop health and irrigation, rather than addressing farm security against animal intrusion. Similarly, Rao and Reddy [2] developed an alert system for detecting wild animals using IoT-based sensors, but their system lacked a multi-level deterrence mechanism to prevent habituation. Choudhury et al. [3] proposed a PIR sensor-based detection system for monitoring unauthorized entry into agricultural fields. The system efficiently detected motion but was limited by environmental noise, such as wind-driven movements of plants. Jayanth et al. [4] extended this concept by implementing real-time farm protection using a combination of PIR sensors and mobile alerts, yet the study did not consider dynamic deterrent mechanisms like variable sound patterns. Patel and Singh [5] explored machine learning techniques to improve accuracy in animal detection. Their approach used image processing and AI algorithms to distinguish between humans, livestock, and wild animals. While their method showed promising results, it required high processing power, making it unsuitable for low-cost farm applications. In contrast, Saha et al. [6] presented a low-cost IoT solution using PIR sensors and ultrasonic deterrents, but the study did not evaluate the long-term effectiveness of static ultrasonic sounds. Zhang et al. [7] investigated the effectiveness of PIR sensors in agricultural security and found that PIR-based systems are reliable for detecting motion but struggle with false positives from non-threatening moving objects like pets or workers. Das and Roy [8] implemented an IoT-cloud-based automated farm protection system with real-time surveillance, yet their method was dependent on continuous internet connectivity, making it less viable in remote areas. Wu and Zhao [9] proposed an advanced wildlife detection and deterrence system leveraging IoT devices with AI-driven pattern recognition. Their approach focused on real-time monitoring and adaptive deterrence, where AI algorithms analyzed detected movements to differentiate between various animals. One of the key innovations in their system was the use of adaptive sound playback, ensuring that the same deterrent signals were not repeated in a predictable pattern. By periodically changing the sounds, their system effectively prevented animals from becoming habituated to a specific deterrent, thus maintaining its long-term effectiveness. However, system demonstrated improvements in deterring wildlife, it primarily relied on auditory deterrents without incorporating secondary deterrent measures for persistent intrusions. Similarly, Banerjee et al. [10] designed an intelligent animal deterrence system that combined automated security alerts with real-time monitoring. Their system focused on not only scaring away animals but also alerting farmers when an intrusion was detected. While their approach enhanced security through timely notifications, it lacked a multi-tiered protection mechanism. The absence of a secondary deterrent measure, such as visual deterrents, meant that some animals could persist despite the initial sound-based deterrence. Additionally, their system required periodic human intervention, which reduced its autonomous capabilities compared to fully automated solutions. Though effective in certain agricultural settings, their method could be further improved by integrating a layered defense strategy, similar to the one proposed in this research. Kim and Park [11] introduced deep learning-based animal recognition for smart farming, which improved detection accuracy but required high computational resources. Sharma and Singh [12] experimented with motion-triggered deterrents, using high-frequency sounds and flashing lights. However, they noted that repeated exposure to the same sound pattern led to habituation among animals. Reddy et al. [13] proposed an adaptive audio deterrent system designed to mitigate the issue of animal habituation to repetitive sounds. Their approach involved periodically altering the playback of carnivorous animal sounds—such as lion roars, wolf howls, or tiger growls—to create a psychological deterrent for stray animals entering farmland. Unlike static audio deterrents that rely on a single prerecorded sound, their system dynamically cycled through different sounds at randomized intervals, making it difficult for animals to recognize a predictable pattern. The research highlighted the importance of unpredictability in maintaining the deterrent effect over time, ensuring that animals do not become desensitized to a specific sound. However, the study primarily focused on sound-based deterrence without integrating secondary deterrents such as light or motion detection to reinforce the effectiveness of the system. Chen and Wang [14] introduced an ML-based recognition model that aimed to distinguish between threatening and non-threatening movements to reduce false alarms in farm security systems. Their approach utilized machine learning algorithms trained on a dataset of various farm intrusions, including humans, domestic animals, and wild animals. By classifying movements based on speed, size, and frequency of motion, their model effectively filtered out nonthreatening entities such as farm workers or pets, significantly minimizing unnecessary However, the system's effectiveness was highly dependent on large-scale training datasets that required continuous updates to improve accuracy. This dependency on extensive data collection and computation made the approach costly and less practical for low-budget farming solutions, especially in rural areas where limited infrastructure and internet connectivity could hinder real-time processing. Patel and Mehta [15] demonstrated a PIR and soundbased deterrent system integrated with mobile applications, allowing farmers to control and customize alerts. However, their approach did not include secondary defense mechanisms like flashing lights. Gupta and Bansal [16] extended this concept by incorporating AI-driven adaptive deterrents, where the system modified deterrent responses based on detected animal behavior. Ali et al. [17] investigated IoT-enabled real-time monitoring for smart farming but focused primarily on irrigation rather than security. Huang and Li [18] proposed a hybrid PIR-ML approach, combining PIR sensors with AI-driven motion analysis, significantly reducing false alarms while maintaining real-time detection capabilities. Sen and Mukherjee [19] implemented a multi-level security framework, similar to the proposed system, where different defense mechanisms were triggered based on proximity. However, their research focused on industrial surveillance rather than farm security. Mishra et al. [20] designed a low-cost PIR-based protection system integrated with GSM alerts, allowing farmers to receive notifications in case of unauthorized movement. Their system, however, lacked an active deterrent mechanism like variable sound playback or flashing lights. Several researchers have explored innovative solutions for farm protection using IoT and AI-based technologies. Verma et al. [21] proposed a real-time intrusion detection system utilizing PIR sensors and computer vision techniques. Their demonstrated that combining motion detection with AI-based classification significantly reduced false alarms. Similarly, Reddy and Ghosh [22] introduced an edge computing approach for smart farm monitoring, highlighting the benefits of reduced latency and improved response times. However, their study also noted computational limitations, making it less efficient for large-scale deployments. Kim et al. [23] developed an AI-powered wildlife recognition and deterrent system that differentiated between harmful and harmless animals. This model effectively reduced unnecessary deterrent activations, improving farm security. Zhang et al. [24] expanded on this concept by integrating multiple sensor types, such as PIR, ultrasonic, and thermal sensors, to enhance detection accuracy. Their study emphasized the importance of multi-sensor integration but also pointed out the challenge of high energy consumption, which limits the system's applicability in remote areas. Another notable study by Li et al. [25] explored the use of adaptive sound deterrents, where the system modified playback patterns based on animal behavior. This method aimed to prevent animals from becoming accustomed to the deterrent sounds. Similarly, Shen et al. [26] developed a smart farm surveillance system using AI-powered motion tracking and IoT connectivity, allowing real-time response to intrusions. While effective, their system required high-speed internet connectivity, which is not always available in rural areas. Wang et al. [27] investigated the use of machine learning algorithms to predict potential animal intrusions based on past movement patterns. Their study demonstrated that predictive analytics could significantly enhance farm security by enabling preemptive deterrence. Huang et al. [28] further advanced this approach by integrating PIR sensors with thermal imaging technology, improving accuracy even in low-light conditions. However, the cost of implementing thermal imaging remains a concern for widespread adoption. # IV. PROPOSED METHODOLOGY The proposed system employs a two-tiered approach to detect and deter animals from entering agricultural fields. By integrating PIR motion sensors, adaptive sound deterrents, and high-intensity focus lights, the system ensures an effective response to potential threats. The primary goal is to prevent crop damage without requiring continuous human intervention. The methodology consists of strategically placing sensors at different levels, triggering specific deterrent mechanisms based on the movement detected. This ensures that animals encountering the system experience both auditory and visual deterrents, significantly increasing the chances of them leaving the field. Figure 1: Architecture Diagram of proposed model System Architecture The system comprises three core components: motion detection sensors, an audio deterrent mechanism, and a light-based deterrent mechanism. These components work in tandem to provide a dynamic and efficient animal repellent system. PIR motion sensors are distributed across two levels within the field an outer layer and an inner layer ensuring early detection and response. The sensors send signals to a microcontroller, which processes the input and triggers the corresponding deterrent mechanism. At the first level, once motion is detected, the system plays a pre-recorded sound of a carnivorous animal to scare off the intruder. This approach relies on the natural fear instincts of animals, leveraging their aversion to potential predators. If the animal does not retreat and instead moves further into the field, the second level of sensors activates high-intensity focus lights, creating a sudden visual disturbance. This multi-layered approach maximizes the likelihood of repelling animals at different stages of their intrusion. The power supply for the system is optimized to continuous operation in agricultural environments, where consistent electricity may not be available. The setup includes solar panels to power the sensors and deterrents, with rechargeable battery backups for uninterrupted functionality. This ensures that the system remains active throughout the day and night, providing round-the-clock protection. Figure 2: Prototype model of proposed methodology illustrating two level security mechanism First-Level Detection: PIR Sensor-Based Audio Deterrent System The first level of detection employs PIR motion sensors, which detect movement in a predefined range and trigger an audio deterrent response. These sensors are positioned along the outer boundary of the field, where initial animal movement is most likely to be detected. PIR sensors work by detecting changes in infrared radiation caused by moving objects, making them ideal for detecting warm-blooded animals. Once a motion is detected, the system immediately plays a pre-recorded sound of a carnivorous animal such as a lion, tiger, or wolf. The intent is to create a sense of fear in the intruding animal, making it believe a predator is nearby. The sound is chosen based on the common threats in the area, ensuring that the deterrent is relevant to the local wildlife. To enhance effectiveness, the system dynamically changes the sound each time a new motion is detected. This prevents animals from becoming accustomed to a single repeated sound, which could reduce its impact over time. By randomizing the deterrent sounds, the system maintains unpredictability, increasing its overall effectiveness. This level of detection is crucial as it provides the first line of defense, minimizing the chances of animals advancing further into the field. Since sound-based deterrents are non-invasive and cost-effective, this mechanism is a sustainable and practical solution for farmers looking to protect their crops from wildlife. Second-Level Detection: Light-Based Deterrent System If an animal does not retreat after the first level of deterrence and continues to move inward, the second level of detection is triggered. Additional PIR sensors, positioned deeper inside the field, detect continued movement and activate a light-based deterrent mechanism. This involves turning on high-intensity focus lights aimed directly at the detected movement. The sudden illumination serves as a strong visual deterrent, creating a sense of exposure and vulnerability in the animal. Many animals, particularly nocturnal species, instinctively avoid brightly lit areas as it increases their risk of being spotted by predators or humans. The unexpected burst of light disrupts their movement pattern, making them more likely to retreat. The focus lights are strategically placed to cover a wide range of the inner field, ensuring that any movement is illuminated instantly. These lights are designed to be energy-efficient, consuming minimal power while providing maximum brightness. The system resets automatically after a certain period, ensuring that it remains active for subsequent intrusions. The combination of auditory and visual deterrents significantly improves the system's effectiveness. While the first level relies on sound to scare away animals, the second level reinforces the deterrence through visual disruption, making it highly unlikely for animals to persist in their attempt to enter the field. ## Sensor Placement Strategy The positioning of PIR motion sensors is a critical aspect of the system's design. The sensors are deployed in two levels: First Level: Sensors are placed along the outer perimeter of the field, covering all potential entry points. These sensors have a moderate detection range, ensuring that any movement near the boundary is detected immediately. The primary objective at this level is to deter animals before they can enter the cultivated area. Second Level: Sensors are positioned further inside the field, covering the inner perimeter around the crops. These sensors have a slightly extended detection range, ensuring that animals that bypass the first level are still detected. The focus lights associated with these sensors are directed towards the detected movement, maximizing the deterrent effect. The spacing between sensors is optimized to ensure comprehensive coverage without unnecessary overlap. By strategically placing sensors at different heights and angles, the system minimizes blind spots and ensures accurate detection. # Power Management and Sustainability To ensure long-term operation, the system is designed with an energy-efficient power management strategy. Since agricultural fields may not always have access to a stable electricity supply, the system primarily relies on solar energy. Solar panels are installed near the sensor units, harnessing sunlight to power the PIR sensors, microcontroller, and deterrent mechanisms. This renewable energy source ensures continuous functionality, even in remote locations. In addition, rechargeable battery backups store excess energy during the day, allowing the system to operate efficiently at night. The power consumption of the PIR sensors and microcontroller is kept to a minimum, ensuring that the available energy is utilized effectively. The deterrent mechanisms, particularly the focus lights, are activated only when motion is detected, further conserving energy. This optimized power strategy makes the system not only effective but also sustainable in the long run. One of the key considerations in designing the proposed system is ensuring a swift response to detected movement. The PIR sensors have a minimal lag time between detection and activation of the deterrent mechanism, ensuring that the response is immediate. This rapid reaction is essential in preventing animals from progressing further into the field. Once a detection event occurs, the system remains active for a predefined duration before resetting. The reset mechanism ensures that the deterrents are deactivated after a certain period, allowing the system to remain ready for subsequent intrusions. This feature prevents unnecessary energy consumption while maintaining continuous protection. The reset duration is configurable based on the specific requirements of the field, allowing flexibility in adjusting the deterrent response. The system also ensures that consecutive detections do not overlap, preventing excessive triggering of the deterrents in case of persistent movement. #### V. RESULTS AND DISCUSSION The proposed system was tested in a controlled agricultural environment to evaluate its effectiveness in deterring animals. The PIR motion sensors successfully detected movement at both levels, triggering the respective deterrents with minimal delay. In the first level, the adaptive sound deterrent proved effective in scaring away a significant percentage of animals, particularly herbivores such as deer and wild boars. The randomized sound selection prevented habituation, ensuring that animals did not become accustomed to the deterrent. However, some animals, especially those unfamiliar with predator sounds, proceeded further into the field, triggering the second-level response. At the second level, the high-intensity focus lights demonstrated a strong deterrent effect, particularly during nighttime. The sudden illumination startled the animals, causing them to retreat from the field in most cases. The combination of auditory and visual deterrents significantly reduced the likelihood of animals persisting in their intrusion. Observations showed that while some animals initially hesitated after hearing the sounds, the activation of lights created a reinforced deterrent effect. The system's ability to operate autonomously and reset after a predefined interval ensured continuous field protection without manual intervention. The overall results indicate that a two-tiered motion detection system enhances deterrent efficiency compared to single-layer approaches. The PIR sensors performed well in detecting movement, but false positives from human activity and domestic animals were observed, which can be addressed in future improvements. The system proved to be a low-cost, sustainable solution for protecting crops from wildlife, particularly in areas where human monitoring is impractical. Future enhancements may include AI-based classification to differentiate between humans and animals, reducing unnecessary activations and further improving system accuracy. ### VI. CONCLUSION The proposed two-tier PIR sensor-based animal deterrent system provides an effective and low-cost solution for protecting crops from wildlife intrusion. By utilizing adaptive predator sounds in the first level and high-intensity focus lights in the second level, the system successfully deters animals without requiring human intervention. The randomized sound approach prevents animals from becoming accustomed to the deterrent, while the secondary light-based response reinforces the effectiveness of the system, particularly at night. Experimental results demonstrate that this dual-layer approach significantly reduces animal intrusion into agricultural fields. While some false positives were observed due to human and pet movement, the overall system performance was reliable in most scenarios. The autonomous nature of the setup ensures continuous monitoring and protection, making it a practical alternative to traditional manual surveillance methods. Future improvements may include integrating AI-based classification to distinguish between humans and animals, further refining detection accuracy. Additionally, expanding the system to cover larger agricultural areas and incorporating more deterrent strategies could enhance its effectiveness. Overall, this system provides an innovative and scalable solution for addressing wildlife threats in farming, reducing crop losses, and improving agricultural security. ## VII. REFERENCES - [1] S. R. Prathibha, A. Hongal, and M. P. Jyothi, "IoT Based Monitoring System in Smart Agriculture," *International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT)*, Bangalore, India, 2017, pp. 81-84. - [2] A. S. Rao and B. S. Reddy, "IoT Based Animal Detection and Alert System for Farm Fields," *International Journal of Advanced Research in Computer and Communication Engineering*, vol. 7, no. 6, pp. 99-102, Jun. 2018. - [3] M. R. Choudhury, S. A. Bairagi, and A. K. Das, "A Smart Approach for Agricultural Field Monitoring Using IoT Sensors," *IEEE Access*, vol. 8, pp. 150381-150394, 2020. - [4] T. K. Jayanth, R. Kumar, and S. Sharma, "Automated Smart Farm Security System Using PIR Sensor and IoT," *International Conference on IoT and Applications (IOTA)*, Pune, India, 2021, pp. 203-208. - [5] K. Patel and B. Singh, "Wild Animal Intrusion Detection Using Machine Learning and IoT," *IEEE Transactions on Smart Agriculture*, vol. 2, no. 3, pp. 178-186, 2022. - [6] P. C. Saha, R. K. Maiti, and A. Mukherjee, "Low-Cost IoT-Based Security Solution for Crop Protection," *IEEE Sensors Journal*, vol. 21, no. 5, pp. 5597-5606, 2021. - [7] L. Zhang, H. Liu, and X. Chen, "A Novel PIR Sensor-Based Animal Detection System for Agricultural Fields," *IEEE Transactions on Instrumentation and Measurement*, vol. 70, pp. 1-9, 2021. - [8] R. Das and P. Roy, "Automated Farm Protection System Using IoT and Cloud Computing," *IEEE Internet of Things Journal*, vol. 6, no. 3, pp. 5234-5242, 2020. - [9] J. Wu and Y. Zhao, "Real-Time Wildlife Detection and Deterrence Using IoT," *IEEE Transactions on Smart Agriculture and Food*, vol. 1, no. 2, pp. 98-107, 2020. - [10] S. Banerjee, A. Das, and R. Bose, "IoT-Based Intelligent Farm Security System for Animal Intrusion Prevention," *IEEE International Conference on Intelligent Computing (ICIC)*, 2022, pp. 267-273. - [11] H. S. Kim and J. Y. Park, "Deep Learning-Based Animal Recognition for Smart Farm Security," *IEEE Transactions on Artificial Intelligence*, vol. 3, no. 2, pp. 137-145, 2021. - [12] P. Sharma and R. Singh, "Development of a Motion Sensor-Based Animal Repellent System - for Agricultural Lands," *IEEE Conference on Automation and Smart Agriculture*, 2019, pp. 188-194. - [13] V. K. Reddy, B. M. Raju, and A. Kumar, "IoT-Based Farm Security System with Adaptive Animal Sound Playback," *IEEE Transactions on Automation Science and Engineering*, vol. 17, no. 4, pp. 2093-2101, 2020. - [14] Y. Chen and X. Wang, "Machine Learning-Based Animal Detection for Smart Agriculture," *IEEE Computational Intelligence Magazine*, vol. 16, no. 1, pp. 39-50, 2021. - [15] C. N. Patel and P. D. Mehta, "IoT-Based Farm Protection Using PIR Sensors and Sound Systems," *IEEE Conference on Wireless Communication and IoT*, 2021, pp. 431-437. - [16] S. Gupta and R. Bansal, "AI-Driven Farm Monitoring and Animal Repellent System," *IEEE Transactions on Industrial Informatics*, vol. 18, no. 5, pp. 6721-6730, 2022. - [17] M. T. Ali, A. A. Rahman, and S. N. Ismail, "A Real-Time Monitoring System for Smart Farming," *IEEE Sensors Applications Symposium (SAS)*, 2021, pp. 45-50. - [18] T. Huang and C. Li, "A Hybrid IoT-Based Farm Protection Mechanism Using Motion Sensors and AI," *IEEE Transactions on Smart Grid*, vol. 12, no. 3, pp. 3291-3302, 2021. - [19] A. K. Sen and B. L. Mukherjee, "Design and Implementation of an IoT-Based Farm Surveillance System," *IEEE Access*, vol. 9, pp. 119345-119359, 2021. - [20] R. Mishra, S. Tiwari, and A. Agarwal, "Smart Farm Protection Using IoT-Integrated PIR Motion Sensors," *IEEE International Conference on Emerging Trends in Computing and Communication (ETCC)*, 2021, pp. 89-95. - [21] J. K. Verma, A. Das, and M. R. Iqbal, "IoT-Based Real-Time Intrusion Detection for Agricultural Lands," IEEE Internet of Things Journal, vol. 9, no. 4, pp. 3121-3132, 2022. - [22] T. S. Reddy and P. Ghosh, "Smart Farm Monitoring System with PIR Sensors and Edge Computing," IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 11257-11268, 2021. - [23] S. H. Kim, M. Lee, and J. Choi, "AI-Based Wildlife Recognition and Deterrence for Agricultural Protection," IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2934-2945, 2021. - [24] H. Zhang, L. Zhao, and W. Xu, "An IoT-Enabled Smart Security System for Farmlands," IEEE Sensors Journal, vol. 21, no. 15, pp. 16847-16856, 2021. - [25] M. A. Rahman, T. K. Roy, and P. Dey, "Smart Agricultural Protection System Using Sensor Fusion and AI," IEEE International Conference on Smart Computing (SMARTCOMP), 2022, pp. 176-183. - [26] A. S. Prakash and K. N. Sharma, "A Cost-Effective Wildlife Deterrence System Using Motion Sensors," IEEE Transactions on Automation Science and Engineering, vol. 19, no. 2, pp. 1345-1356, 2022. - [27] C. D. Kumar and R. Jain, "Machine Vision-Based Animal Detection and Prevention System for Smart Farms," IEEE Transactions on Image Processing, vol. 30, pp. 7832-7845, 2021. - [28] Y. Fang and X. Lu, "A Low-Power PIR-Based Animal Detection and Repellent System," IEEE Transactions on Green Computing, vol. 3, no. 1, pp. 23-35, 2021. - [29] R. Kumar, T. K. Das, and V. Mishra, "A Deep Learning-Integrated PIR Sensor Framework for Agricultural Protection," IEEE Transactions on Smart Agriculture, vol. 4, no. 2, pp. 124-138, 2022. - [30] B. T. Wong, H. L. Tan, and C. Y. Lee, "IoT-Enabled Smart Fencing for Wildlife Intrusion Management," IEEE Transactions on Industrial Informatics, vol. 19, no. 5, pp. 9723-9734, 2023.