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Abstract—In this paper we prove the common fixed-

point theorem in cone metric space for rational 

expression in normal cone setting. Our results 

generalized the main result of Jaggi [7] and Dass, Gupta 

[3].we studied the concept of contractions mappings to 

obtain common fixed point in cone metric spaces for 

rational contractions.  
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I. INTRODUCTION 

 

The Banach contraction principle with rational 

expressions have been expanded and some fixed and 

common fixed-point theorems have been obtained in 

[4], [5]. Huang and Zhang [6] initiated cone metric 

spaces, which is a generalization of metric spaces, by 

substituting the real numbers with ordered Banach 

spaces. Later, various authors have proved some 

common fixed-point theorems with normal and non-

normal cones in these spaces [4],[5],[8],[10]. 

Recently Muhammad arshad et al[2] have introduced 

almost Jaggi and Gupta contraction in Partially 

ordered metric spaces to prove the fixed-point 

theorem. 

1. Basic facts and definitions. 

Definition 2.1[6]: Let 𝐸always be a real Banach 

space and 𝑃 a subset of 𝐸. 𝑃 is called a cone if and 

only if: 

    (i) 𝑃 is closed, nonempty and 𝑃 ≠  {0}; 

    (ii) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 ⇒ 𝑎𝑥 +  𝑏𝑦 ∈ 𝑃 ; 

    (iii) 𝑥 ∈ 𝑃and  −𝑥 ∈ 𝑃 ⇒ 𝑥 =  0. 

For Given a cone 𝑃 ⊂ 𝐸, one can define a partial 

ordering  ≤   with respect to 𝑃by 𝑥 ≤ 𝑦 if and only if 

𝑦 − 𝑥 ∈ 𝑃. The notation 𝑥 < 𝑦 indicates that 𝑥 ≤ 𝑦 

but 𝑥 ≠ 𝑦, while 𝑥 << 𝑦 will show𝑦 − 𝑥 ∈ 𝑖𝑛𝑡𝑃 , 

where  𝑖𝑛𝑡𝑃 denotes the interior of  𝑃. From now on, 

it is assumed that int 𝑃 ≠ ∅. 

The cone 𝑃 is callednormal if there is a number 𝐾 >

 0 such that for all 𝑥, 𝑦 ∈  𝐸, 

 0 ≤  𝑥 ≤  𝑦    implies  ‖𝑥‖ ≤  𝐾‖𝑦‖.   

The cone 𝑃 is calledregular if every increasing 

sequence which is bounded from above is 

convergent. That is, if {𝑥𝑛} is sequence such that 

𝑥1  ≤   𝑥2 ≤  ··· ≤   𝑥𝑛  ≤  ··· ≤  𝑦, 

for some 𝑦 ∈  𝐸, then there is 𝑥 ∈  𝐸 such that, 

‖𝑥𝑛 − 𝑥‖ → 0, (𝑛 → ∞). 

Equivalently the cone 𝑃 is regular if and only if every 

decreasing sequence which is bounded from below is 

convergent. It is well known that a regular cone is a 

normal cone. 

Definition 2.2[6]: Let 𝑋 be a nonempty set. Suppose 

the mapping 𝑑 ∶ 𝑋 × 𝑋 → 𝐸 satisfies 

     (d1)   0 < 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦)  =

 0 if and only if 𝑥 =  𝑦; 

    (d2)    𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

    (d3)    𝑑(𝑥, 𝑦)  ≤ 𝑑(𝑥, 𝑧)  +  𝑑(𝑦, 𝑧) for all 

𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

Then 𝑑 is called a cone metric on 𝑋, and (𝑋, 𝑑) is 

called a cone metric space. 

Example2.1[6]:Let 𝐸 = 𝑅2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸 | 𝑥, 𝑦 ≥

0} ⊂  𝑅2, 𝑋 = 𝑅 and  𝑑 ∶ 𝑋 ×  𝑋 → 𝐸 

suchthat𝑑(𝑥, 𝑦) =  (|𝑥 −  𝑦|, 𝛼|𝑥 −  𝑦|),where 𝛼  ≥

 0 is a constant. Then (𝑋, 𝑑) is a cone metric space. 

Definition 2.3[6]: A point 𝑥 of set 𝑋 is said to be 

Common Fixed Point of mapping 𝑆, 𝑇 if, 𝑆𝑥 = 𝑇𝑥 =

𝑥. 
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Definition 2.4[6]: Let (𝑋, 𝑑) be a cone metric space, 

{𝑥𝑛} a sequence in X, {𝑥𝑛} is a Cauchy sequence if 

there is some 𝑘 ∈ ℕ such that, for all 𝑛, 𝑚 ≥ 𝑘,  

𝑑(𝑥𝑛 , 𝑥𝑚) ≪ 𝑐; 

Definition 2.5[6]: Let (𝑋, 𝑑) be a cone metric space, 

{𝑥𝑛} a sequence in X, {𝑥𝑛} is a convergent sequence 

if there is some 𝑘 ∈ ℕ such that, for all 𝑛 ≥ 𝑘,  

𝑑(𝑥𝑛 , 𝑥) ≪ 𝑐; 

Then 𝑥 is called limit of the sequence {𝑥𝑛}. 

Note that: - (i) Every convergent sequence in a cone 

metric space 𝑋 is a Cauchy sequence. 

(ii) A cone metric space 𝑋 is said to be complete if 

every Cauchy sequence in 𝑋is convergent in 𝑋.  

Definition 2.6[6]: Let 𝑋 =  (𝑋, 𝑑) be a metric space. 

A mapping 𝑇: 𝑋 →  𝑋 is called a contraction on 𝑋 if 

there is a positive real number 𝛼 <  1 s .t for all 

𝑥, 𝑦  ∈  𝑋, 

𝑑 (𝑇𝑥, 𝑇𝑦)   ≤   𝛼 𝑑 (𝑥 , 𝑦) , ( 𝛼 <  1 ). 

Geometrically this means that any points   𝑥 and 𝑦 

have images that are together than those points 𝑥 and 

𝑦; more precisely, the ratio 𝑑 (𝑇𝑥, 𝑇𝑦) / 𝑑 (𝑥 , 𝑦) 

does not exceed a constant 𝛼 which is strictly less 

than 1. 

 

2. Main Results 

Definition 3.1: Let(𝑋, 𝑑) be a cone metric space. A 

self-mapping 𝑇 on 𝑋is called an almost jaggi 

contraction it satisfies the following condition:  

 

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 𝑑(𝑦, 𝑇𝑦) +  𝛽 max {
𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑦)
, 𝑑 (𝑥, 𝑦)} +  𝐿𝑚𝑖𝑛 {𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)} 

 

For all 𝑥, 𝑦 ∈ 𝑋 where 𝐿 ≥ 0 and 𝛼, 𝛽 ∈ [0,1) with 

𝛼 + 𝛽 < 1. 

Theorem 3.1:Let(𝑋, 𝑑) be a complete cone metric 

space and P a normal cone with normal constant 𝑀.  

Let 𝑇: 𝑋 → 𝑋 be an almost jaggi contraction for all 

𝑥, 𝑦 ∈ 𝑋 where 𝐿 ≥ 0 and 𝛼, 𝛽 ∈ [0,1) with 𝛼 + 𝛽 <

1.Then 𝑇 has a unique fixed point in 𝑋. 

Proof: Choose 𝑥0 ∈ 𝑋. Set 𝑥1 = 𝑇𝑥0 , 𝑥𝑛 = 𝑇𝑥𝑛−1 

 

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛) 

≤ 𝛼𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝛽 𝑚𝑎𝑥 {
𝑑(𝑥𝑛   , 𝑇 𝑥𝑛−1)

𝑑(𝑥𝑛−1,   𝑥𝑛)
, 𝑑(𝑥𝑛−1,   𝑥𝑛)} +  𝐿𝑚𝑖𝑛 {𝑑(𝑥𝑛−1   , 𝑇 𝑥𝑛), 𝑑(𝑥𝑛   , 𝑇 𝑥𝑛−1)} 

≤ 𝛼𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝛽 max {
𝑑(𝑥𝑛   , 𝑥𝑛)

𝑑(𝑥𝑛−1,   𝑥𝑛)
, 𝑑(𝑥𝑛−1,   𝑥𝑛)} +  𝐿𝑚𝑖𝑛 {𝑑(𝑥𝑛−1   , 𝑥𝑛+1), 𝑑(𝑥𝑛   , 𝑥𝑛)} 

 

𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛼𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝛽𝑑(𝑥𝑛−1,   𝑥𝑛) 

 

𝑑(𝑥𝑛 , 𝑥𝑛+1) − 𝛼𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛽𝑑(𝑥𝑛−1,   𝑥𝑛) 

 

(1 − 𝛼)𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛽𝑑(𝑥𝑛−1,   𝑥𝑛) 

𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤
𝛽

(1 − 𝛼)
𝑑(𝑥𝑛−1,   𝑥𝑛) 

𝐾 =
𝛽

(1 − 𝛼)
 , 𝛼 + 𝛽 < 1, 0 < 𝑘 < 1  

 

And by induction  

𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝑘𝑑(𝑥𝑛−1,   𝑥𝑛) 

. 

≤ 𝑘𝑛𝑑(𝑥0,   𝑥1) 

𝑑(𝑥𝑛 , 𝑥𝑚) ≤ 𝑑(𝑥𝑛 ,   𝑥𝑛+1) + 𝑑(𝑥𝑛+1,   𝑥𝑛+2) + ⋯ + 𝑑(𝑥𝑛+𝑚−1 , 𝑥𝑚) 

≤ (𝑘𝑛 + 𝑘𝑛+1 + 𝑘𝑛+2 + ⋯ + 𝑘𝑛+𝑚−1)𝑑(𝑥0,   𝑥1) 
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≤
𝑘𝑛

1 − 𝑘
𝑑(𝑥0,   𝑥1) 

 

We get ‖𝑑(𝑥𝑛 , 𝑥𝑚)‖  ≤ 𝑀
𝑘𝑛

1−𝑘
‖𝑑(𝑥0,   𝑥1)‖ which implies that 𝑑(𝑥0,   𝑥1) → 0 𝑎𝑠 𝑛 → ∞. hence 𝑥𝑛is a Cauchy 

sequence, so by completeness of 𝑋 this sequence must be convergent in 𝑋. 

𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑇𝑢) 

𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛 , 𝑇𝑢) 

 

𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑥𝑛+1) + 𝛼𝑑(𝑢, 𝑇𝑢) + 𝛽 max {
𝑑(𝑢 , 𝑇 𝑥𝑛)

𝑑(𝑥𝑛,   𝑢)
, 𝑑(𝑥𝑛 , 𝑢)} +  𝐿𝑚𝑖𝑛 {𝑑(𝑥𝑛   , 𝑇𝑢), 𝑑(𝑢 , 𝑇𝑥𝑛)} 

𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑥𝑛+1) + 𝛼𝑑(𝑢, 𝑢) + 𝛽 max {
𝑑(𝑢 , 𝑥𝑛+1)

𝑑(𝑥𝑛 ,   𝑢)
, 𝑑(𝑥𝑛 , 𝑢)} +  𝐿𝑚𝑖𝑛 {𝑑(𝑥𝑛   , 𝑢), 𝑑(𝑢 , 𝑥𝑛+1)} 

𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑥𝑛+1) + 𝛽 max {
𝑑(𝑢 , 𝑥𝑛+1)

𝑑(𝑥𝑛 ,   𝑢)
, 𝑑(𝑥𝑛 , 𝑢)} +  𝐿𝑚𝑖𝑛 {𝑑(𝑥𝑛   , 𝑢), 𝑑(𝑢 , 𝑥𝑛+1)} 

So, using the condition of normality of cone  

‖𝑑(𝑢, 𝑇𝑢)‖ ≤ ‖𝑑(𝑢, 𝑥𝑛+1)‖ + 𝛽𝑚𝑎𝑥 {
‖𝑑(𝑢 , 𝑥𝑛+1)‖

‖𝑑(𝑥𝑛 ,   𝑢)‖
, ‖𝑑(𝑥𝑛 , 𝑢)‖}  +  𝐿𝑚𝑖𝑛 {‖𝑑(𝑥𝑛   , 𝑢)‖, ‖𝑑(𝑢 , 𝑥𝑛+1)‖} 

 

As 𝑛 → 0 we have ‖𝑑(𝑢, 𝑇𝑢)‖ ≤ 0. 

Hence, we get 𝑢 = 𝑇𝑢, 𝑢 is a fixed point of  𝑇. 
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