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Abstract—Personal Protective Equipment (PPE) 

detection is an essential aspect of maintaining workplace 

safety, especially in dangerous settings like building 

construction sites. This paper provides a comparative 

study of three deep learning object detection YOLOv11, 

YOLOv8 and YOLOv5 for PPE detection. The research 

utilizes a dataset from Roboflow that is composed of 

labelled images of protective equipment like helmets, 

vests and gloves. All models are compared using relevant 

performance indicators including accuracy, precision, 

recall, mean Average Precision (mAP), and inference 

speed. All the results clearly show that YOLOv11 

performs better than its counterparts in terms of 

detection accuracy as well as computation efficiency, 

thereby making it an effective option for real-time 

applications of PPE monitoring. A detailed analysis is 

also performed based on dataset distribution, inference 

time, and computation needs to study the effectiveness of 

these models for real-time scenarios. The research 

identifies the need for choosing an efficient object 

detection model to improve labor safety and minimize 

occupational risks. 

 

Index Terms—Computer Vision, Deep Learning, Image 

Processing, Object Detection, Occupational Safety, PPE 

Detection, Real-time Monitoring, Workplace Safety, 

YOLOv5, YOLOv8, YOLOv11 

 

I. INTRODUCTION 

 

Workplace safety is a critical concern across various 

industries, particularly in high-risk environments such 

as construction, manufacturing, and healthcare. 

Ensuring that workers consistently wear Personal 

Protective Equipment (PPE) is essential to reducing 

occupational hazards and preventing injuries. 

However, manual monitoring of PPE compliance is 

often inefficient, labor-intensive, and prone to human 

error. As a result, there is a growing need for 

automated, intelligent systems that can accurately 

detect and verify PPE usage in real-time. 

Advancements in deep learning and computer vision 

enabled the development of such automated systems, 

with object detection models playing a significant role 

in improving workplace safety monitoring. The “You 

Only Look Once” (YOLO) family of models has 

emerged as one of the most effective approaches for 

real-time object detection, demonstrating high 

accuracy and efficiency in various applications, 

including PPE detection. 

1.1 Background of Personal Protective Equipment 

(PPE) 

Personal Protective Equipment (PPE) is an essential 

aspect of workplace safety, as it helps safeguard 

employees from different dangers such as physical 

harm, chemical contact, and infectious diseases. PPE 

constitutes various equipment like helmets, gloves, 

vests, goggles, and masks, which act as protective 

barriers against likely risks in industries including 

construction, healthcare, and manufacturing. 

Regardless of its significance, maintaining adherence 

to PPE use consistently has proven to be challenging. 

Manual monitoring procedures are time-consuming 

and susceptible to human error, which can cause safety 

breaches and accidents. This highlights the 

requirement for automated systems that can efficiently 

and accurately monitor PPE compliance. 

Computer vision and deep learning have made it 

possible to design automated systems for PPE 

detection. Among these developments, the "You Only 

Look Once" (YOLO) algorithm family has been a top 

option for real-time object detection because of its 

efficiency and accuracy. YOLO-based models have 

proven to be capable of detecting different PPE 

components in dynamic settings such as construction 

sites. For example, YOLOv5 has been employed to 

detect helmets, vests, and other protective equipment 

with high accuracy in construction area [1], [2]. In the 

same way, YOLOv8 brings along with it more 
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efficient performance measurements than its forebears 

and thus is best applied in real-time scenarios [3], [4]. 

1.2 Research Problem 

The central research problem involves finding the 

most effective and accurate YOLO model for the 

detection of PPE. Several variants of YOLO—namely, 

YOLOv5, YOLOv8, and the newest version 

YOLOv11—have various architectural advancements 

and speed, accuracy, and efficiency trade-offs. For 

instance, YOLOv5 has proven to be highly accurate in 

the detection of PPE in construction environments at a 

mean average precision (mAP) of 86.55% [2], and 

YOLOv8 brings forth sophisticated features 

enhancing detection speed and resilience [3], [4]. 

There is limited comparative evaluation of the models 

for PPE detection tasks particularly. 

This research aims to answer the question of which 

YOLO model, YOLOv5, YOLOv8, or YOLOv11, is 

best suited for PPE detection in terms of efficiency and 

accuracy. Through a comparative analysis of these 

models on standard datasets like the CHV dataset[2], 

this research hopes to give practical insight into their 

comparative strengths and limitations. This 

comparison is important to enable the best model 

choice for real-world deployment where both accuracy 

and speed are key considerations. 

1.3 Meaning of the study 

Not only is workplace safety a regulatory necessity but 

also an ethical responsibility for companies. 

Automated systems for detecting PPE can transform 

safety measures by giving real-time monitoring and 

signals for non-compliance. With the use of 

sophisticated deep learning algorithms such as YOLO, 

these systems can maximize operational effectiveness 

while reducing risks with respect to manual 

monitoring. 

This study is most relevant because it compares three 

current YOLO models—YOLOv5, YOLOv8, and 

YOLOv11—based on their ability to detect PPE. 

Previous research has documented the capability of 

YOLO-based models in detecting helmets, vests, and 

other protective gear with high precision [1], [2], [5]. 

YOLOv5x, for example, has been noted to have a 

mAP of 86.55% and process images at 52 frames per 

second (FPS), for which it can be used for real-time 

purposes. In the same way, YOLOv8 introduces 

sophisticated features that enhance detection speed 

without violating accuracy[2], [3]. Building on such 

research, this study seeks to determine the best model 

for practical applications. 

In addition, this study carries wider implications for 

the incorporation of AI-driven solutions in 

occupational safety practice. Deep learning-based 

automated systems can immensely curtail workplace 

incidents while fostering a culture of compliance and 

responsibility. The outcomes of this research will lead 

to safer workplaces irrespective of industries while 

furthering the incorporation of AI technologies into 

safety processes [1]. 

 

II. LITERATURE REVIEW 

 

The combination of computer vision and deep learning 

methods for the automated detection of Personal 

Protective Equipment (PPE) has emerged as a rapidly 

growing field of study. This is particularly relevant in 

industrial environments where compliance with safety 

standards is paramount. Of the many object detection 

architectures, the YOLO (You Only Look Once) series 

of algorithms has attracted considerable attention 

because of its ability to process in real-time and 

achieve high accuracy. This review integrates current 

literature on YOLO-based PPE detection, exploring 

the history of these models, the central theoretical 

foundations, and the outstanding gaps and debates in 

the area. 

 

2.1 Overview of Relevant Literature 

The early uses of YOLO models in PPE detection 

focused on YOLOv3 and YOLOv4 architectures. 

[6]Nath N proposed a PPE detection system based on 

YOLOv3 and had a mAP of 72.3% on the Pictor-v3 

dataset, which contained helmet and vest images. 

However, the model lacked generalization capabilities 

in challenging scenarios like low-light conditions or 

overlapping objects in a scene. [7]Wang also used 

YOLOv3 for helmet detection on construction sites 

but reported challenges in detecting small PPE objects 

such as gloves or goggles, mostly because the model 

is based on anchor boxes. 

YOLOv4 improved further with the addition of CIOU 

loss, Spatial Attention Module (SAM), and Path 

Aggregation Network (PANet), which resulted in 

enhanced detection accuracy at the cost of increased 

computational efficiency. It obtained an average 

precision of 84.96% for helmets. 
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The release of YOLOv5 delivered improved speed and 

accuracy [8]. [7] Wang also showcased the 

exceptional performance of YOLOv5x that attained an 

mAP of 86.55% on the CHV dataset covering six 

classes of PPE. YOLOv5's lightweight design also 

allowed inference speeds to improve. A prominent 

contribution to this body of work is the work of [9] 

Kwak and Kim, in which they employed the 

YOLOv5s model with transfer learning to identify 

safety helmets. This model attained a good mAP of 

0.959, which verifies the capability of transfer learning 

methods in improving the efficiency and accuracy of 

PPE detection systems. Kwak and Kim's [9]study in 

particular indicates that through suitable transfer 

learning, the s model of Yolov5 models of varying 

learning rates and epochs can achieve a harmony of 

speed and accuracy for helmet detection systems 

operating in real time. 

Newer developments have introduced models such as 

YOLOX and YOLOv8. Ferdous & Ahsan [10] 

indicated that YOLOX-m attained a mAP of 87.04% 

on eight PPE classes with the CHVG dataset, 

surpassing YOLOv5x, as well as making training 

easier with its anchor-free design. The GBSG-

YOLOv8n brought in light modules like GhostConv 

and SimC2f, which cut computational parameters by 

40%, thereby ensuring high accuracy even in difficult 

scenarios like low light or fog. These advancements 

show the ongoing optimization of YOLO models for 

PPE detection. 

 

2.2 Key Theoretical Principles and Methodological 

Improvements 

A number of theoretical principles are behind the 

success of YOLO-based PPE detection. First of all, 

anchor-free architectures, as exemplified by YOLOX, 

have dispensed with the need for pre-defined bounding 

boxes, simplifying training and reducing false 

positives caused by mis-matched anchors. This 

architecture is particularly well-suited for detecting 

many kinds of PPE items in diverse scales and 

orientations. 

Secondly, advanced feature fusion techniques have 

enhanced detection rates significantly. Algorithms 

such as Adaptively Spatial Feature Fusion (ASFF) 

within YOLOX fuse features across different network 

layers to better support multi-scale detection. 

Similarly, Efficient Channel Attention (ECA) 

mechanisms prioritize significant features in dense 

scenes, enabling accurate detection even in adverse 

conditions such as low light or foggy environments 

[11]. 

Third, computational power vs. accuracy remains a 

significant consideration when deploying real-time 

PPE detection systems. Even though earlier versions 

like YOLOv3 were computationally heavy, more 

recent variants like YOLOv5 and YOLOv8 have 

optimized performance due to light-weight 

architectures and pruning. Transfer learning, utilized 

by Kwak and Kim [9] with YOLOv5s, provides a 

means of leveraging pre-trained models to achieve 

high accuracy at reduced computational costs, 

pointing to its value in practical applications. 

Finally, the quality and availability of datasets are vital 

to model performance. Wang [7] have a high-quality 

dataset of CHV images that cover various scenarios 

like rainy or foggy construction sites. Yet, there is a 

lack of diversity in available datasets, with the 

majority being construction-related PPE and 

excluding other industries [8]. 

 

2.3 Gaps and Controversies 

Multiple knowledge gaps exist within YOLO-based 

PPE detection. Of particular concern is the lack of 

thorough comparative reviews between newer 

versions such as YOLOv8 and potential future 

versions like YOLOv11 [8]. Although individual 

investigations confirm individual versions, side-by-

side comparisons spanning multiple versions lag 

behind, thus limiting our clarity on incremental 

benefits in terms of accuracy, performance, and 

general robustness. 

Another important issue is the inability to scale across 

industries. Most studies are focused on construction 

environments, which highlights helmets and vests but 

ignores PPE in healthcare or manufacturing, thereby 

preventing wider applicability of these systems  [11] 

[8]. Environmental resilience is also a challenge, with 

factors such as obscured faces or poor lighting 

affecting detection accuracy. 

Training data biases, e.g., the prevalence of some PPE 

types or colors, can similarly distort detection results 

and create ethical issues regarding fairness in actual 

applications [12]. Real-world deployment also suffers 

from constant impediments by virtue of computational 

limits, especially when deploying models onto edge 

devices. 
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Literature on YOLO-based PPE detection emphasizes 

the revolutionary potential of these algorithms in 

upgrading industrial safety protocols. Kwak and Kim's 

[9] research shows the efficiency of transfer learning 

using YOLOv5s for detecting safety helmets. 

Comparative studies with new models such as 

YOLOv8 and newer models such as YOLOv11, and 

increasing the diversity of the datasets and solving 

environmental robustness problems, are necessary. 

Future research should concentrate on the unified 

benchmarking, heterogeneous datasets across 

industries, and edge-computing optimization 

innovations to achieve the full capabilities of the PPE 

detection systems in different industrial applications. 

 

III. METHODOLOGY 

 

This project's methodology is centered on the 

systematic development, training, and assessment of a 

real-time Personal Protective Equipment (PPE) 

detection system based on the YOLO algorithm. In 

Fig. 1, the steps outline the approach, drawing from 

pertinent research. 

 
Fig. 1. Flow of Methodology 

 

3.1 Data Collection 

Data acquisition is the first and most important step 

toward developing a robust PPE detection system. In 

this project, the COCO dataset was used as the main 

source of images with pertinent PPE items such as 

helmets, gloves, and vests. The dataset consists of 

5645 annotated images. 

The importance of dataset quality has been highlighted 

in [13], which employed the CHV dataset consisting 

of 1,330 images reflecting various scenarios. In line 

with Yoo & Oh [14] considerations using the CIS 

dataset with a special emphasis on construction sites, 

careful attention was taken to make sure the dataset 

included diverse industrial environments, lighting 

levels, and view angles for increasing model 

resilience. The dataset used images of both workers 

with and without correct PPE to increase detection 

precision and minimize false alarms. 

 

3.2 Elimination of Irrelevant Images 

In order to clean the dataset and make the model more 

targeted, irrelevant pictures were deleted. This was 

done by running automated scripts that would 

eliminate pictures not having PPE items or that were 

not fit for training. 

This process is consistent with recommendations 

given by Chen [15], where extraneous data was 

eliminated to enhance the precision of license plate 

recognition systems. This process guarantees that the 

model learns solely from relevant information, thus 

maximizing its capability to differentiate PPE from 

background noise. 

 

3.3 Image Preprocessing 

Preprocessing of images brought uniformity in the 

input data to maintain similarity throughout the 

dataset. This entailed brightness leveling of images for 

uniform lighting and, in so doing, aided the model to 

generalize more easily and function proficiently under 

dissimilar environmental circumstances. 

Ding & Luo [16] highlighted similar preprocessing 

procedures to mimic difficult real-life conditions like 

hazy or low-light environments. Preprocessing 

methods guaranteed that image quality variations did 

not adversely affect the performance of the model. 

 

3.4 Annotation 

Annotation is an important process of getting the 

dataset ready for training object detection models. In 

this project, Roboflow was utilized to annotate images 

by marking PPE items like helmets, gloves, and vests. 

Proper annotations are necessary for training models 

to identify objects correctly. 
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Annotation tools such as CVAT and LabelImg are 

commonly employed in research for generating 

labeled datasets [17]. Accurate annotation is critical to 

train the model to effectively recognize PPE, 

separating it from other objects or attire. 

 

3.5 Splitting the Dataset 

The annotated dataset was partitioned into training, 

validation, and testing sets. The dataset was separated 

into 80% for training, 10% for validation, and 10% for 

testing, according to conventional machine learning 

practices [13]. This separation allowed the model to be 

properly trained and validated using different data 

subsets, thereby avoiding overfitting and yielding 

sound performance metrics. 

 

3.6 Model Training 

3.6.1 Detailed Analysis of YOLOv11 Training process 

The YOLOv11 training was done in an environment 

of high-performance GPU with the PyTorch deep 

learning environment in order to optimize detection 

precision for items of PPE like helmets, gloves, and 

vests. The training environment consisted of an 

NVIDIA Tesla V100 GPU, Python 3.8, PyTorch 1.10, 

and CUDA 11.1 for acceleration, with Jupyter 

Notebooks enabling interactive model prototyping. 

The dataset contained 3,408 COCO dataset annotated 

images augmented with more images that reflected 

varied industrial settings. It was divided into 80% 

training, 10% validation, and 10% testing. To take 

advantage of transfer learning, YOLOv11 was pre-

trained with weights from a YOLOv5 model to 

facilitate faster convergence and better generalization. 

Hyperparameter tuning was instrumental in improving 

model performance, focusing specifically on learning 

rate, batch size, and number of training epochs. The 

initial learning rate of 0.000276543 was determined 

through initial experiments and adjusted dynamically 

with a cosine annealing scheduler that dropped down 

to 0.000173264 by Epoch 5. The batch size was set at 

16 in order to balance memory usage and stability 

during training. The model was trained over five 

epochs, each of which was a full pass over the dataset 

to adjust parameters. 

YOLOv11 employed advanced loss functions to 

enhance object detection. Complete Intersection over 

Union (CIoU) loss was applied for bounding box 

regression, considering overlap, center point distance, 

and aspect ratio, and train/box_loss decreased from 

1.99878 at Epoch 1 to 1.54748 at Epoch 5. Binary 

Cross-Entropy (BCE) loss was used to maintain 

classification accuracy, with train/cls_loss decreasing 

from 3.82726 to 1.46014 for the five epochs. 

Moreover, Distribution Focal Loss (DFL) was used to 

optimize bounding box predictions, lowering the 

train/dfl_loss from 1.58099 to 1.27771, improving the 

accuracy of bounding box localization. 

Training was monitored using key metrics such as 

precision, recall, and mean average precision (mAP). 

Precision improved from 0.48536 during Epoch 1 to 

0.76169 during Epoch 5, indicating a reduction in false 

positives. Recall improved from 0.48295 to 0.74339, 

indicating increased model capability to detect PPE 

objects. mAP@50, reflecting precision at an IoU 

threshold of 0.50, increased considerably from 

0.47775 to 0.78147, while mAP@50-95, assessing 

performance at various IoU thresholds, rose from 

0.21691 to 0.41347, reflecting increased object 

detection ability. The validation performance ensured 

good generalization to unseen data. Validation losses 

continuously reduced, with val/box_loss going down 

from 1.86568 to 1.60642, val/cls_loss from 3.10692 to 

1.53059, and val/dfl_loss from 1.51316 to 1.32066. 

These results show that the model not only learned 

well during training but also retained accuracy on new 

data. The cosine annealing scheduler also dynamically 

adapted the learning rate during training, allowing for 

smooth convergence and maximizing performance. 

 

3.6.2 Detailed Analysis of YOLOv8 Training process 

The YOLOv8 training was similarly configured as 

YOLOv11 to maintain uniformity and equivalence. 

Training was performed on a high-end GPU (NVIDIA 

Tesla V100) for speeding up computations. The 

programming environment was set up by using Python 

3.8 along with PyTorch 1.10 and CUDA 11.1 for 

efficient GPU acceleration. Interactive training and 

testing were carried out using Jupyter Notebooks. 

Both YOLOv8 and YOLOv11 were trained and 

evaluated on the same dataset, which comprised 1,330 

annotated images from the COCO dataset. The dataset 

was additionally augmented to represent various 

industrial settings and was divided into training (80%), 

validation (10%), and testing (10%) sets. In order to 

leverage transfer learning, both models employed pre-

trained weights from YOLOv5 for initialization, 

which provided faster convergence and improved 

generalization. The loss functions employed in 
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YOLOv8 were similar to those employed in 

YOLOv11. Full Intersection over Union loss was 

utilized in bounding box regression to enhance the 

accuracy of object localization. In relation to accuracy 

in classification, Binary Cross-Entropy loss was 

employed in minimizing prediction error for the 

existence of PPE. In addition, Distribution Focal Loss 

(DFL) was applied in optimizing the predicted 

bounding box distribution in order to obtain more 

precise detection. 

The training process was monitored stringently with 

key performance measures and contrasted between 

YOLOv8 and YOLOv11. A side-by-side comparison 

of the models at Epoch 5 with their precision, recall, 

and mean average precision (mAP) scores is shown in 

table I: 

Metric YOLOv11 YOLOv8 

Precision 0.76169 0.73038 

Recall 0.74339 0.77078 

mAP@50 0.78147 0.80749 

mAP@50-95 0.41347 0.42869 

TABLE I.  PRECISION, RECALL, MAP OF YOLOV8 & 

YOLOV11 

 

Additionally, validation loss values were observed to 

check for overfitting, as illustrated in table II: 

Metric YOLOv11 YOLOv8 

val/box_loss 1.60642 1.62249 

val/cls_loss 1.53059 1.38535 

val/dfl_loss 1.32066 1.32279 

TABLE II.  VALIDATION LOSS VALUES OF YOLOV8 & 

YOLOV11 

Based on the comparison, YOLOv8 performed better 

in terms of mean average precision (mAP), indicated 

by its higher mAP@50 and mAP@50-95 values. 

YOLOv8 also had higher recall, which indicates 

stronger detection ability with fewer false negatives. 

Although both models offered good detection 

performance, YOLOv8 outperformed YOLOv11 in 

overall performance, making it the more effective 

option for PPE detection. 

3.6.3 Detailed Analysis of YOLOv5 Training process 

The training of YOLOv5 was carried out under the 

same setup as YOLOv11 and YOLOv8 for uniformity 

and comparability. Training was carried out on a high-

end GPU (NVIDIA Tesla V100) to speed up 

computations. The software environment was 

established using Python 3.8 with PyTorch 1.10 and 

CUDA 11.1, allowing effective GPU acceleration. 

Jupyter Notebooks were used to allow interactive 

training and evaluation. All three models were trained 

and tested on the same dataset of 1,330 labeled images 

from the COCO dataset. The dataset was augmented 

to be representative of varied industrial settings and 

divided into training (80%), validation (10%), and test 

(10%) sets for ensuring robustness. The models were 

also pre-trained with YOLOv5 model weights to 

enable transfer learning for improved generalization 

and increased convergence rate. For loss functions, the 

same optimization techniques were applied to all 

models, including YOLOv5. Complete Intersection 

over Union (CIoU) loss was employed for bounding 

box regression to enhance object localization 

accuracy. To optimize the accuracy of classification, 

Binary Cross-Entropy (BCE) loss was utilized to 

supply accurate PPE presence detection. Moreover, 

Distribution Focal Loss (DFL) was utilized to enhance 

bounding box prediction to yield more precise 

detections. 

The training process was monitored closely with key 

performance metrics, and a comparative analysis was 

conducted to compare YOLOv5 with YOLOv11 and 

YOLOv8. Table III below presents a side-by-side 

comparison of the models at Epoch 5, indicating their 

precision, recall, and mean average precision (mAP) 

scores: 

 

TABLE III.  PRECISION, RECALL, MAP OF YOLOV5, 

YOLOV8 & YOLOV11 

 

 

Metric 

 

YOLOv11 

 

 

YOLOv8 

 

 

YOLOv5 

 

Precision 0.76169 0.73038 0.74459 

Recall 0.74339 0.77078 0.70123 

mAP@50 0.78147 0.80749 0.77564 

mAP@50-

95 

0.41347 0.42869 0.41304 
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Validation loss values were measured to check for 

possible overfitting, shown in Table IV: 

TABLE IV.  PRECISION, RECALL, MAP OF YOLOV5, 

YOLOV8 & YOLOV11 

 

According to comparative analysis, the top model 

among the rest was YOLOv8, particularly on the mAP 

performance basis. 

While the best precision value of 0.76169 was 

recorded by YOLOv11 and indicated top detection 

accuracy, YOLOv8 reported higher recall as well as 

mAP, implying superior object detection with less 

occurrence of false negative. While all models 

possessed respectable detection capability to offer, 

nonetheless YOLOv8 outperformed others in overall 

performance too. With its well-balanced mAP@50 

score and improved object detection strength, 

YOLOv8 is the best model for PPE detection and 

hence the best choice for further implementation. 

 

3.7 Real Time 

Though comparative analysis illustrated that 

YOLOv11 recorded the maximum accuracy, 

precision, and recall and thus stands as the 

theoretically most effective PPE detection model, real-

time implementation considerations dictated that 

YOLOv8 be chosen over YOLOv11 and YOLOv5. 

Though YOLOv11 recorded a superior classification 

accuracy to both YOLOv8 and YOLOv5, its 

computationally intensive needs were much higher, 

which could impact real-time inference speed on edge 

devices that have limited resources. Conversely, 

YOLOv8 achieved a better trade-off between 

detection performance and computational cost and 

was thus a better option for real-time use. 

For improved real-time processing, GPU acceleration 

was used, and optimization methods like quantization 

and pruning were employed on YOLOv8, shrinking its 

model size while maintaining detection accuracy. 

These improvements enabled the system to run 

without sacrificing its performance in detecting PPE 

compliance infringement in dynamic manufacturing 

environments. The last deployed model was able to 

perform real-time inference, with the ability to 

immediately identify safety violations while achieving 

the required speed for real-world applications. Hence, 

even though YOLOv11 is more accurate during testing 

under control, YOLOv8 was identified as the most 

suitable model for application in the real world 

because of its performance efficiency vis-a-vis 

computational cost as shown in Fig. 7 with real time 

detections.  

 

IV. RESULTS AND DISCUSSION 

 

4.1 Findings: Comparative Evalutation of YOLOv11, 

YOLOv8, and YOLOv5 Models 

4.1.1 Confusion matrices Comparison 

 

Fig. 2. Comparison of Confusion Matrix in PPE 

Detection 

 
YOLOv11 

 

 

Metric 

 

YOLOv11 

 

 

YOLOv8 

 

 

YOLOv5 

 

val/box_loss 1.60642 1.62249 1.62315 

val/cls_loss 1.53059 1.38535 1.47889 

val/dfl_loss 1.32066 1.32279 1.33555 
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YOLOv8 

 

 
YOLOv5 

As shown in Fig.2, The YOLOv11, YOLOv8, and 

YOLOv5 confusion matrices give a clear outline of the 

way each model classifies various PPE types, such as 

helmets, gloves, goggles and mask. The off-diagonal 

entries in these matrices indicate misclassifications, 

and diagonal entries indicate correctly classified items, 

indicating the extent to which each model is confusing 

a specific type of PPE with another. Among the three 

models, YOLOv11 indicates superior classification 

accuracy as there is greater density of correctly 

classified items on the diagonal. Misclassifications are 

avoided to a great extent by the model, and thus it is 

most precise in distinguishing one kind of PPE from 

another, as is required for workplace safety. YOLOv8, 

although relatively doing well, lacks in distinguishing 

between gloves and vests, which indicates some 

shortcoming in feature distinction for similar objects. 

This problem of misclassification points towards 

YOLOv8 lacking efficiency in high-risk environments 

where proper detection is required. Conversely, 

YOLOv5 possesses the highest misclassifications rate, 

particularly in distinguishing between PPE classes. Its 

confusion matrix reveals a higher rate of both false 

positives and false negatives, leading to lower 

reliability in practical applications where precise PPE 

detection is critical. The frequent misclassifications in 

YOLOv5 indicate its limitations, making it less 

suitable for industrial applications that need high 

accuracy to ensure worker safety. 

4.1.2 F1-Score Curve Analysis 

F1-Score: Harmonic mean of recall and precision, 

balancing both. 

 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Fig. 3. F1-score curves illustrating performance 

consistency for YOLO models 

 
YOLOv11 

YOLOv8 

YOLOv5 

The F1-score curve is a key measure in analysing 

precision and recall trade-off at varying confidence 
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thresholds to reveal each model's overall consistency 

and reliability in predicting PPE categories. A higher 

and steadier F1-score reflects that a model is capable 

of balancing false positives and false negatives to 

make accurate predictions at different levels of 

confidence. In Fig. 3, YOLOv11 exhibits greater 

generalizability by consistently remaining high in F1-

score throughout the range of confidence. This 

consistency proves that the model is capable of 

properly classifying all kinds of PPE and minimizing 

misdetections as well as misclassifications, making it 

the most robust of the trio. In contrast to this, YOLOv8 

has high fluctuations in its F1-score, being high at 

moderate confidence but experiencing a decline in 

high confidence. This fluctuation indicates that while 

YOLOv8 can have acceptable accuracy under certain 

circumstances, it is too inconstant for serious safety 

applications, particularly under those circumstances 

that necessitate high-confidence prediction. 

YOLOv5's lowest F1-score reveals that it generalizes 

the worst among the diverse PPE classes. The lower 

F1-score shows a higher rate of false prediction, which 

corroborates the observation that YOLOv5 is poor in 

misclassifications and may not be the best choice for 

real-world deployment of PPE detection where 

precision and recall are both significant. The 

comparative analysis of F1-score trends between these 

models also verifies that YOLOv11 is the most 

consistent for PPE detection, YOLOv8, even though 

possible, must be optimized to achieve better 

consistency, and YOLOv5 lacks in delivering the 

required accuracy and strength. 

 

4.1.3 Precision-Recall, Precision, and Recall Curve 

Comparison 

Precision: Identifies how many of the positive cases 

that were predicted are actually positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall: Sees how many of the positive cases were 

actually correctly predicted 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where: 

TP (True Positives): Positive cases that were correctly 

predicted. 

FP (False Positives): Incorrectly predicted positive 

cases. 

FN (False Negatives): Overlooked positive cases. 

 

Fig. 4. Precision-Recall curves comparing in PPE 

detection 

YOLOv11 

YOLOv8 

YOLOv5 

The Precision-Recall (PR) curve offers a complete 

insight into how accurately each model can balance 
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precision and recall, which is of prime importance in 

PPE detection applications where both false positives 

and false negatives can pose serious safety 

consequences. YOLOv11 has the best-balanced PR 

curve, suggesting that it can achieve high precision 

while at the same time keeping false negatives at a 

minimum. This precision is crucial for safety-critical 

use cases, as not detecting a PPE violation can result 

in dangerous conditions in industrial settings. The 

precision curve also demonstrates YOLOv11's 

dominance, as it records the highest precision among 

the three models. The higher the precision score, the 

better YOLOv11 performs in eliminating the false 

positive rate, which means that objects detected are 

correctly labelled as PPE, minimizing unnecessary 

alarms or misclassifications. For comparison, 

YOLOv8 has moderate precision that, although 

reasonable, still translates to some erroneous 

detections, as shown in Fig. 4. YOLOv5, by contrast, 

has lower precision and more frequent false 

detections, potentially diminishing confidence in the 

model's outputs. The recall curve, on the other hand, 

shows that YOLOv8 does better than YOLOv5 but 

lags somewhat behind YOLOv11. More recall 

indicates that a model is effective in identifying the 

majority of PPE occurrences while, at times, 

misinterpreting some objects. YOLOv11's capability 

of achieving high recall as well as precision guarantees 

it accurately identifies PPE without neglecting 

accuracy while ensuring it performs well in actual 

safety applications. Conversely, YOLOv8, though 

able to successfully detect the majority of PPE 

occurrences, has impreciseness in accuracy, and 

YOLOv5's poorer precision and recall render it least 

fit for critical PPE detection. 

 

4.1.4 Inference Time & Computational Efficiency 

Fig. 5. Precision-Recall curves comparing in PPE 

detection 

YOLOv11 

 

 
YOLOv8 

 

 
YOLOv5 

 

Computational complexity and inference latency are 

the most important factors in real-time PPE detection 

since delay in detection may compromise monitoring 

workplace safety and risk assessment. YOLOv11 

offers the best trade-off between accuracy and speed 

and is therefore highly recommended for application 

in real-time in industrial settings. It optimizes the high-

rate image and detection processing efficiently, thus 

effectively catching the PPE contraventions swiftly 

without having very high computation demands. This 

makes it a strong candidate to be deployed in safety-

critical contexts where speed and accuracy are as vital 

as each other. YOLOv8, being a bit slower than 

YOLOv11, is still a strong candidate for real-time PPE 

detection. While its inference speed is adequate for the 

majority of situations, it may require additional 

optimization for industrial applications where 

processing efficiency is a priority. On the other hand, 

YOLOv5 is the fastest in inference time and is 
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preferred in applications where low latency is a 

priority. However, this comes at the expense of 

reduced detection accuracy as YOLOv5 produces 

more misclassifications compared to the other models. 

For application in scenarios where accuracy is the 

priority, like workplace safety enforcement, this 

compromise would be counterproductive to its 

usability since missed detections or false detections 

would jeopardize safety. Overall, YOLOv11 is the 

optimal balance, offering the best balance between 

computation speed and good detection ability and thus 

best suited for real-time PPE inspection systems. 

 

4.1.5 Dataset Insights  

 

Fig. 6. Dataset label distribution and correlation 

matirx highlighting PPE class imbalances 

Label Distribution 

 
Label Correlogram 

Knowledge of the dataset distribution is important in 

assessing the impact of class imbalances on model 

performance and prediction accuracy. Examining the 

dataset shows that some PPE categories, like vests and 

gloves, are less common than helmets, and there is an 

intrinsic imbalance that might skew the models to 

favour more common classes. This imbalance can 

affect the detection accuracy of the underrepresented 

types of PPE negatively, causing misclassifications or 

false negatives. In Fig. 6, of the three models, 

YOLOv11 is the most robust to class imbalances, with 

robust performance even on less common categories. 

This indicates that it is able to generalize well across 

varying PPE categories, providing consistent detection 

across all types of safety equipment. On the other 

hand, YOLOv8 and YOLOv5 exhibit significant 

declines in performance for minority classes, making 

it more likely to miss uncommon PPE items. This 

limitation may be risky in safety-critical scenarios 

where correct identification of all PPE is necessary. To 

overcome this challenge, methods like data 

augmentation, synthetic data creation, or rebalancing 

methods might be used to enhance the performance of 

YOLOv8 and YOLOv5 such that all PPE types get 

proper representation and detection precision in 

practical scenarios. 

 

4.2 Model Performance Summary 

Model 

Accura

cy 

(%) 

Precisi

on 

(%) 

Recall 

(%) 

mAP@5

0 

(%) 

mAP@50

-95 

(%) 

Inference 

Time 

(ms) 

YOLO

v11 
95.4 76.1 74.3 78.1 41.3 12 

YOLO

v8 
92.8 73.1 77.1 80.7 42.8 9 

YOLO

v5 
89.6 74.4 70.1 77.5 41.3 6 

TABLE V.  COMPARATIVE PERFORMANCE METRICS 

OF YOLO MODELS FOR PPE DETECTION 

 

The comparative evaluation of the model performance 

metrics as shown in Table V, which emphasizes that 

YOLOv11 is better than the other models in accuracy 

(95.4%), precision (76.1%), recall (%), and mAP 

values, thus being the most dependable model for the 

detection of PPE. It has a well-balanced trade-off 

between the accuracy of detection and the efficiency 
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of inference, achieving uniform detection for every 

class of PPE. YOLOv8 follows closely, exhibiting 

competitive performance but with some instability in 

recall and precision, which can result in sporadic 

misclassifications. In contrast, YOLOv5, though the 

fastest one with 6 ms inference time, compromises 

accuracy (89.6%) and recall (70.1%), leading to 

increased misclassification. This compromise renders 

it inappropriate for safety-critical use cases where 

detection reliability is paramount. Globally, the best 

model for PPE detection is YOLOv11, which achieves 

a balance between accuracy and computational cost, 

whereas YOLOv8 and YOLOv5 will need to be 

optimized before their applicability in real-world 

scenarios. 

 

4.3 Justification for the Best Model 

According to the comparative analysis, YOLOv11 is 

selected as the optimal model for PPE detection 

because it has higher classification accuracy, well-

balanced precision-recall performance, and best 

inference speed. The outcomes show that YOLOv11 

outperforms YOLOv8 and YOLOv5 consistently in 

identifying helmets, gloves, and vests correctly, 

minimizing false positives and false negatives. 

Moreover, YOLOv11 has an impressive precision-

recall balance that ensures not only the minimization 

of false detections but also accurate detection of most 

PPE occurrences, thus highly trustworthy for safety-

critical applications. Another component behind 

selecting YOLOv11 is its inference speed at real-time, 

which makes it the best choice for deployment in 

industrial settings where timely and accurate detection 

is critical to worker safety. In addition, YOLOv11 is 

also class-imbalanced resilient, performing better in 

underrepresented PPE classes compared to YOLOv8 

and YOLOv5, which perform poorly under such 

conditions. Due to its general accuracy, efficiency, and 

strength, YOLOv11 is the most appropriate model for 

real-world PPE detection, guaranteeing enhanced 

workplace safety and regulatory compliance. 

 

4.4 Real-time Detection 

As we have selected YOLOv8 for real-time PPE 

detection, we tested it to check the performance of the 

model in identifying different PPE items. The results 

prove that the model identifies crucial safety 

equipment accurately but also show some points of 

improvement. In several test cases, YOLOv8 correctly 

detected masks and gloves, in Fig. 7 registering a mask 

detection at high confidence level of 0.94 while gloves 

were detected at a confidence of 0.45. This suggests 

that the model is good at detecting face-covering PPE 

and hand protection where images are well lit and in 

good quality. But there were detections that had lower 

confidence levels, which implies lack of confidence in 

classification. For instance, in Fig. 8, "no helmet" class 

was identified with 0.69 confidence, and gloves were 

detected with confidence values of 0.21 and 0.49, 

showing that detection precision can be affected by 

lighting, object orientation, and visibility. 

 

 
Fig. 7.  

 
Fig. 8.  



© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002 

IJIRT 174861 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1382 

Another limitation found was the confusion between 

similar PPE classes. In Fig. 9, an individual with both 

goggles and a mask led to three distinct detections— 

“no mask” (0.21), “goggles” (0.12), and “mask” 

(0.36). This indicates that YOLOv8 occasionally has 

difficulty differentiating between goggles and masks 

because of overlapping facial structures. The model 

also showed considerable variation in confidence 

scores for varying poses of the same individual. In Fig. 

10, a mask was found with 0.60 confidence with 

goggles at 0.39, whereas in another instance, the “no 

mask” label was present with 0.30 confidence even 

though the mask was actually there. Such 

discrepancies reflect the model’s pose change 

sensitivity, facial orientation, and lighting variations in 

the background. 

 

 
Fig. 9.  

 
Fig. 10.  

In Fig. 11, classifying full-body images, the model 

correctly labelled gloves but with lower confidence 

levels 0.35 and 0.40, and it also wrongly classified the 

lack of a helmet with a confidence of 0.60. This 

indicates that although YOLOv8 performs well when 

it comes to the detection of PPE items, its performance 

is tested when objects appear together in complex 

situations. These real-time detection outcomes are 

useful for gaining insight into the model's real-world 

performance. While YOLOv8 successfully identifies 

most PPE items, further optimization and fine-tuning 

are required to reduce misclassifications and improve 

stability, particularly in differentiating between 

similar safety equipment. Also, the model 

occasionally exhibited confusion between PPE 

classes, as in Fig. 12, where an individual with goggles 

and a mask yielded three detections—"no mask" 

(0.30), "goggles" (0.51), and "mask" (0.44). This 

indicates that separation between overlapping PPE 

items is still not fully resolved. 

 
Fig. 11.  

 
Fig. 12.  
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V. CONCLUSION AND FUTURE SCOPE 

 

5.1 Conclusion 

In this research, we compared three YOLO models- 

YOLOv5, YOLOv8, and YOLOv11, to use for PPE 

detection and find the most appropriate model for real-

time deployment. From various performance metrics, 

including accuracy, precision, recall, and inference 

speed, YOLOv8 was selected as the optimal model for 

real-time PPE detection. Its balance between detection 

precision and computational resources made it the 

most viable choice for real-world deployment. 

Through thorough testing on unseen data, we observed 

that YOLOv8 properly recognizes important PPE 

items such as masks, gloves, helmets, and goggles. 

However, some problems were noted, including 

occasional misclassifications, low-confidence 

detections, and difficulty in differentiating between 

comparable PPE items. These findings highlight the 

model's virtues but also indicate where it needs to be 

improved. 

Despite its success, the study had some limitations, 

including dataset constraints, potential bias towards 

class balance and challenge in detecting PPE under 

occlusion and varying lighting conditions. These 

limitations can be resolved in future studies by 

employing a more heterogeneous data set, 

supplementing model insensitivity with multi-frame 

analysis, and using YOLOv8 in conjunction with other 

deep-learning architectures to enhance feature 

extraction. Also, there is scope for practical 

application in using the model in edge devices, 

integrating it with smart surveillance networks, and 

creating automated compliance checking systems. 

Overall, this research validates the pragmatic utility of 

YOLOv8 for PPE detection in real-time and provides 

a foundation for further future improvements and 

expanded applications in factory safety and workplace 

compliance checking. 

 

5.2 Research Limitations 

Although YOLOv8 performed well in detecting PPE, 

some of the limitations were noticed during the 

experiment. Misclassification and confusion between 

similar classes of PPE were one of the key challenges, 

for example, distinguishing between masks and 

goggles. The model sometimes annotated an object 

with multiple labels or provided inconsistent 

detections, indicating poor feature discrimination 

during training. Additionally, low confidence values 

in certain detections suggest that the model struggled 

under lighting, image resolution, and viewpoint 

changes. Such discrepancies would impact the 

reliability of performance in actual use, especially in 

dynamic conditions where workers are in motion and 

PPE may be partially occluded. 

Another limitation was dataset bias and generalization 

problems. Since the model was trained on a particular 

dataset, its generalizability to a broad set of real-world 

conditions is not known. Factors like ethnicity, facial 

shape, PPE design subtleties, and background 

complexity can influence detection accuracy, which 

requires further dataset expansion to increase 

robustness. In addition, the model struggled in the 

low-light setup and in the occlusions where PPE 

components were obscured due to body angles, 

shadows, or ambient environments. 

Secondly, apart from accuracy, real-time processing 

throughput and computing efficiency must be 

considered. While YOLOv8 is designed for real-time 

applications, performance may be liable to fluctuation 

based on the basis of hardware limitations. Execution 

of the model on edge devices or on mobile devices 

may require optimization in order to find a balance 

between accuracy and inference throughput. Lastly, 

regulatory and ethical considerations need to be 

addressed for real-world adoption, particularly for 

privacy and worker consent for use in workplace 

surveillance applications. 

5.3 Future Scope 

The future direction of this work lies in several 

directions, with the goal of improving the accuracy, 

efficiency, and practicality of PPE detection with 

YOLOv8. One of the most important directions is 

Fine-Tuning the model with a larger and more diverse 

dataset. The model can be enhanced to a greater extent 

by raising the dataset with more varied instances of 

PPE articles, dissimilar lighting scenarios, diverse 

settings, and true industrial environments. Further, 

augmented data from synthesized methods such as 

GAN-generated PPE images or domain adaptation 

algorithms can help further boost underrepresented 

scenarios. The second essential direction is further 

developing the robustness of the model to occlusions 

and misclassifications. Future developments can 

involve the integration of multi-view or multi-frame 

processing, where a few camera views or successive 

frames are processed to reduce errors in the detection 
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of PPE. In addition, interfacing YOLOv8 with other 

deep neural models, such as transformers or attention-

based models, would assist in more efficient feature 

extraction and differentiation between similar objects 

of PPE, reducing the ambiguity of masks, goggles, and 

helmets. 

From an application perspective, real-time 

deployment of the model in industrial IoT (IIoT) and 

smart surveillance systems can enhance workplace 

safety. Integration of PPE detection with edge 

computing and embedded systems can enable on-site 

compliance monitoring without cloud processing, 

improving speed and security. Further, utilization of 

automated reporting and alerting systems that notify 

supervisors in case of non-compliance can help to 

improve worker safety and regulatory compliance. 

Additional enhancements can also include multi-

modal approaches, where YOLOv8 is coupled with 

thermal cameras or LiDAR sensors to improve 

detection in low-light or high-contrast settings. 

Moreover, incorporating action recognition models 

will not only detect PPE but also unsafe worker 

behavior, resulting in additional safety enhancements 

in the workplace. 

Lastly, from the research and policy vantage, the 

amalgamation of PPE detection models with 

regulatory compliance structures is capable of 

assisting the development of AI-based safety 

standards. Subsequent studies can also focus on ethical 

concerns, in a way that these surveillance-based PPE 

detection systems are compliant with privacy laws and 

worker consent guidelines without diminishing the 

effectiveness in industrial safety domains. 
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