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Abstract—This paper presents an approach for detecting 

stress using electrocardiogram (ECG) signals by 

combining machine learning and deep learning 

techniques. By integrating XGBoost, long short-term 

Memory (LSTM), and transformer models, the system 

uncovers intricate patterns in heart activity to identify 

stress levels accurately. Designed for real-time analysis, 

this method processes ECG signals to detect stress 

responses efficiently. XGBoost provides reliable feature-

based classification, whereas LSTM and transformer 

models specialize in capturing long-term dependencies in 

time-series data. By combining these strengths, the 

ensemble model enhances the prediction accuracy 

beyond what individual models can achieve. This 

research paves the way for smarter stress monitoring 

solutions, contributing to proactive mental health care 

and early intervention strategies. 

 

Index Terms—Stress detection, real-time stress detection, 

deep learning, ensemble learning, electrocardiography 

(ECG), hybrid model. 

 

I. INTRODUCTION 

 

A. Background & Importance 

Stress is a widespread issue that affects both mental 

and physical health, contributing to conditions such as 

anxiety, cardiovascular diseases, and reduced 

cognitive function [1]. Early and accurate stress 

detection can help with timely intervention, improving 

overall well-being [2]. However, traditional methods 

such as self-report surveys and occasional clinical 

assessments are subjective and lack real-time 

monitoring capabilities [3]. 

B. Problem Statement 

Although physiological signals such as 

electrocardiogram (ECG), galvanic skin response 

(GSR), and electromyography (EMG) provide 

objective indicators of stress, existing machine 

learning models face high data variability, noise, and 

limited generalizability across individuals [4]. Many 

approaches fail to capture complex temporal 

dependencies in physiological data, leading to reduced 

prediction accuracy [5]. 

C. Proposed Solution 

This study introduces a deep learning-based stress 

prediction model that uses LSTM, transformer-based 

attention mechanisms, and XGBoost to increase 

accuracy. The attention mechanism helps the model 

focus on the most relevant features, improving 

interpretability and performance in stress 

classification [6]. 

 

II. RELATED WORK 

 

A. Traditional Machine Learning Approaches 

Early methods for stress detection relied on machine 

learning algorithms such SVM, Random Forest, and k-

NN, which analyze physiological signals such as 

ECGs and GSRs [7]. While these approaches provide 

a foundation for automated stress classification, they 

depend heavily on manual feature extraction and 

struggle to handle the sequential nature of 

physiological data, leading to limitations in accuracy 

[8]. 

B. Deep Learning-based Approaches 

With advancements in deep learning, models such as 

CNNs and hybrid architectures have significantly 

improved stress classification by automatically 

identifying relevant patterns in physiological signals 

[9]. Schmidt et al. (2018) demonstrated that CNN-

based models could effectively analyze ECG data, 
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outperforming traditional machine learning 

approaches in stress detection tasks [10]. 

C. Feature enhancement models 

More recent studies have focused on refining stress 

prediction by enhancing how models process and 

select features. Kim et al. (2021) introduced a feature-

weighting technique that prioritized critical stress 

indicators, improving classification accuracy [11]. 

Similarly, Zhang et al. (2022) explored sequence 

modeling methods, enabling models to capture long-

term dependencies in physiological data and enhance 

predictive performance [12]. 
 

III. METHODOLOGY 
 

A. Data collection and preprocessing 

This study uses physiological signals such as ECG, 

GSR, and EMG signals to predict stress levels. The 

dataset is sourced from publicly available repositories, 

ensuring a diverse set of physiological responses 

across different stress conditions [14]. Since raw 

physiological signals often contain noise, missing 

values, and artifacts, a preprocessing pipeline is 

implemented to clean and normalize the data. KNN 

imputation is used to handle missing values [15]. 

To ensure consistency across different types of 

physiological signals, standard scaling and power 

transformation are applied. Additionally, a fixed 

length sliding window approach is used to segment the 

signals into overlapping time frames, preserving 

temporal dependencies and improving the availability 

of training data. This segmentation ensures that the 

model can effectively learn stress patterns without 

losing valuable sequential information. 

B. Feature Extraction and Engineering 

Extracting meaningful features from physiological 

signals is critical for accurate stress prediction. From 

ECG data, Heart rate variability (HRV) metrics such 

as RMSSD, LF/HF ratio, and SDNN are computed, as 

these have been shown to correlate with stress levels 

[13]. GSR signals are analyzed to extract skin 

conductance levels, phasic and tonic components, and 

peak response times, which indicate changes in 

sympathetic nervous system activity. EMG features 

focus on muscle activation patterns, frequency-

domain characteristics, and power spectral density 

(PSD) to identify stress-induced muscle tension [8]. 

In addition to these signal-specific features, time and 

frequency-domain transformations such as entropy 

analysis and wavelet decompositions are applied to 

uncover hidden patterns in physiological responses. 

To increase model efficiency, feature selection 

techniques such as recursive feature elimination (RFE) 

and Shapley additive explanations (SHAP) are used to 

identify the most relevant predictors for stress 

classification [13]. 

C. Model Architecture 

The proposed approach integrates sequence-based 

deep learning models with XGBoost to achieve 

accurate and reliable stress prediction. The deep 

learning component processes physiological signals 

over time, capturing complex relationships within the 

data. Moreover, XGBoost, a gradient-boosting 

decision tree algorithm, is used to refine feature 

importance and improve classification accuracy [8]. 

This hybrid setup leverages the strengths of both 

approaches: deep learning for sequential pattern 

recognition and XGBoost for robust feature selection 

[6]. 

The model consists of three main layers: a sequence-

processing layer that extracts meaningful patterns 

from raw signals, a feature-refinement module that 

filters out irrelevant data, and a classification layer that 

assigns stress labels on the basis of learned patterns. 

By combining deep learning with XGBoost, the model 

can effectively handle individual variability in 

physiological responses and improve generalization 

across different subjects [9]. 

 

Figure 1: Model architecture 
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D. Training and evaluation 

This study uses a supervised learning approach, where 

stress levels from ECG signals act as labeled data for 

training the model. The dataset is divided into 70% for 

training, 15% for validation, and 15% for testing to 

ensure a fair and balanced evaluation [10]. 

To addresses missing data, KNN imputation is applied, 

ensuring that the dataset remains complete and reliable. 

Before training, the data are preprocessed using 

standard scaling and power transformation to improve 

model performance. To prevent overfitting and make 

the model more generalizable, techniques such as 

adding Gaussian noise and time-warping are used to 

create variations in the training data [4]. 

The model’s accuracy is measured using R², mean 

squared error (MSE) to determine how accurately it 

can predict stress levels. To better understand how the 

model makes decisions, SHAP visualizations 

highlight the most important factors influencing stress 

predictions, whereas confusion matrices help identify 

where the model might be making mistakes [12]. 

 

IV. EXPERIMENTAL RESULTS 

 

A. Dataset overview 

To construct an effective stress prediction model, we 

utilized a dataset consisting of physiological signals, 

including ECG, EMG, GSR, heart rate (HR), and 

respiratory rate (RESP) signals. These signals were 

collected under various stress conditions to train and 

evaluate the model’s ability to distinguish between 

relaxed, medium stress, and high-stress states [16]. 

Before the data were fed into the model, several 

preprocessing steps were applied to enhance accuracy 

and consistency: 

1. Noise reduction was performed using a 

Butterworth filter to eliminate unwanted high-

frequency components. 

2. Missing data were handled using KNN imputation, 

ensuring that incomplete records did not 

compromise the learning process [15]. 

3. A combination of standard scaling and power 

transformation was employed to normalize the 

values and maintain uniformity across different 

physiological signals [8]. 

For model training, the dataset was split into 70% 

training, 15% validation, and 15% testing. This 

partitioning ensures that the model learns from diverse 

samples while retaining a portion of unseen data for 

evaluation [12]. 

B. Performance Metrics & Model Evaluation 

To assess the effectiveness of our stress detection 

model, we used the following performance metrics: 

1. R² score – Determines how well the model’s 

predictions align with actual values. A higher R² 

indicates better accuracy. 

2. mean squared error (MSE) – Measures the 

average squared difference between actual and 

predicted values, penalizing large errors. 

 

Table 1: Model performance matrix 

Model 𝑅2𝑠𝑐𝑜𝑟𝑒 MSE RMSE 

XGBOOST 0.792 0.2084 0.4566 

LSTM 0.802 0.1982 0.4471 

Transformer 0.769 0.3211 0.4808 

Weighted Ensemble 0.812 0.1808 0.4253 

The results clearly show that the weighted ensemble 

model performs the best, achieving the highest 

accuracy and lowest error rates. With an R² score of 

0.819574 and the lowest MSE (0.180889) and RMSE 

(0.425311), it demonstrates superior reliability in 

stress prediction [17]. Among the individual models, 

the LSTM model performed slightly better than 

XGBoost did, while the transformer model had the 

highest error, indicating room for improvement. These 

findings highlight the advantages of combining 

different models, as the ensemble approach effectively 

enhances prediction accuracy and minimizes errors 

[21]. 
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Figure 2: R² scores of the models 

 

C. Predicting Stress Levels from Physiological Signals 

To test how well the model performs, we used it to 

predict stress levels on the basis of real physiological 

data. The table below presents different physiological 

readings along with their predicted stress levels. These 

predictions were generated using a weighted ensemble 

model, which proved to be highly effective. 

The model analyzes key physiological signals that 

reflect the body’s response to stress: 

1. EMG (electromyography): Measures muscle 

tension—higher values suggest increased stress. 

2. GSR (galvanic skin response): Tracks skin 

conductivity, which rises when stress levels 

increase. 

3. HR (heart rate): Captures heart rate changes, 

which tend to accelerate under stress. 

4. RESP (respiratory rate): Monitors breathing 

patterns, which may become faster or irregular 

during stress. 

By interpreting these signals, the model can 

differentiate between relaxed, moderate stress, and 

high-stress states. This ability makes it useful for real-

time stress monitoring in wearable devices or clinical 

applications, helping individuals manage stress more 

effectively [21]. 

Table 2: Estimated stress levels based on physiological characteristics 

EMG_mean HANDGSR_mean HR_mean RESP_mean PREDICTED 

STRESS LEVEL 

0.1 0.2 6 2 1.16(relaxed) 

0.4 0.35 15 5.5 3.11(medium stress) 

0.9 0.7 30 11 5.12(high stress) 

The model’s predictions align well with expected 

physiological responses—lower values in heart rate 

(HR), respiratory rate (RESP), muscle tension (EMG), 

and skin conductivity (GSR) indicate relaxation, while 

higher values suggest increased stress [20]. 

For example: 

1. Row 1: All the parameters have low values, 

resulting in a stress level of 1.16 (relaxed). 

2. Row 2: Moderate values across the parameters 

correspond to a stress level of 3.42 (medium 

stress). 

3. Row 3: Elevated values across the board lead to a 

stress level of 5.13 (high Stress). 

These results highlight the model’s ability to 

accurately distinguish between different stress levels, 

which is crucial for stress management applications. 

Providing precise predictions, enables timely 

interventions based on real-time data. 

To ensure reliability, the model was tested on unseen 

data from a diverse group of individuals and 

consistently delivered accurate results. Its adaptability 

makes it useful in various settings, from clinical 

environments to workplaces, where real-time stress 

monitoring can support better mental health 

management [18]. 
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V. CONCLUSION 

 

This study highlights the effectiveness of using a 

weighted ensemble model for stress prediction, 

combining the strengths of machine learning and deep 

learning techniques. With an R² score of 0.819574 and 

the lowest MSE (0.180889) and RMSE (0.425311) 

among all the tested models, the ensemble approach 

has been shown to be the most accurate and reliable in 

analyzing ECG, GSR, EMG, heart rate, and 

respiratory rate data [19]. By capturing complex 

patterns in physiological signals, the model 

successfully differentiates between various stress 

levels, making it a promising tool for stress monitoring 

applications. 

However, some challenges remain. The dataset, while 

effective, is limited in diversity, and the model 

currently functions in batch-processing mode, making 

real-time stress prediction a challenge. Additionally, 

while the ensemble model enhances accuracy, further 

work is needed to optimize computational efficiency 

and improve inference speed for real-time applications 

[17]. 

Moving forward, future improvements will focus on 

expanding the dataset for better generalization, 

refining transformer-based models for higher 

efficiency, and integrating real-time stress prediction 

capabilities. With these advancements, this model 

could be applied in mental health monitoring, 

workplace wellness programs, and real-time stress 

management tools, offering valuable insights for 

individuals and organizations looking to monitor and 

manage stress effectively [25]. 
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