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1. INTRODUCTION

In the context of increasing global population and
climate change, modern agriculture must enhance
production efficiency. Vegetables production is crucial
for human nutrition and has a significant
environmental impact. To address this challenge, the
agricultural sector needs to modernize and utilize
advanced technologies such as drones to increase
productivity, improve quality, and reduce resource
consumption. These devices, known as Unmanned
Aerial Vehicles (UAV), with their agility and
versatility play a crucial role in monitoring and
spraying operations. They significantly contribute to
enhancing the efficacy of precision farming. The aim
of this review is to examine the critical role of drones
as innovative tools to enhance management and yield
of vegetable crops cultivation. This review was carried
out using the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) framework
and involved the analysis of a wide range of research
published from 2018 to 2023. According to the phases
of Identification, Screening, and Eligibility, 132

papers were selected and analysed. These papers were
categorized based on the types of drone applications in
vegetable crop production, providing an overview of
how these tools fit into the field of Precision Farming.
Technological developments of these tools and data
processing methods were then explored, examining
the contributions of Machine and Deep Learning and
Artificial Intelligence. Final considerations were
presented regarding practical implementation and
future technical and scientific challenges to fully
harness the potential of drones in precision agriculture
and vegetable crop production. The review pointed out
the significance of drone applications in vegetable
crops and the immense potential of these tools in
enhancing cultivation efficiency. Drone utilization
enables the reduction of input quantities such as
herbicides, fertilizers, pesticides, and water but also
the prevention of damages through early diagnosis of
various stress types. These input savings can yield
environmental benefits, positioning these technologies
as potential solutions for the environmental
sustainability of vegetable crops.
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2. LITERATURE SURVEY

Table 1. Summary of the discussed related work.

Ref

Methodology

Pros

Cons

M. Istiak et al. (Istiak et al.,
2023) (2023)

Qin et al. (Qin et al., 2023)
(2013)

Torres-Sanchez et al. (Torres-
Sa et al., 2015) (2015)

Wang et al. (Wang et al,, 2020)
(2020)

L. Li et al. (Li et al,, 2018)
(2018)

J. Endso et al. (Enciso et al,,
2019) (2019)

D. Stroppiana et al. (Stroppi-
ana et al, 2018) (2018)

M. Der Yang et al. (Yang et al.,
2017) (2017)

S. Malek et al. (Malek et al.,
2014) (2014)

R. Chew et al. (Chew et al.,
2020) (2020)

J. Rebetez et al. (Rebetez et al,,
2016) (2016)

Q. Yang Rebetez et al. (Yang
et al., 2020b) (2020)

Bah et al. (Bah et al., 2018)
(2018)

Fan et al. (Fan et al., 2018)
(2018)

Bah et al. (Bah et al., 2020)
(2020)

Field data and superpixel
standardization are not
required for CRowNet.

Determination of the impact of imaging
modalities and imagery datasets in
relation to agricultural applications,
categorical evaluation of UAV configu-
ration, and the feasibility assessment of
UAVs in precision agriculture. In addi-
tion, the worldwide taxonomy of crops
for which unmanned aerial vehides are
used is documented.

They examine the impact of downwash
airflow produced by a plant protection
drone's flight altitude on the powdery
mildew spores’ horizontal, vertical, and
ground distribution in wheat Spore
traps are used to track the evolving
dynamics of airborne powdery mildew
conidia.

An inventive Otsu-based thresholding
Object-based Image Analysis (OBIA)
algorithm was used to find vegetation in
remotely sensed photos that were
taken,

To improve the prediction of grain
yield, structural and spectral data taken
from UAV-based images during the rice
growing season is used.

The half-Gaussian fitting method for
FVC estimation (HAGFVC) is a novel
approach for breaking down the
Gaussian mixture strategy and esti-
mating FVC.

A method for utilizing UAV data to
measure crop height, canopy cover, and
NDVI values in relation to time and
space for three different tomato vari-
eties during the growing season.

An unsupervised clustering algorithm
was used to classify a multispectral
orthomosaic that was created from
images.

A thorough and effective UAV image
classification method for agricultural
areas. Image-based modeling and
texture analysis yielded the digital sur-
face model and texture information of
the images in addition to spectral
information.
One suggested approach is to combine
an active contour method based on
Level Sets (LSs) with the keypoints of
the ELM classifier to capture the shape
of each tree.
A model pretrains using the publicly
available ImageNet dataset and the
VGG16  architecture, utilizing  de-
in deep ¢ lutional neu-
ral networks and transfer learning.
A hybrid CNN-HistNN deep neural
network that can effectively classify a
wide range of crops by utilizing both
color distribution and texture patterns.
A novel approach that uses RGB images
to directly identify the main stages of
rice growth.

A novel fully automatic learning
method for finding weed from UAV
images that combines convolutional
neural networks with an unsupervised
training dataset.
A novel deep neural network-based
hod is p d for identifying to-
bacco plants in UAV-captured images.
A new method called CRowNet recog-
nizes crops in UAV-captured images b

Perform a meta-analysis of recent
studies on the use of UAVs for appli-
cations based on visual imagery in
agriculture.

The study offers a basis for scientific
and reasonable spraying and control by
agricultural drones, as well as for more
in-depth research on the dissemination
of powdery mildew spores and
enhanced pest management.

The classification error decreased as the
object size increased until an optimal
value was attained.

Improving the accuracy of grain yield
predictions and gaining effective crop
growth monitoring.

The outcomes show that the HAGFVC
approach can be applied correctly and
effectively.

There was no discernible difference
between the estimated UAV and
manually measured crop heights, ac-
cording to the computed paired t-test
statistic.

The most appropriate inputs were
spectral indices, and SAVI and GSAVI
produced the best results, with OA
exceeding 94%.

A useful tool for evaluating rice lodging
is their suggested hybrid image classi-
fication strategy, which combines spec-
tral and spatial aspects.

The promising capabilities of their
proposed  fr. X vk o od
by the results of the experiments.

At this scale, crops like maize and ba-
nanas can be categorized with great
accuracy.

An enh in the performance of
classification.

The outcomes demonstrated the rec-
ommended deep learning method's
outstanding performance in yield time
estimation and phenology discovery in
almost real time.

The outcomes show performance that is
comparable to supervised data
classification.

It p well in ly identi-
fying and estimating the quantity of
tobacco plants in UAV photos.

The performance showed the best and
most robust result when compared

using a ¢ )| al neural }
the Hough transform, and a model
created with S-SegNet.

NA

| ly with tradi
approaches.

NA

The impact of airflow disturbance is
dosely linked to the release of powdery
mildew pathogen spore numbers. The
drone's rotor airflow has less of an
impact on spore release in the early
stages, when spore release is minimal.

Once the ideal value was reached,
increasing the size of the object led to
larger errors, while the other parame-
ters, like shape and compactness had
little bearing on the classification
accuracy.

NA

The prevalence of mixed pixels in LARS
images, particularly at high altitudes
above ground level or in the case of
moderate vegetation coverage, caused
other methods they tested to perform
poorly.

Enhancements should be made to UAV
aop growth and NDVI monitoring.

NA

NA

NA

Legume crops, which are used in
intercropping, can be challenging to
reliably identify.

Many model parameters, like the
number of layers and filters in the
CNN, were absent from their analysis.

Early phenology is particularly difficult
to distinguish because ilable data
only spans a small portion of the
growing season.

NA

NA
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3.PROBLEM STATEMENT

Agricultural drones can help farmers solve many
problems, including:

e Irrigation problems

e  Soil variation

e  Pest and fungal infestations

e  Crop and growth monitoring

e  Yield estimation

e  Water stress assessment

e Weeds, pest, and disease detection

e Soil health scans

Planning irrigation schedules.

Drones in agriculture Drones are currently one of the
most representative technologies in the evolution of
precision agriculture in the scientific and productive
world. However, their history began in other fields of
application. The drone, in fact, originated as a tool to
be employed in the military sector, aiming to safeguard
the integrity of human personnel in reconnaissance
and surveillance missions. Over time, their use has
extended well beyond the military context, finding
applications in  various  sectors, including
entertainment, transportation, security, photography,
and environmental exploration. The most common
designation is "Unmanned Aerial Vehicles" (UAV).
They can also be defined by other acronyms, many of

which are of Anglo-Saxon origin: in addition to
"Remotely Piloted Aircraft System" (RPAS), they may
be referred to as "Unmanned Aerial System" (UAS),
"Aerial Robot" or simply "Drone".

These terms refer to a complex system consisting of
the aerial platform, one or more components and/or
sensors making up the payload, and a ground station
in communication with the flight controller of the
platform. Within the flight controller, components
dedicated to the orientation and movement of UAVs
are present, including gyroscopes, magnetic compass,
GNSS module, pressure sensor, and triaxial
accelerometer.

UAVs are generally categorized based on various
attributes, including aircraft types, wing types, take
off/landing direction, payloads, flying altitude, etc.
According to the classification by Watt et al., they can
be distinguished as MAV (Micro (or Miniature) or
NAV (Nano Air Vehicles), VTOL (Vertical Take-Off &
Landing), LASE (Low Altitude, Short-Endurance),
LALE (Low Altitude, Long Endurance)) MALE
(Medium Altitude, Long Endurance), HALE (High
Altitude, Long Endurance). The most used platforms
in precision agriculture fall into the LASE class and
are fixed-wing systems or multirotors, such as
helicopters, quadcopters, hexacopters, octocopters,
etc.

4. PROPOSED APPROACH

(@)
In vegetables cultivations, one of the fields where
drone usage has become more established and
widespread is the accurate and geospatial assessment
of plant health and stress levels (Table 5). This practice
has proven to be one of the most common and rooted
applications in vegetable cultivation [120] and today it
can be carried out with various methodologies and

(b)
using different sensors. For instance, in potato
cultivation, Th'eau et al. [102] employed a thermal
infrared sensor for stress scouting and calculated the
Temperature Vegetation Dryness Index (TVDI),
resulting in accurate scouting maps. Meivel and
Maheswari [103] used a multispectral camera and
calculated various vegetation indices, including
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Normalized Difference Vegetation Index (NDVI).
Meanwhile, Butte et al. [104] proposed a deep learning
algorithm named Retina- Unet Ag, capable of
detecting healthy and diseased plants, with an average
Dice Score Coefficient (DSC) of 0.74. The scientific
community has increasingly recognized the solid
connections between measurable parameters through
these platforms and the degree of plant health. Many
recent studies, in fact, use UAVs as tools for evaluating

CROP HEALTH
MONITORING

Water
stress
Monitoring

Nutrients
disorders

Disease
control

and quantifying plant responses to specific treatments.
For instance, crop’s response to different irrigation
treatments was evaluated by Garcia- Garciaetal. [115]
in tomato cultivation; they used NDVI to estimate the
dynamics of Canopy Cover (CC) with varying water
supply, while Fullana- Peric’as et al. [116] tested
NDVI, Simple Ratio Index (SR), and Green
Normalized Difference Vegetation Index.

APPLICATION
OF DRONEIN
AGRICULTURE

ESTIMATION
OF ET SPRAYING

5. METHODOLOGY

Nutrient status and deficiency monitoring:

Plants need the appropriate levels of nutrients in order
to thrive and produce a strong yield. The appropriate
levels of nitrogen will ensure strong growth of
vegetation and foliage, appropriate levels of
phosphorous are required for strong root and stem
growth and appropriate levels of potassium are
necessary for improving of the resistance to disease
and also to ensure a better quality of crop. If soil lacks
any of these nutrients, the plant will become stressed
and will struggle to thrive. NDVI Index mosaics offer
the possibility to identify exactly which areas of the
crops are stressed or struggling and to target directly
these areas. The NIR/multispectral imagery provided
by the UAVs can identify these management zones
long before the problem become visible to the naked
eye. This means that these management zones can be
targeted before crop development and yield is affected.
Currently, the most common way to determine the
nutritional status is visually, by means of plant colour
guides that do not allow quantitatively rigorous
assessments [26]. More accurate evaluations require
laboratorial leaf analyses, which are time consuming
and require the application of specific methods for a
correct interpretation of the data [27]. There are some
indirect alternatives available for some nutrients, such

as the chlorophyll meter (Soil-plant analyses
development (SPAD) for nitrogen predictions [28], but
this is a time consuming process [29] and the estimates
are not always accurate [30]. Thus, considerable effort
has been dedicated to the development of new
methods for the detection and estimation of nutritional
problems in plants [31].

Nitrogen is, by far, the most studied nutrient due to its
connection to biomass and yield. Potassium and
sodium [32] have also received some attention.
Multispectral images have been the predominant
choice for the extraction of meaningful features and
indices [33, 34], but RGB [35] and hyper spectral
images [33] are also frequently adopted. Data fusion
combining two or even three types of sensors
(multispectral, RGB, and thermal) has also been
investigated [35].

The vast majority of the studies found in the literature
extracts vegetation indices (VI) from the images and
relates them with nutrient content using a regression
model (usually linear). Although less common, other
types of variables have also been used to feed the
regression models, such as the average reflectance
spectra [32], selected spectral bands [34], colour
features [36], and principal components [37]. All of
these are calculated from hyper spectral images,
except the colour features, which are calculated from
RGB images.

IJIRT 175095 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1954



>

= «@ == Control Plot 1

© April 2025| IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

No of Plants in Poor/Dead Condition

50 8
4s #e
~
40 Z >
"”I’
35
g i
30 'y 4&
25 .,’,-:
’
20 8,
&,
15 F G
01’
s ]
S ’,.’"
0 - -
14-Jan

9-Nov

= =% == Salt Plot 1

Drone Flow Chart

16-Nov 23-Nov 30-Nov 6-Dec 20-Dec  7-Jan

= i == Salt Plot 2

w= -m « Control Plot 2

6.FLOWCHART

tnput

Distance

Control Plot 1

30

Control Plot 2

Salt Plot 1

15 30 meters

Poor/Dead Condition

Il Good Condition

UAV image acquisition

Flight

Heights: Ten

OSD: 1.56 s el

Overtap: Fromt 50% & Side 30%
Speed: dems

150: 100
EV: 16305

Datasets building

1200 1200

L3
Method 1 : OBIA-ML

Method 2 : Deep learning

I Multi-scale segmentation I e O I Network initialization H Modle training ]
L 2 2 I
I Feature calculation I Cabbage | | Soil I ‘
= i
Type of features s algorithm Py
SPEC noE | ation Detection
TERR
GLeM GEOM L
¥

ey A

Canopy contour
of plants

"
"
"w

Evaluation

IJIRT 175095

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

Comparison and prediction
$ ! sclscionef b} PredicnonofE
best methods | 7, plants »
(RS [ R R



© April 2025| IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

7. TOOLS FOR DEVELOPMENT . Back End: Litchi Apk.
Hardware Requirement: . protocol: OcuSync transmission Protocol.
UAV : DJI Mavic Air 2 Technology Used
Radio Transmitter: DJI N2 UAV & FPV (AR)
VR Box : JIO Dive . 10T (Internet of Things): It is use to create a
. o o live project
Software Requirement: DJI Fly, Digi Sky, Litchi, Air . Jio 5G Network
Data UAV, UAV Forecast. OS Platform . Jio Dive
: And.r01d. . Auto Pilot & Obstacle Avoidance.
. Coding Language: C++, Python, DIJI
Software Development Kit (SDK).
8. EXPECTED OUTCOME
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