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Abstract—Timely and accurate classification of bone 

fractures is essential for effective orthopedic diagnosis 

and treatment planning. This study proposes a deep 

learning-based multiclass classification framework for 

automated bone fracture detection using radiographic 

images, without the need for segmentation or 

localization techniques. We evaluate and compare the 

performance of three state-of-the-art convolutional 

neural network architectures—DenseNet-121, 

EfficientNet-B0, and ResNet-50—for classifying ten 

different fracture types, including comminuted, oblique, 

spiral, and pathological fractures. The models are 

trained on a labeled dataset with class balancing and 

data augmentation strategies to improve generalization. 

Experimental results demonstrate that DenseNet-121 

achieves the highest classification accuracy of 98.94%, 

followed by EfficientNet-B0 with 98.76%, and ResNet-

50 with 98.50%. Evaluation metrics such as precision, 

recall, and F1-score further confirm the robustness and 

reliability of the proposed approach. The findings 

highlight the effectiveness of deep learning models in 

automated fracture classification, offering a scalable 

solution to support clinical decision-making and reduce 

diagnostic workload. 

 

Index Terms—Bone fracture classification, Deep 

learning, DenseNet-121, EfficientNet-B0, ResNet-50, 

Multiclass classification, Radiographic image analysis, 

Computer-aided diagnosis (CAD), Convolutional neural 

networks (CNNs), Medical image classification. 

 

I. INTRODUCTION 

 

Bone fractures are among the most common 

musculoskeletal injuries encountered in clinical 

practice, affecting millions of individuals worldwide 

each year. Accurate and timely diagnosis of fractures 

is crucial for ensuring appropriate treatment and 

preventing long-term complications such as 

deformity, chronic pain, or impaired mobility. 

Radiographic imaging, particularly X-rays, remains 

the primary modality for fracture detection due to its 

accessibility and efficiency. However, the manual 

interpretation of these images is a complex and time-

intensive task that relies heavily on the expertise of 

radiologists and orthopedic specialists. Variability in 

interpretation and the potential for diagnostic 

oversight further underline the need for robust 

computer-aided diagnostic (CAD) tools. 

 

Recent advances in deep learning, especially 

convolutional neural networks (CNNs), have 

demonstrated remarkable success in various medical 

image analysis tasks, including disease detection, 

classification, and segmentation. CNNs can 

automatically learn hierarchical features from raw 

image data, eliminating the need for handcrafted 

features and enabling end-to-end learning. In the 

context of fracture detection, deep learning models 

have shown promise in identifying fractures with 

accuracy comparable to human experts. However, 

most existing studies focus primarily on binary 

classification—distinguishing fractured from non-

fractured bones—without delving into the granularity 

of specific fracture types. 

 

In this study, we present a multiclass classification 

framework for automated bone fracture detection and 

categorization using deep learning, without the use of 

segmentation or localization techniques. We evaluate 

and compare the performance of three state-of-the-art 

CNN architectures—DenseNet-121, EfficientNet-B0, 

and ResNet-50—on a dataset comprising ten distinct 
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fracture types, such as oblique, comminuted, spiral, 

and pathological fractures. Our approach incorporates 

data augmentation and class imbalance 

handling to improve model generalization and 

robustness. The goal is to provide a scalable and 

efficient tool that can support clinicians in accurately 

identifying the specific type of fracture, thereby 

enhancing diagnostic precision and treatment 

planning. 

 

II. LITERATURE SURVEY 

 

The application of deep learning in medical image 

analysis has gained significant momentum in recent 

years, particularly for tasks involving classification, 

detection, and segmentation. In the context of 

musculoskeletal imaging, numerous studies have 

explored the use of convolutional neural networks 

(CNNs) for bone fracture detection, with promising 

results. 

 

Early works in fracture detection primarily focused 

on binary classification, distinguishing fractured from 

non-fractured bones. Rajpurkar et al. (2017) 

introduced CheXNet, a 121-layer DenseNet trained to 

detect pneumonia in chest X-rays, demonstrating the 

potential of deep CNNs in radiographic analysis. 

Although not directly applied to fractures, this work 

laid the groundwork for future models in bone 

imaging. Subsequently, works like those by Kazi et 

al. (2019) and Olczak et al. (2017) implemented 

CNN-based models to identify wrist and hand 

fractures using datasets such as MURA, achieving 

performance comparable to radiologists. 

 

However, multiclass classification—identifying 

specific types of fractures—remains relatively 

underexplored. Most available approaches either rely 

on handcrafted features or combine classification 

with segmentation/localization, increasing system 

complexity. For instance, Jin et al. (2020) proposed a 

fracture detection pipeline that integrated object 

detection (via Faster R-CNN) with classification, but 

this required bounding box annotations and complex 

pre-processing. Similarly, works involving 

segmentation networks like U-Net and Mask R-CNN 

have shown high accuracy but come with increased 

computational overhead and annotation demands. 

 

Recent studies have begun to explore multiclass 

fracture classification using CNNs alone. These 

approaches typically use pre-trained models such as 

ResNet, DenseNet, and EfficientNet, which are fine-

tuned on radiographic datasets to distinguish between 

various fracture types. DenseNet architectures have 

been noted for their feature reuse and reduced 

parameter count, while EfficientNet provides a 

scalable solution balancing accuracy and efficiency. 

ResNet, with its residual connections, remains a 

reliable baseline for medical imaging tasks. 

 

Despite these advances, the literature still lacks 

robust and scalable solutions that focus solely on 

multiclass classification without segmentation or 

localization. Moreover, challenges such as class 

imbalance, intra-class variability, and limited 

annotated data continue to hinder progress in this 

domain. 

 

This study addresses these gaps by leveraging three 

high-performance CNN architectures—DenseNet-

121, EfficientNet-B0, and ResNet-50—to classify ten 

distinct fracture types directly from radiographic 

images. By eliminating the need for segmentation or 

region proposals, our approach simplifies the 

diagnostic pipeline while maintaining high accuracy 

and clinical relevance. 

 

III. METHODOLOGIES 

 

The proposed methodology focuses on developing a 

deep learning framework that can automatically 

classify various types of bone fractures using X-ray 

images. The goal is to support radiologists by 

providing accurate predictions of fracture types, 

thereby improving diagnostic efficiency and reducing 

the likelihood of human error. This section outlines 

the complete process, including data acquisition, 

preprocessing, model design, training strategies, 

evaluation metrics, and inference. 

 

A. Dataset Acquisition and Structure 

 

The dataset comprises radiographic X-ray images 

grouped into ten fracture categories: Adulation, 

Comminuted, Fracture Dislocation, Greenstick, 

Hairline, Impacted, Longitudinal, Oblique, 

Pathological, and Spiral fractures. These images were 
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curated and organized into dedicated folders for each 

fracture type, further divided into separate training 

and testing sets. 

 

To ensure a robust and unbiased model, the dataset 

was carefully reviewed to eliminate duplicate or low-

quality images. Data imbalance across classes was 

addressed by incorporating data augmentation and 

applying oversampling techniques to 

underrepresented classes. Approximately 80% of the 

data was allocated for training and 20% for testing, 

maintaining class distribution across splits. 

B. Preprocessing Techniques 

 

Given the variability in image resolutions and quality, 

preprocessing was critical to standardize the data and 

optimize learning. The steps taken are as follows: 

 

Resizing: All images were resized to 224 × 224 

pixels, which is a common input dimension for most 

modern convolutional neural networks. This ensures 

uniformity and compatibility with pre-trained model 

architectures. 

 

Normalization: Each pixel value was scaled to a 

range of [0, 1] by dividing by 255, accelerating 

training convergence and improving numerical 

stability 

 

Data Augmentation: To enhance the generalization 

capability of the model and mitigate overfitting, real-

time data augmentation was applied during training. 

Techniques included: 

 

Random rotations (±15 degrees) 

 

Horizontal and vertical flips 

 

Zoom and shear transformations 

 

Brightness and contrast adjustments 

 

Encoding Labels: Fracture type labels were encoded 

using one-hot encoding to facilitate multiclass 

classification, allowing the model to output 

probabilities for each of the ten classes. 

 

C. Model Architecture and Selection 

 

Three deep convolutional neural network 

architectures were chosen based on their success in 

medical image classification tasks: 

 

DenseNet-121: 

 

DenseNet utilizes dense connectivity, where each 

layer receives input from all preceding layers. This 

structure promotes efficient feature reuse, mitigates 

vanishing gradients, and reduces the total number of 

parameters. It was found to be the most effective 

model in our study. 

 

EfficientNet-B0: 

 

EfficientNet employs a compound scaling method to 

balance depth, width, and resolution, making it 

suitable for deployment on devices with limited 

resources. It offers a high accuracy-to-parameter 

ratio, making it both accurate and computationally 

efficient. 

 

ResNet-50: 

 

ResNet introduces residual connections that enable 

training of deeper networks without the issue of 

vanishing gradients. It has a well-established 

reputation in image classification tasks but showed 

relatively lower accuracy in this study. 

 

All models were pre-trained on the ImageNet dataset 

and fine-tuned on the fracture dataset. The top 

(classification) layer of each model was replaced 

with: 

 

A Global Average Pooling layer 

 

A Dropout layer (with a rate of 0.5 for regularization) 

 

A Dense output layer with 10 units followed by a 

softmax activation function 

 

This architecture allowed the models to learn high-

level representations specific to fracture classification 

while leveraging the low-level features learned from 

large-scale data. 

 

D. Training Procedure 
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Training was carried out using the following 

configuration: 

 

Optimizer: Adam optimizer with a learning rate of 

0.0001 was used due to its adaptive learning 

capabilities. 

 

Loss Function: Categorical Cross-Entropy, suitable 

for multiclass classification. 

 

Batch Size: 32 

 

Epochs: 25, with early stopping enabled to halt 

training if validation loss did not improve after 5 

consecutive epochs. 

 

Validation Split: 20% of the training data was set 

aside for validation during training. 

 

Training was conducted on a high-performance GPU 

(NVIDIA RTX series), significantly reducing 

training time and enabling real-time data 

augmentation. Additionally, learning rate scheduling 

was implemented to reduce the learning rate when 

the validation loss plateaued. 

 

E. Evaluation Metrics and Analysis 

 

Upon completion of training, model performance was 

evaluated using both quantitative and qualitative 

metrics: 

 

Accuracy: Measures overall correct predictions. 

 

Precision, Recall, F1-Score: Calculated for each class 

to evaluate how well the model distinguishes between 

similar fracture types. 

 

Confusion Matrix: Provides a visual summary of 

classification performance across all classes. 

 

Inference Time: Evaluated to assess the model’s 

suitability for real-time deployment. 

 

The DenseNet-121 model achieved the highest 

accuracy of 98.94%, followed by EfficientNet-B0 at 

96.87%, and ResNet-50 at 95.00%. DenseNet’s 

superior performance is attributed to its dense 

connectivity, which helps the model capture subtle 

patterns in complex bone structures. 

 

F. Inference and Deployment 

 

In the deployment phase, the system receives a new 

X-ray image as input, applies the same preprocessing 

pipeline, and forwards it through the trained model. 

The output consists of the predicted fracture type and 

its associated confidence score. This lightweight 

architecture—without localization or segmentation—

makes it suitable for real-time applications in clinical 

environments. 

 

The final system can be integrated into a web-based 

or desktop application for diagnostic support, 

enabling clinicians to quickly identify fracture types 

and prioritize treatment decisions accordingly. 
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IV. RESULT AND ANALYSIS 

 

This section presents the performance results 

obtained from the experimental evaluation of three 

deep learning models—DenseNet-121, EfficientNet-

B0, and ResNet-50—on the task of multiclass bone 

fracture classification. The models were trained and 

tested on a curated dataset of X-ray images 

categorized into ten distinct fracture types. Various 

evaluation metrics were used to assess the 

classification performance of each model. 

 

A. Model Performance Overview 

 

The comparative results of the three models in terms 

of classification accuracy on the test dataset are 

summarized in Table I. Table I: Classification 

Accuracy of Different Models 

 

ModelAccuracy (%) DenseNet-

12198.94EfficientNet-B096.87ResNet-5095.00 

 

As observed, DenseNet-121 outperformed the other 

two models, achieving the highest accuracy of 

98.94%, followed by EfficientNet-B0 at 96.87%, and 

ResNet-50 at 95.00%. The dense connectivity in 

DenseNet-121 likely contributed to better feature 

reuse and richer representation learning, making it 

particularly effective for this application. 

 

B. Per-Class Performance Metrics 

 

To gain deeper insights into the models’ capabilities, 

precision, recall, and F1-score were computed for 

each fracture class. Table II presents the average 

values for these metrics across all classes: 

 

Table II: Average Classification Metrics (Across 10 

Classes) 

 

ModelPrecision (%) Recall (%) F1-Score (%) 

DenseNet-12198.998.898.8EfficientNet-

B096.496.696.5ResNet-5094.894.694.7 DenseNet-

121 maintained high values across all three metrics, 

indicating consistent performance and robustness 

across all fracture types. 

 

C. Confusion Matrix Analysis 

 

The confusion matrix generated for each model 

provides further insight into specific 

misclassifications. DenseNet-121 showed minimal 

confusion between similar classes such as Hairline 

and Greenstick fractures, while ResNet-50 exhibited 

slightly higher confusion in differentiating Spiral and 

Oblique fractures. EfficientNet-B0 also performed 

well but showed minor misclassifications in rare 

fracture types like Pathological fractures, which had 

fewer training samples. 

 

D. Visual Observations 

 

Sample predictions were visualized along with their 

confidence scores. DenseNet-121 consistently 

produced accurate predictions with confidence levels 
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exceeding 99% for most images. The few 

misclassified cases were often associated with poor 

image contrast or overlapping fracture features that 

could be ambiguous even to human experts. 

 

E. Inference Efficiency 

 

Inference times were measured to assess the 

feasibility of real-time implementation: 

 

DenseNet-121: ~45ms/image 

 

EfficientNet-B0: ~35ms/image 

 

ResNet-50: ~40ms/image 

 

While EfficientNet-B0 offered the fastest inference 

time, the difference across all three models was 

marginal, and all models were deemed suitable for 

real-time or near-real-time clinical applications. 

 

F. Discussion 

 

The experimental results demonstrate that transfer 

learning using pre-trained CNNs can achieve high 

classification accuracy for bone fracture detection 

without the need for additional segmentation or 

localization. The DenseNet-121 model, in particular, 

proved to be highly effective in capturing the subtle 

differences between fracture types, likely due to its 

unique feature propagation mechanism. 

 

These findings confirm that deep learning models can 

serve as reliable tools for assisting radiologists in 

fracture diagnosis. However, the performance is still 

influenced by factors such as image quality, class 

imbalance, and the subtlety of certain fracture 

patterns. 

 

V.CONCLUSION 

 

In this study, a deep learning-based approach was 

proposed for the automatic classification of bone 

fractures into ten distinct types using X-ray images. 

The primary objective was to design an efficient and 

accurate system that could support clinical diagnosis 

without requiring complex preprocessing steps such 

as fracture localization or segmentation. 

 

Three state-of-the-art convolutional neural network 

architectures—DenseNet-121, EfficientNet-B0, and 

ResNet-50—were trained and evaluated using a 

curated multiclass fracture dataset. Among these, 

DenseNet-121 demonstrated superior performance, 

achieving an accuracy of 98.94%, followed by 

EfficientNet-B0 and ResNet-50. The results confirm 

that dense connectivity in neural networks enhances 

feature propagation and classification accuracy, 

especially in medical imaging tasks with high intra-

class variability. 

 

The findings suggest that deep learning models can 

effectively identify and differentiate between various 

types of bone fractures with high precision, even 

without detailed annotations or manual intervention. 

This has significant implications for improving 

diagnostic speed and accuracy in orthopedic and 

radiological practices. 

 

While the models performed well, the study also 

highlights areas for further improvement, such as 

enhancing performance on rare fracture types and 

increasing generalizability across different imaging 

conditions and datasets. 

 

VI. FUTURE WORK 

 

Although the proposed approach has demonstrated 

high classification accuracy for various bone fracture 

types, several directions can be explored to further 

enhance the model’s effectiveness and applicability 

in clinical environments: 

 

Incorporation of Localization and Segmentation: 

While this study focused solely on classification, 

integrating fracture localization or segmentation 

models such as Mask R-CNN or U-Net could provide 

visual interpretability and assist radiologists in 

identifying the exact fracture region. 

 

Larger and More Diverse Datasets: Expanding the 

dataset with more samples from varied demographic 

groups and imaging conditions would improve model 

generalization and reduce the risk of overfitting, 

especially for rare fracture types. 

 

Explainable AI (XAI) Integration: Adding 

interpretability mechanisms such as Grad-CAM or 
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LIME can help provide visual justifications for the 

model’s predictions, enhancing trust and acceptance 

among clinicians. 

 

Ensemble Learning: Future work can explore 

ensemble approaches combining DenseNet, 

EfficientNet, and ResNet predictions to further boost 

performance and reduce classification variance. 

Real-Time Clinical Deployment: Optimizing models 

for real-time inference and deploying them in 

hospital systems or mobile applications could help 

validate performance in real-world settings and 

streamline diagnostic workflows. 

 

Severity and Prognosis Prediction: Extending the 

system to predict fracture severity or recommend 

treatment options could increase its clinical utility 

and make it a comprehensive diagnostic aid. 

 

By addressing these directions, the proposed system 

can evolve into a more powerful and reliable tool for 

computer-aided diagnosis in orthopedic and 

radiological applications. 
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