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Abstract—The current expansion of material data 

generated from experiments and simulations is 

surpassing manageable quantities. The advancement of 

innovative data-driven techniques for uncovering 

patterns across various length scales and time-scales, as 

well as structure-property relationships, is crucial. The 

application of these data-driven methodologies holds 

significant potential in the field of materials science. 

This review examines the applications of machine 

learning in the characterization of metallic materials. A 

multitude of parameters related to the processing and 

structure of materials significantly influence the 

properties and performance of manufactured 

components. This study aims to explore the effectiveness 

of machine learning techniques in predicting material 

properties. Characteristics of materials, including 

strength, toughness, hardness, brittleness, and ductility, 

play a crucial role in classifying a material or 

component based on its quality. In the industrial sector, 

conducting material tests such as tensile tests, 

compression tests, or creep tests frequently requires 

significant time and financial resources. Consequently, 

the utilization of machine learning approaches is 

regarded as beneficial for facilitating the generation of 

material property information. This investigation 

presents the application of machine learning techniques 

to small punch test data for the assessment of ultimate 

tensile strength across different materials. A significant 

relationship was identified between SPT data and 

tensile test data, which ultimately enables the 

substitution of more expensive tests with simpler and 

faster tests in conjunction with machine learning. 

 

Index Terms—Machine learning, Material 

characterization, Tensile properties, Ultimate tensile 

strength. 

 

 

 

 

1. INTRODUCTION 

 

The field of materials science depends on 

experiments and simulation-based models as essential 

tools for material characterization. The characteristics 

of materials, including their structure and behavior, 

play a crucial role in determining the potential 

applications of the material in question. Recently, the 

data produced by these experiments and simulations 

has opened up numerous opportunities for applying 

data-driven methods. Alongside traditional methods 

such as experimental trial and error or physical 

metallurgy, machine learning techniques for property 

prediction and material design have garnered 

significant interest in recent years, as evidenced by 

various studies. Experimental investigations, known 

as the first paradigm of materials science, have been 

conducted since the stone and copper ages. It was 

during the 16th century that scholars began to 

articulate physical relationships through equations, 

marking the emergence of the second paradigm. 

Consequently, analytical equations emerged as a 

pivotal tool in theoretical physics, effectively 

enhancing the empirical and experimental sciences. 

The 1950s heralded the advent of computational 

materials science and simulations, representing the 

third paradigm. Within this framework, computer 

experiments and simulations became feasible, with 

the resulting data being analyzed and interpreted in a 

manner akin to that of measured results. It is essential 

to acknowledge that numerous characteristics of 

materials cannot be encapsulated by a definitive 

mathematical expression, as they are influenced by 

various complex, multilevel theoretical frameworks. 

By utilizing extensive data, one can uncover 

concealed correlations that manifest as structures and 
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patterns, which typically remain obscured in smaller 

data sets. Consequently, the emergence of data-

driven science in the field of materials research took 

place. However, it is not only an advantage to have a 

large data volume, but it can also be a challenge to 

cope with tremendous quantities of information. 

Today, data are increasingly accessible and can be 

stored with greater ease, thanks to significant 

advancements in sensors and methods for data 

collection on one hand, and storage devices on the 

other. Currently, there is a clear trend in various 

fields towards the acquisition of extensive data sets, 

often without prior knowledge of their potential 

analysis or application. The remarkable growth in 

data volume is evident not only in the quantity of 

samples gathered over time but also in the multitude 

of attributes or characteristics that are concurrently 

assessed in a process. Data are collected into vectors 

where the dimension aligns with the number of 

concurrent measurements taken on the process. 

Increasing dimensions lead to high-dimensional data, 

where each sample can be depicted as a point or 

vector within a high-dimensional space. Engaging 

with high-dimensional data involves navigating 

datasets that exist within high-dimensional spaces. 

The curse of dimensionality refers to the various 

phenomena that arise when dealing with high-

dimensional data, often leading to adverse effects on 

the behavior and performance of learning algorithms.  

In contrast to the challenges posed by high 

dimensionality, materials science databases 

frequently face constraints in size, primarily because 

data acquisition through experiments or simulations 

is both costly and time-intensive. Insufficient data 

size for training a machine learning model 

compromises the success of learning, necessitating 

the exploration of suitable new approaches for small 

datasets. This work presents a literature survey that 

provides an overview of machine learning 

applications in materials science, with a particular 

focus on the characterization of metallic materials. 

Given that measuring such parameters is frequently 

costly and labor-intensive through experiments, 

alternative fundamental tests, like the small punch 

test (SPT), may serve as a viable option if it can be 

demonstrated that equivalent material property 

information can be derived. A diverse array of 

machine learning methodologies derived from SPT 

data will be discussed. Additionally, Section 3 

presents an example that utilizes machine learning to 

predict the tensile properties of a specific insert 

material type, drawing on SPT data. This study aims 

to explore the feasibility of identifying a machine 

learning model that can predict the tensile properties 

of a material based on SPT data [11]. Section sec4 

wraps up this paper by providing insights into future 

research directions.  

 

2. AN OVERVIEW 

 

2.1 ML for materials science 

Utilizing machine learning, when provided with 

sufficient data and an algorithm focused on rule 

discovery, a computer can identify physical laws that 

correspond to the given data autonomously. 

Conventional computational methods rely on the 

utilization of a fixed algorithm designed by a human 

specialist. In contrast, ML methods derive the 

principles that govern a dataset by evaluating a 

segment of that data and constructing a model to 

generate predictions [19]. However, the human still 

needs to select appropriate ML models that are 

expected to accurately represent the data and perform 

manual (sub-)tasks in preprocessing and feature 

generation.  

The presence of substantial data facilitates the 

application of machine learning models, allowing for 

the extraction of data-driven insights and the 

identification of patterns. Conversely, the 

complexities associated with large datasets and their 

high dimensionality present significant computational 

and statistical challenges, including issues related to 

scalability and memory limitations, noise 

accumulation, interference correlation, incidental 

endogeneity, and measurement errors. Materials 

science represents a fascinating area where big data 

techniques and machine learning strategies are 

starting to reveal significant potential. Four essential 

elements play a crucial role in the field of materials 

science and engineering: processing, structure, 

properties, and performance. Nonetheless, there 

remains a lack of consensus regarding the 

interconnections among these elements. Machine 

learning techniques can be utilized within the 

process-structure-property-performance framework 

to gain deeper insights into the inherent relationships 

among these elements. A primary objective is to 

facilitate, expedite, and streamline the discovery and 
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development of innovative materials through the 

integration of advanced computing, automation, and 

machine learning. One of the goals of employing 

these methods in materials science is to attain 

efficient identification and measurement of critical 

material properties [15].  

In addition to datasets obtained through 

experimentation, many studies extract necessary 

information from data mining based on simulations. 

In summary, the integration of experiment- and 

simulation-based data mining with machine learning 

tools reveals remarkable potential for the reliable 

identification of fundamental interrelations within 

materials, facilitating characterization and 

optimization across various scales [15]. For a 

comprehensive overview of recent machine learning 

applications in materials science, we direct you to the 

general reviews by Mueller et al, Wagner et al, 

Dimiduk et al, or Wei et al. Successful applications 

of ML techniques in materials science include 

representing inorganic materials, predicting 

fundamental properties, creating atomic potentials, 

identifying functional candidates, analyzing complex 

reaction networks, and guiding experimental design, 

as well as high-throughput phase diagrams and 

crystal structure determination.  

2.2 Open problem—interpretability 

One prominent critique of ML algorithms in research 

is the absence of innovative understanding and 

knowledge resulting from their application. This is 

mostly because more complex ML algorithms are 

often treated as black boxes. Humans struggle to 

comprehend machine-built models. To increase 

acceptability of ML models, data scientists try to 

demonstrate causal relationships between materials 

and structures across various length scales and 

attributes. Models in science face restrictions like 

limited parameters and conformity to physical rules. 

Data scientists must transfer their findings into useful 

information for other scientists, such as materials 

discovery or deployment. Effective methods for 

simplifying and interpreting models include principal 

component analysis (PCA), cross-validation, 

regularization, and careful model selection. Data 

dimensionality reduction is strong using PCA. Large 

databases are growing. PCA may be used to decrease 

the dimensionality of datasets, preserving most of the 

information. By extracting the orthogonal directions 

with the highest variance from a dataset, PCA creates 

linear combinations of the original variables. 

Although principal components may be difficult to 

physically grasp, the extracted features, which are 

linear combinations of the original variables, may be 

easily articulated. Additionally, data visualization is 

simplified by projecting data onto the primary 

extracted components. If features are not covariant, 

PCA may not be the best option. Intelligent feature 

selection may contribute to better interpretability of 

ML models by reducing dimension. Model 

regularization involves minimizing the cost function 

by placing an adjustable penalty on parameter size, 

resulting in a smaller feature space. Furthermore, ML 

model choice immediately affects explainability. 

Regressions provide coefficients that indicate the 

impact of input changes on output. Decision trees are 

simple to read and organized like flow charts. 

complicated models like artificial neural networks 

(ANNs) lack straightforward explanations of machine 

thinking owing to complicated node interactions. 

However, methods like feature visualization and 

attribution enhance the comprehension and 

interpretability of black box models. However, 

occasionally it may be acceptable to sacrifice model 

accuracy for improved explainability.  

2.3 Open problem—small data 

ML models often fit to tiny training sets, hindering 

their effectiveness and preventing replication of 

success. ML methods had in other fields. It is 

conceivable to apply ML algorithms for fitting tiny 

low-dimensional datasets. Few methods address this 

issue. For instance, ML models may be created by 

limiting material configurations, such as forecasting 

band gaps for certain semiconductor families with 

fixed composition or crystalline structure, rather than 

modeling compounds with a broad chemical space. 

Zhang et al suggest employing crude property 

estimate in feature space to create ML models with 

little materials data, improving prediction accuracy 

without increasing degree of freedom. Insufficient 

training data may be addressed by incorporating 

previous information into the training process, 

resulting in informed ML, or physics-informed ML. 

Domain knowledge frequently adds limits. By 

incorporating domain knowledge, a hybrid 

formulation of the ML problem may result in more 

accurate and relevant data interpretations. In addition 

to imposing limitations, expert knowledge may be 

incorporated in many ways. Until recently, it was 
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largely used for labeling data in supervised learning 

and establishing prior probabilities in Bayesian 

networks. Semi-supervised clustering programs may 

provide user advice via partial labeling information 

and hard limitations. Using data visualization to 

incorporate domain knowledge into ML model 

construction might enhance accuracy. Another 

method involves monotonizing ML functions using 

known physical relationships. Most ML systems are 

seldom considered with tiny data, since inadequate 

data size for training models might hinder learning 

performance. The database size barrier hinders 

applications, since building a database via 

experimentation is time-consuming and expensive. 

The recent development of materials databases may 

aid in addressing tiny data issues.  

2.4 Existing data bases 

The introduction of the Materials Genome Initiative 

in 2011 and the emergence of the Big Data era have 

led to huge databases of material characteristics, 

enabling engineers to easily access known material 

properties. The following databases exist: Materials 

Project, Inorganic Crystal Structure Database, 

Materials Genome Initiative, NOMAD archive, 

Topological Materials Database, Supercon, National 

Institute of Materials Science 2011, and National 

Institute of Standards and Technology with material 

class databases. A more complete list of material 

databases is in Correa-Baena et al. Negative 

outcomes are usually ignored. Negative data are 

frequently as critical for ML systems as positive 

outcomes to avoid bias. In areas with a history of 

data-driven study, such as chemistry, databases 

already exist. Additional data that are not necessary 

for a publication are typically not released, leading to 

publication bias. This wastes resources since other 

researchers must repeat the process to create a 

balanced dataset for ML applications. Due to the 

absence of consistent data formats or application 

programming interfaces, few databases are suitable 

for use with informatics approaches. 

2.5 Materials informatics 

Materials informatics relies on the databases above, 

which include data on many material characteristics. 

For a broad overview of materials informatics and 

big data in materials research, see. Materials 

informatics research includes standardization of 

representation and exchange of material data, 

organization, management, retrieval, filtration, and 

correlation of material data, material graphics, and 

data mining and knowledge discovery of material 

data. Another materials informatics review 

emphasizes atomic-scale modeling. However, it also 

encourages expanding materials databases to increase 

data accessibility for informatics. The increased use 

of materials data necessitates digitization and 

organization. Data must also be shareable and 

accessible. Evolving services like Materials Data 

Facility [14] and Citrination provide software 

interfaces for automated data searching, processing, 

and access. Wagner et al suggest a materials 

informatics approach that involves (a) initial feature 

assembly, (b) exploratory model development, (c) 

model refining for correctness, and (d) final training 

and deployment. Iteratively increasing complexity 

leads to a simpler ultimate model, boosting 

explainability and interpretability. Rajan et al provide 

a concise, philosophical study on materials 

informatics, which enables high-throughput, 

statistically robust, and physically meaningful 

surveying of complicated, multiscale information.  

 

3. RESULTS AND DISCUSSION 

 

ML for metallic material characterization 

The characteristics of mechanical material properties 

must be accurately predicted and controlled, as they 

are closely related to and significantly influenced by 

process parameters and the resulting microstructures 

[15]. The fundamental concept behind employing 

machine learning techniques for predicting material 

properties involves examining and delineating the 

relationships—often nonlinear—between a material's 

properties and their associated characteristics, 

achieved by deriving insights from previously 

gathered experimental or simulated data. The 

mechanical behavior observed in simulations is 

frequently articulated through constitutive equations 

[15]. Investigation into the macroscopic performance 

of materials primarily emphasizes the relationship 

between their macroscopic (e.g., mechanical and 

physical) properties and their microstructure. 

Numerous material parameters can be approximated 

to within an order of magnitude by employing 

fundamental physical concepts. In instances where 

these parameters cannot be accurately estimated, 

machine learning methods can prove beneficial, 

necessitating the use of experimental or simulated 



© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002 

IJIRT 175253 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1062 

data. Experimental testing methods applicable to 

metals enhance our understanding of materials and 

their properties. Common destructive tests include 

the bend test, impact test, hardness test, tensile test, 

fatigue test, corrosion resistance test, and wear test, 

as illustrated in reference. The subsequent endeavors 

of the materials community to improve these tests 

and their outcomes through machine learning 

methods will be examined.  

3.1 Corrosion 

Detecting and monitoring corrosion is crucial for 

maintaining material health and decreasing life-cycle 

costs in various infrastructures, ships, planes, 

vehicles, and pipelines [6]. More recently, ML 

methods have showed promise in improving 

corrosion detection. They will aid a human inspector. 

This reduces inspection time and expense for civil 

infrastructure and eliminates the requirement for 

previous knowledge and human effort in feature 

design [12]. Popular methods include using ANNs 

for image processing-based corrosion detection. 

CNNs were used to detect corrosion by identifying 

rusty portions in pictures [12]. The CNN surpasses 

current corrosion detection methods based on texture 

and color analysis utilizing a multilayered perceptron 

network. The model uses a picture of the material and 

area of interest to classify it as corroded or not, using 

a sliding window. Pretrained networks help prevent 

overfitting from tiny datasets. Bastian et al. provide 

another CNN corrosion detection application [13]. As 

in Atha et al [12], pictures are divided into four 

classes: no corrosion, low-level corrosion, medium-

level corrosion, and high-level corrosion. Additional 

CNN-based corrosion detection studies are available 

in [13]. Fang et al developed a hybrid technique 

using genetic algorithms and support vector 

regression to predict air corrosion depth in metals 

like zinc and steel. A hybrid technique may solve 

nonlinear regression estimation issues in materials 

science. Genetic algorithms are used to automatically 

identify suitable support vector regression hyper-

parameters. The support vector regression inputs are 

temperature, wetness time, exposure time, sulfur 

dioxide concentration, and chloride concentration. 

The outputs are zinc or steel corrosion depth 

predictions.  

An SVM technique was used by Hoang et al. to 

detect pipe corrosion using image processing. The 

pipe surface characteristics are extracted using 

picture texture, including statistical assessments of 

color, co-occurrence matrix, and run length. A 

decision boundary is created using SVM optimized 

by differential flower pollination to identify corroded 

and undamaged pipe surfaces by block-wise 

classification of the source picture. The corrosion rate 

of 3C steel in various environments was predicted 

using support vector regression and a smaller 

database of 46 samples. The model considered five 

seawater environment factors: temperature, dissolved 

oxygen, salinity, pH-value, and oxidation-reduction 

potential. The forecast error was low. Jimenez et al. 

evaluate ML methods (ANN, SVM, classification 

tree, and k-nearest neighbor) for 316L stainless steel 

pitting corrosion detection. Model inputs include 

environmental factors including chloride 

concentration, pH, and temperature, while outputs 

indicate material corrosion. Models based on ANNs 

and SVM with linear kernel were shown to be useful. 

For this application, ANN and SVM models 

outperform k-nearest neighbor and classification tree 

models in classification. The main benefit of this 

method over previous methods is that surface 

analysis is not required to examine corrosion 

behavior of a material.  

3.2 Fatigue 

ML techniques may also forecast fatigue, which is 

generated by cyclic loads and causes structural 

deterioration and fissures. Shiraiwa et al presented 

multi scale FEM and ML to forecast fatigue in 

welded constructions for various structural materials. 

Two algorithms are used: deterministic ML based on 

classical approaches and model-based ML. 

Deterministic ML, like multivariate linear regression 

and ANNs, forecast fatigue strength using chemical 

composition, processing parameters (e.g. reduction 

ratio, heat treatment), inclusion sizes, and fatigue 

strength. Microstructures and stress-strain curves 

from 40 low-carbon steels with varying chemical 

compositions and heat treatment conditions were 

utilized to train an ANN for model-based ML. This 

technique accounts for uncertainties like fatigue life 

scattering and incorporates previous structural and 

property information. Agrawal et al [8] used ML 

algorithms to predict fatigue strength of steel based 

on composition and processing parameters, including 

chemical composition, upstream processing details, 

heat treatment conditions, and mechanical properties. 

ML approaches included simple regression, decision 



© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002 

IJIRT 175253 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1063 

trees, SVM, and ANN. Successful strategies included 

ensemble and personalized approaches for various 

topics. The hold time in fatigue testing has been used 

to forecast material fatigue life for P91 steel base 

metal using machine learning methods. High 

accuracy is achieved by combining genetic 

algorithms and SVM to forecast fatigue life. Abdalla 

et al [2] provide a fatigue life model for steel 

reinforcing bars using an ANN radial basis function 

model, including maximum tensile strain and 

pressure ratio.  

3.3 Creep 

Metal creep occurs under strains below the yield 

strength, often at high temperatures. Creep rupture 

now poses a significant threat to power production 

systems in high-temperature and irradiated settings, 

such as nuclear reactors. Predicting creep rupture and 

usable life are necessary to prevent component failure 

and cost-ineffective operation. Analytical approaches 

struggle to represent the complex interdependencies 

between chemical composition, heat treatment 

parameters, product shape, tensile characteristics, and 

microstructure, which impact material behavior. 

Modeling using ML methods is a promising option. 

Additionally, ML eliminates costly and lengthy 

experimentation. For material design, creep is 

significant. Many designs just address one purpose, 

such as creep, without considering multi-property 

design. Another prominent model for creep rupture 

life and rupture strength of austenitic stainless steels 

is ANNs. The training database for predicting creep 

rupture life and stress for a given stress includes test 

conditions (stress and temperature), chemical 

composition, solution treatment temperature, time 

(limited availability), quench following, grain size, 

and ruptured life logarithm for various stainless 

steels. Chatzidakis et al.  evaluate general regression 

neural networks, ANNs, and Gaussian processes to 

anticipate creep rupture tendencies. Results from 

experimental creep ruptures are input. The models' 

performance was inadequate. Shin et al used five ML 

models (RF, linear regression, k-nearest neighbor, 

kernelridge, Bayesian ridge) to predict creep behavior 

using Lambert-Miller parameters. Out of 466 

available features, useful ones are identified via 

optimization and experimentation with various 

feature and model combinations. RF had highest 

accuracy with 5–21 top-ranking attributes. A 

multilayer perceptron neural network was used to 

forecast rupture and creep rupture stress of 9%Cr 

steels using chemical composition, heat treatment 

information, and geometrical shape.  

3.4 Tensile properties 

Material tensile properties reveal how it responds to 

tension. Understanding modulus of elasticity, elastic 

limit, elongation, proportional limit, area reduction, 

tensile strength, yield point, and other qualities 

requires tensile properties. Material condition, 

lifespan, and application performance depend on 

these qualities. Tensile properties must be accurately 

predicted to determine structural material service life. 

The ultimate tensile strength (UTS) of iron castings 

was predicted utilizing 25 factors, including 

composition, size, cooling speed, and thermal 

treatment, to forecast foundry defects and mechanical 

qualities. The many variables and conditions in 

casting make UTS estimate one of the hardest tasks 

in foundry manufacturing. UTS classification using 

Bayesian networks, k-nearest neighbor, and ANNs. 

All methods performed well, but ANNs outperformed 

others. Sterjovski et al. employed ANNs to forecast 

impact toughness of quenched and tempered pressure 

vessel steel, heat affected zone hardness in pipeline 

and tap fitting steels, and hot ductility and UTS of 

microalloyed steels over temperature. Inputs were 

composition, cooling rate, temperature, and 

thickness. All mechanical features were predicted 

using ANNs. ANNs may predict elongation, self-

tempering temperature, and yield strength for 

reinforcing steel bars undergoing thermo-mechanical 

treatment using bar diameter and quenching duration, 

according to Sankaretal[130]. ANN numerical results 

match experimental data. Prune and predatorprey 

algorithms helped Datta et al. extract more data from 

input data than ANN analysis. Alloy composition, 

thermo-mechanical processing parameters, 

deformation in different temperature zones, final 

rolling temperature, and cooling rate were inputs for 

high-strength steels, while UTS, yield strength, and 

% elongation were anticipated. For this steel, solid 

solution hardening and microstructural components 

drive yield strength, whereas precipitation hardening 

drives UTS. Both strengthening procedures reduce 

ductility.  

Tensile properties may be predicted using traditional 

machine learning. Shigemori et al. estimated hot-

rolled steel tensile strength using locally weighted 

regression. The inputs were 18 chemical 
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composition, heating, rolling, and cooling 

temperature components. These variables clearly 

cause output. Least squares SVMs forecast material 

elastic modulus and yield stress. studies Al6061 and 

Al7075 FEM-simulated load-indentation curves to 

estimate material characteristics utilizing a training 

set of huge strain-large deformation FEM 

simulations. We employ load-indentation curve 

characteristics in ML. Using load-indentation data 

from dual conical indenters with different half-

angles, the least squares SVM model predicts elastic 

modulus and yield stress. RAFM steel production 

material composition and treatment parameters were 

correlated with yield strength, impact toughness, and 

total elongation using an RF model and optimization 

algorithm. Tempering temperature, C concentration, 

time, and Cr content correlated well for yield strength 

and elongation. RF generalization and accuracy were 

high (R2 >85%). Fragassa et al. used pattern 

recognition analysis on experimental data and RF, 

ANN, and k-nearest neighbor to forecast cast alloys' 

yield strength, ultimate strength, ultimate strain, and 

Young's modulus. Every data originates from 

micrographs. UTS and yield strength prediction are 

better with ANNs. Acoustic emission data 

interpretation for failure prediction is another ANN 

usage. Christopher et al. predict Al/SiC composite 

strength using acoustic emission parameters and 

ANN analysis. Acoustic emission response and an 

ANN back propagation algorithm were used to 

evaluate unidirectional T-300/914 tensile specimen 

ultimate strength.  

Hot ductility must be regulated to prevent cast steel 

surface cracks. Experimental work is challenging. 

Hot ductility prediction using ML models is advised. 

One research predicted hot ductility using a 

multivariate linear regression and grouped 12 

chemical ingredients with similar experimental 

results. This model's cooling condition varies from 

continuous-casting conditions, making it difficult to 

utilize in industry. Hot ductility for microalloyed 

steels at continuous casting temperatures for strand or 

slab straightening is predicted using back-

propagation ANN. Limited data preclude 

generalization. Since the ANN has one hidden layer, 

it cannot properly reflect the complex input-output 

relationship. Additionally, an ANN model predicted 

high-temperature ductility of steel grades based on 

composition and thermal history (five experimental 

parameters). The new model predicts ductility across 

a wider composition and heat history than previous 

studies. It works well in commercial manufacturing.  

 

4. CONCLSIONS 

 

In materials research, data-driven methodologies are 

crucial for identifying correlations between material 

structure and characteristics. Relationships are 

typically nonlinear. Finding common patterns across 

different length and durations is challenging. 

Experiments alone cannot do this. Thus, data-mining 

methods are essential for identifying correlations in 

experimental and simulated data. As publicly 

accessible materials data expands, ML approaches 

may extract scientific principles and design 

guidelines that traditional analysis cannot. Early ML 

applications in materials science mostly used basic 

methods like linear kernel models and decision trees. 

Despite the paucity of benchmarking datasets and 

standards, these proofs-of-concept exist for several 

applications. At present, ML may not achieve desired 

accuracy in certain jobs owing to inadequate data. A 

highly accurate model trained on a limited, accurate 

data set is only useful inside the input space, but 

lacks generalization, whereas a less accurate model 

trained on a larger data space is more generalizable 

but less precise. Accelerating the creation of public 

material databases is crucial for the advancement of 

machine learning in materials research. Lack of 

failure data hinders the construction of accurate ML 

models. A culture change towards publishing all 

legitimate facts, good or bad, is necessary.  
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