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Abstract—According to reports from the world bank, 

64.13% of India's population resides in rural areas. As 

a result, domestic and stray animals such as cows and 

buffaloes are frequently seen on or near roadways. It is 

crucial for drivers or intelligent vehicular systems to 

detect these stray animals to regulate speed. Each year, 

hundreds of people and stray animals are injured or 

killed in vehicle-animal collisions, both during the day 

and at night. Records from the veterinary department 

show a nearly 23% increase in such incidents over the 

last six years. This paper explores a deep learning-based 

system for detecting stray animals to alert drivers. Deep 

learning algorithms generally require large datasets for 

training, testing, and validation. Given the limited 

availability of public datasets, various data 

augmentation techniques could be used. For 

augmentation, we applied techniques such as horizontal 

flipping, color space transformation, rotation, shear, 

zoom, intensity transformation, and resizing. The 

model's performance was evaluated using the training 

and validation of both datasets over different epochs 

and batch sizes. The model achieved a true positive rate 

of 80% to 85%, with 92.5% accuracy on the non-

augmented dataset and 91% accuracy on the 

augmented dataset when tested on real-world camera 

footage. 

 

Index Terms—Data Augmentation, Deep Learning, 

Stray Animal Recognition, Yolo. 

 

I. INTRODUCTION 

 

The proposed research pertains to road safety 

engineering, specifically focusing on an intelligent 

vehicular system that can detect and recognize cattle 

crossing roads or appearing in front of vehicles. It is 

frequently observed that cattle sit or stand in the 

middle of roads, making them visible to drivers for 

speed control. However, problems arise when drivers 

are unable to see the cattle during both daytime and 

nighttime driving, leading to collisions. These 

incidents are a critical road safety issue. The research 

aims to mitigate accidents involving vehicles and 

domestic animals by introducing a cattle detection 

model. This model addresses two types of collisions: 

direct and indirect. In a direct collision, the vehicle 

hits the cattle head-on, potentially causing the animal 

to be thrown to the roadside depending on the speed 

and movement. The type of vehicle also plays a 

significant role in the severity of the collision; in 

some cases, cattle can hit the windshield or cause the 

vehicle to overturn. In an indirect collision, while 

attempting to avoid hitting the cattle, the vehicle may 

collide with another vehicle, resulting in dangerous 

accidents that can harm both cattle and vehicle 

occupants. This paper focuses on cattle detection and 

recognition using the latest single-shot object 

detector, YOLOv5. The low-cost, computer vision-

based automatic detection system is designed to help 

prevent accidents between cattle and vehicles on the 

road. 

II. LITERATURE SURVEY 

 

Over the past decade, numerous research studies have 

focused on detecting and monitoring wildlife using 

camera traps. (Zhang, Z., et al. 2016) developed a 

feature description method where a cross-frame 

temporal patch verification technique distinguishes 

between actual animals and background patches. This 

method, compared to Faster R-CNN, showed a 4.5% 

improvement in detection accuracy. Another animal 

detection model, created by (Verma, G.K. and Gupta, 

P. 2018), employed self-learned Deep Convolutional 

Neural Network (DCNN) features, with classification 

performed using machine learning algorithms like 

SVM, KNN, and ensemble trees. Their experiments 

were conducted on a standard camera trap dataset. In 

Brazil, researchers proposed a road-based animal 

detection system using cameras and a KNN learning 
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model. (Saxena, A., et al. 2020) introduced animal 

detection using SSD and R-CNN neural network 

architectures, achieving a mean average precision 

(mAP) of 80.5% and 82.11%, respectively. (Sharma, 

S. and Shah, D. 2016) focused on animal detection on 

Indian roadways, using a HOG feature descriptor 

applied in computer vision and image processing. 

With this feature and a boosted cascade classifier 

system, they achieved 82.5% accuracy in detecting 

animals. (Trnovszky, T., et al. 2017) proposed a 

Convolutional Neural Network (CNN) for classifying 

four specific animal classes and compared their 

method with established image recognition 

techniques such as PCA, LDA, LBPH, and SVM.  

Hung Nguyen et al. developed an automated wildlife 

monitoring system utilizing DCNN for the 

identification and recognition of wild animals, 

achieving 90.5% accuracy for animals in South-

Central Victoria, Australia. (Yang, Z., et al. 2023) 

surveyed automated data augmentation technology in 

perspective of image classification. Authors proposed 

AutoDA model with three key components such as a 

search space, a search algorithm and an evaluation 

function. Authors also discussed the pros and cons of 

the proposed model. In our research, we conducted 

experiments using a customized object detection 

model for cattle within the Google Colab Jupyter 

Notebook environment, which provides an Nvidia 

Tesla K80 GPU with 12GB of memory. A total of 

over 23,000 non-augmented and augmented image 

datasets of Indian cattle were utilized for training and 

testing. This dataset comprises various animals, 

including cows, bulls, calves, and buffaloes, collected 

primarily from on the roadways and the platforms 

such as Kaggle, Alamy, Shutterstock, Indiatimes, 

Indian Express, and India Today. 
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Fig. 1: Object Detection Process in YOLO Network 
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Fig. 2: Nine Stage Deep Learning Network with Image Augmentation Steps 

 

 

III. COLLECTION OF DATASETS FOR 

TRAINING 

 

While dealing with the challenges of limited training 

data for deep learning models, we have often faced a 

unique dilemma. In such situations, we came across 

the concept of image augmentation. Image 

augmentation is an effective strategy for expanding a 

dataset by creating various transformed versions of 

the original images. A common practice is to 

augment images and store them in a numpy array or a 

specified folder. We must admit that we relied on this 

traditional approach until we discovered the 

ImageDataGenerator class. The Keras 

ImageDataGenerator is an invaluable tool that 

facilitates real-time image augmentation during 

model training ('Keras ImageDataGenerator and data 

augmentation' 2019). This feature allows for the 

application of random transformations to each 

training image as it is input into the model, enhancing 

its robustness while conserving memory resources. 

Image augmentation involves applying different 

transformations to original images, resulting in 

multiple modified versions of the same image. 

Transformations like shifting, rotating, or flipping 

introduce unique characteristics to each copy as 

shown in Fig. 3. Importantly, these slight variations 

do not change the original image's target class; 

instead, they provide alternative representations of 

real-world objects. Consequently, image 

augmentation is a widely used technique in 

developing deep learning models. The Keras 

ImageDataGenerator class offers a convenient and 

efficient way to augment images, featuring a broad 

range of techniques, including standardization, 

rotation, shifts, flips, brightness adjustments, and 

more. One of the key benefits of using the Keras 
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ImageDataGenerator is its ability to perform real-

time data augmentation. This means it generates 

augmented images on the fly while the model is 

training, ensuring that the model encounters new 

image variations with each epoch, thus mitigating the 

risk of overfitting that could result from repeatedly 

using the same original images. Additionally, 

ImageDataGenerator helps reduce memory usage. 

Without this class, all images would be loaded at 

once, but when using ImageDataGenerator, images 

are loaded in batches, leading to substantial memory 

savings. The second stage of model is annotating the 

training and validation dataset which is given below. 

 
(A)  

 
(B) 

 
(C)  

 
(D)  

 
(E)  

 
(F) 

Fig. 3: Image Augmentation: (A) Image Rotate, (B) 

Image Flip, (C) Image Enhancement, (D) Image 

Zoom, (E) Image Shear, (F) Image Grayscale 
 

IV. DATASET ANNOTATION PROCESS 

 

In deep learning and object recognition architectures, 

it is essential to oversee the learning process through 

annotation of bounding box. At this process, all 

samples in the dataset used for training are annotated. 

Since the research work focuses on a cattle 

recognition model, each animal instance in the 

sample is annotated with label corresponding to the 

class of cattle, along with the coordinates of 

bounding box [x1, y1] and [x2, y2]. 

 
Fig. 4: Labeled Image 

 
Fig. 5: Labeled Text File 

Fig. 4 displays the annotated image from batch 

processing. Here the label "cattle" within the 

bounding box indicates the class of object, 

accompanied by four annotated bounding boxes 

around the cattle. In Fig. 5, the first number '0' 
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denotes the class number of object, along with the 

corresponding XY coordinates for the cattle in the 

image. 

 

V. ANNOTATED TRAINING AND VALIDATION 

DATASET 

 

All the original and augmented annotated images in 

the dataset are organized into separate training and 

validation subdirectories, with their corresponding 

labels compiled in these folders as well. The final 

train and validation directories, which include the 

labelled images and their respective text files, are 

now prepared for model building. 

 

VI. INSTALLING THE ARCHITECTURAL 

DEPENDENCIES 

 

In the research work, the object recognition 

architecture is built on YOLO version 5. At this 

stage, we used the repository of YOLO and deployed 

the required dependencies, which establishes the 

programming environment needed for training and 

executing our cattle detection model. Below are the 

commands used to clone the repository and install the 

required dependencies. 

 

VII. DOWNLOADING THE DATASET 

 

At this stage, the dataset of annotated samples and 

corresponding labelled text files are downloaded into 

the Colab notebook. The architecture now needs to 

access the custom animal dataset for training within 

this Colab environment. The path for custom dataset 

declared by utilizing commands given in a YAML 

file. 

# Training and Validation dataset 

train: ../images/train/  # training image samples 

val: .. /images/val/  # validation image samples  

test:  # testing image samples (optional) 

# Classes 

nc: 1  # Number of classes 

names: [ 'Cattle' ]  # Name of class  

The first command indicates the directory path 

containing all the training images, while the second 

command specifies the path for the validation. The 

third command is optional and can be used for testing 

images. The total number of classes and their titles 

are listed under the classes section. In current 

research, the class name ‘cattle’ to be detected by the 

architecture, thus it is labeled as '1' and the class 

name is set to ‘Cattle’. 

 

VIII. CONFIGURATION OF ARCHITECTURE 

 

The YOLO version 5 model offers various sizes such 

as v5 small, v5 medium, and v5 large. In this stage, 

the architecture is designed for the fastest variant, 

small YOLOv5, by considering yolov5s.yaml file. 

However, this part can be skipped, allowing us to 

proceed directly to the next training phase. 

 

IX. TRAINING OF ARCHITECTURE 

 

At this stage, the architecture will be trained using 

custom animal dataset. Prior to initiating the training 

process, the following options need to be configured 

before to start the training. 

!python train.py --img 640 --batch 3 --epochs 100 --

data custom_data.yaml --weights yolov5s.pt  

Where, 

 img: input image size 

 batch: batch size 

epochs: the number of training epochs.  

 data: the path to our yaml file 

 cfg: model configuration 

 weights: a custom path to weights  

 cache: cache images for faster training 

After configuring all the options and file paths for our 

custom dataset, primarily the model was trained 

using the non-augmented limited dataset and further 

trained using augmented datasets. The training was 

conducted across various epoch values such as 60, 

100, 150 and so on. Ultimately, the weights were 

acquired by achieving a higher mean average 

precision of validation. Following the training, the 

Dataset 

Type 

Non-augmented Non-augmented + 

Augmented 

Batch 

Value 

2 2 3 7 10 16 

Epoch 

Value 

60 150 150 60 100 100 

Precision 0.64 0.87 0.84 0.90 0.90 0.91 

Recall 0.66 0.76 0.73 0.82 0.81 0.82 

mAP 0.5 0.63 0.83 0.78 0.90 0.89 0.89 

Accuracy 0.92 0.91 0.91 0.91 0.905 0.905 

Sensitivity 0.85 0.82 0.82 0.82 0.81 0.81 

F Measure 0.91 0.90 0.90 0.90 0.90 0.90 
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performance of architecture was assessed separately 

for both the non-augmented and augmented models. 

Table 1: Training performance of Model 

 

Fig. 6 displays the output image samples of the 

trained architecture. The trained architecture has 

successfully predicted all cattle in the image samples, 

with the prediction percentages indicated above the 

bounding boxes for each cow, bull, and other 

animals. 

 
Fig. 6: Test Batch Prediction Results 

 

X. RESULTS AND PERFORMANCE 

EVALUATION 

 

The proposed deep learning model for identifying 

stray animals achieved detection accuracies ranging 

from 90.5% to 92%. The model underwent training, 

validation, and testing using publicly available 

datasets and various image augmentation techniques. 

Evaluation of the model trained with a natural dataset 

revealed detection accuracies between 91% and 92%, 

with a peak precision of 87%, a recall rate of 76%, 

and a mean Average Precision (mAP) of 83% at an 

Intersection over Union (IoU) threshold of 0.5 as 

shown in table 1. 

 
Fig. 7: Plots of Box Loss, Objectness 

 

 
Fig. 8: Plots of Precision, Recall and Mean Average 

Precision Loss 

 
Fig. 9: F1 - Confidence Plot 

 

Fig. 10: Precision - Confidence Plot 

 

Fig. 11: Precision - Recall Plot                    
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Fig. 12: Recall - Confidence Plot 

 

Moreover, when the model was trained using both 

natural and augmented datasets, it maintained similar 

high accuracy levels, achieving a maximum precision 

of 91%, a recall rate of 82%, and a mAP@0.5 of 

90%. The plots of performance parameters obtained 

at highest epoch value are showcased in following 

figures. As a result, the proposed deep learning 

animal detection model architecture, trained on this 

combined dataset, was tested using real-world camera 

feeds and sample videos, consistently achieving a 

confidence score of over 91%. The training and 

validation plots for box loss and objectness loss are 

shown in Fig. 7, while the precision, recall, and mAP 

plots are presented in Figure 8. Additionally, the F1 

measure versus confidence curve is illustrated in Fig. 

9. Sample image frames from the trained stray animal 

detection model are displayed in Fig. 13. The model 

successfully identified stray animals on roadways 

under challenging conditions, including varying 

lighting and distances, while maintaining high 

confidence scores. 

 
Fig. 13: Frames from the Tested Video Input 

 

XI. CONCLUSION 

 

The system has been designed and tested by training 

the deep learning model with non-augmented dataset 

and augmented dataset. Table 2 presents a 

comparison of the performance parameters for the 

model trained using a non-augmented dataset versus 

the model trained with both non-augmented and 

augmented datasets. The model trained on the non-

augmented dataset exhibited higher detection 

accuracy about 92% as compared to the model that 

utilized both datasets, but it performed poorly in case 

of precision @ 87%, recall@76%, and mAP@83%. 

Conversely, the model trained with both non-

augmented and augmented datasets achieved better 

precision@91%, recall@82%, and mean average 

precision 90%@0.5 rates compared to the model 

trained solely on the non-augmented dataset. Overall, 

the model demonstrated acceptable detection 

accuracy for cattle detection. 

Table 2: Performance Comparison of Trained Model 
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