
© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175439 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2942

Automatic Guided vehicle (AGV) with Solar Power

A. A.JYOTHI B. B.Jaswanth, C. A.Vivek, D. A.Vamsi, E. G.Dayasagar, F. G.Ashok
A Assistant Professor Wellfare Institute Of Science Technology & Management

B,C,D,E,F Wellfare Institute of Science Technology & Management

Abstract-Line follower is a smart autonomous robot that

detects or follows a visible line embedded in the ground

and guides itself. The trail is +predetermined and can

be selected with a high contrast color or with a black

line visible on the trail surface. Infrared sensors are

used to detect these lines. Typically speaking, the area

unit of the infrared sensors is used to locate the path

that the robot has to follow.

Index – Introduction, Literature survey, Components

used, Architecture, Result, Conclusion.

1. INTRODUCTION

A Line Follower Robot is an autonomous mobile

robot designed to follow a predefined path, typically

marked by a contrasting line in the surface. The

project demonstrates the integration of renewable

energy with embedded systems to develop an

integration and self-sustaining robotic system. Line

follower robots have widespread applications in

industrial automation, material handling, and smart

transportation, making them an essential component

of modern robotic technology.

1.1 AIM OF TNE PROJECT:

The aim of this project is to design and develop an

autonomous Line Follower Robot that can efficiently

navigate a predefined path using an IR sensor array,

while incorporating renewable energy for sustainable

operation.

1.2 SCOPE OF THE PROJECT:

1. The robot can follow a predefined path using an IR

sensor array for real time line detection.

2. Data on robot performance and movement can be

collected and analyzed for optimization.

3. A solar panel is incorporated to reduce reliance on

external charging and promote renewable energy use.

2. LITERATURE SURVEY

The development of the Line Follower Robots has

been widely explored in the fields of robotics,

automation, and artificial intelligence. Several

research papers and projects have contributed to the

understanding and advancement of line following

robots. This literature survey reviews previous works

and technological advancements related to

autonomous navigation, motor control, renewable

energy integration, and IOT connectivity.

2.1 PROBLEM STATEMENT:

In industrial automation, logistics, and smart

transportation, autonomous robots are increasingly

being used to enhance efficiency and reduce human

intervention. However, existing line follower robots

face several limitations, including limited

connectivity, energy inefficiency, and poor

adaptability to complex environments.

Lack remote monitoring and control as they do not

support IOT – based connectivity.

Consume excessive power due to reliance solely on

battery-powered systems, leading to frequent

recharging.

Struggle with advance path navigation, as they rely

on basic IR sensor arrays without dynamic

adjustments.

2.2 PROPOSED SYSTEM:

To overcome the limitations of existing line follower

robots, the proposed system integrates IOT

connectivity, energy efficiency, and optimized motor

control to enhance autonomous navigation and

sustainability. This system is designed to be smart,

remotely accessible, and energy-efficient, making it

suitable for industrial automation, warehouse

logistics, and smart transportation

The overcome uses an IR sensor array to accurately

detect and follow a predefined path.

The ESP8266 Node MCU microcontroller processes

sensor data and controls motor movement.

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175439 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2943

The sensors provide real-time feedback to ensure

precise movement, even on curved or interrupted

paths.

Enables Wi-Fi-based remote monitoring and control,

allowing real-time data transmission.

The L298 motor driver is used to control 1kg 60RPM

motors, ensuring smooth and accurate navigation.

Supports speed control and directional movement,

optimizing power consumption.

A solar panel is incorporated to supplement the

power supply, reducing

Improves energy efficiency and extends operational

time without frequent recharging.

The system is designed to be modular and scalable,

allowing future upgrades such as obstacle detection.

 3 .COMPONENTS USED

3.1 Hardware Details:

1. l298 motor driver

2.1kg 60 rmp

3. 12v battery

4. solar panel

5. esp8266 node mcu

6. IR sensor array

7. jumper wires

3.2 Software Details:

1. arduino ide

2. embdded ‘c’

3.2.1 ARDUINO IDE:

The Arduino IDE (Integrated Development

Environment) is a cross-platform software

application designed for writing, compiling, and

uploading code to Arduino microcontroller boards. It

serves as the primary tool for developers, hobbyists,

and students to create interactive electronics projects.

With its intuitive interface and straightforward

workflow, the Arduino IDE has become popular

worldwide for prototyping and developing both

simple and complex systems. The Arduino IDE

stands out for its simplicity, flexibility, and extensive

support network. It is ideal for beginners learning

programming and electronics, as well as

professionals developing advanced systems, making

it a versatile tool in the world of embedded systems

and IOT.

3.2.1.1 KEY COMPONENTS:

1. Code Editor:

The IDe3 provides a text editor where users write

programs, known as “sketches,” using a simplified

version of the C++programming language.

It features syntax highlighting, auto-indentation, and

bracket matching, enhancing readability and

reducing coding errors.

2.Compiler:

The built-in compiler translates human-readable code

into machine language, ensuring compatibility with

the microcontroller on the Arduino board.

3.Uploder:

Using a USB connection, the

uploader transfers the complied code from the

computer to the Arduino board, enabling the

microcontroller to execute the programmed

instructions.

4. Serial Monitor and Plotter:

The Serial Monitor allows users to communicate with

the Arduino board in real time, facilitating debugging

and data exchange.

The Serial plotter visualizes data from the board,

making it easier to analyze sensor readings and other

variables.

5. Library Manager:

A comprehensive library manager provides access to

pre-written code libraries that simplify the use of

sensors, displays, motors, and other hardware

components.

3.2.1.2 FEATURES:

Cross-Platform Compatibility: The Ardunio IDE

runs on windows, macOS, and Linux.

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175439 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2944

Open Source: As open-source software, it encourages

collaboration, customization, and community

contributions.

User-Friendly Interface: Its straightforward design

makes it accessible to beginners while still offering

advanced features for experienced developers.

Extensive Community Support: A vast online

community shares code, tutorials, and

troubleshooting tips, making it easier to learn and

troubleshoot.

3.2.1.3 WORKING:

Writing Code: Users write sketches using the code

editor, often starting with built-in examples.

Compiling Code: The IDE compiles the sketch,

checking for syntax errors and ensuring compatibility

with the selected Arduino board.

Upload Code: With a single click, the compiled code

is uploaded to the Arduino board, enabling it to

perform the desired tasks.

Testing and Debugging: The serial Monitor and

plotter help test the code, observe output data, and

identify issues.

3.2.1.3 USAGE:

Ideal for prototyping electronics projects, robotics,

IoT devices, and automation systems.

Widely used in education, hobbyist projects, and

professional prototyping due to its ease of use and

versatility.

3.2.1.4 Applications of Aruino IDE:

Education: Widely used in schools and universities to

teach programming and electronics.

Prototyping: Essential for developing prototypes of

IoT devices, robots, and home automation systems.

Hobbyist Projects: Popular among makers for

creating interactive art, DIY gadgets, and wearable

technology.

3.2.2 EMBEDDED C

Embedded C is a specialized extension of the C

programming language designed for programming

embedded systems. Embedded systems are

microcontroller-based devices that perform dedicated

functions, such as medical devices, automotive

systems, home appliances, and IoT devices. Unlike

general-purpose computers, embedded systems

operate with limited resources, making efficiency and

reliability crucial. Embedded C helps developers

write efficient and optimized code that directly

interacts with hardware components. Embedded C

plays a critical role in the development of embedded

systems by combining the simplicity of C with

hardware-specific functionalities. Its efficiency, low-

level hardware control, and widespread industry

adoption make it essential for designing devices that

are reliable, responsive, and optimized for specific

tasks.

3.2.2.1 CHARECTRISTICS:

Hardware-Oriented: Embedded C allows direct

manipulation of hardware components such as

input/output ports, timers, and memory.

Efficiency and Speed: Programs are optimized to use

minimal memory and processing power, essential for

devices with limited resources.

Real-Time Operation: Embedded systems often

require real-time performance, where tasks must be

executed within strict time limits.

Portability: Embedded C code can be adapted to

different microcontrollers with minimal changes,

increasing its flexibility.

Low-Level Access: The language provides low-level

access to system memory and peripheral registers,

allowing precise control over hardware.

3.2.2.2 STRUCTURE:

Preprocessor Directives: Include header files specific

to the microcontroller, such as <avr/io.h> for AVR

microcontrollers.

Global Variables: Store data that needs to be accessed

throughout the program.

Main Function: The main () function contains the

core logic of the program and often runs in an infinite

loop to maintain continuous operation.

Peripheral Initialization: Configure hardware

peripherals like timers, communication interfaces,

and input/output ports.

Interrupt Service Routines (ISRs): Handle hardware

interrupts that respond to external events.

3.2.3 WORKING:

The working of Embedded C involves writing code

that directly interacts with hardware components of

embedded systems, such as microcontrollers,

sensors, and actuators. Unlike standard C

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175439 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2945

programming, Embedded C is designed to run on

hardware with limited resources, ensuring efficiency,

reliability, and real-time performance. The process

typically follows these steps:

1. Writing the Code:

Developers write the program (called firmware)

using Embedded C, which includes specific libraries

and syntax for hardware interaction.

The code is usually structured with initialization

routines, an infinite loop for continuous operation,

and interrupt service routines (ISRs) to handle

external events.

2. Compiling the Code:

The written code is compiled using a cross-compiler,

which translates the human-readable C code into

machine code (binary format) that the

microcontroller understands.

The compiler is specific to the target microcontroller

architecture (e.g., AVR-GCC for AVR

microcontrollers or Keil C51 for 8051

microcontrollers).

3. Linking and Optimization:

The linker combines different code modules into a

single executable file, optimizing the code to

minimize memory usage and maximize performance.

Optimization is crucial since embedded systems

often have limited memory and processing power.

4. Generating the Hex File:

The final output of the compilation process is a HEX

file, which contains the machine code in hexadecimal

format.

This file is ready to be uploaded to the

microcontroller.

5. Uploading the Code to the Microcontroller:

The HEX file is transferred to the microcontroller's

flash memory using a programmer device or a USB

connection.

For example, in Arduino, this process is handled by

the Arduino IDE using a built-in boot loader.

6. Executing the Program:

Once uploaded, the microcontroller reads the

machine code from its memory and executes the

instructions continuously.

The main function typically runs in an infinite loop

to ensure the system responds continuously to inputs

and performs the desired tasks.

7. Real-Time Interaction with Hardware:

The program directly interacts with hardware

components using peripheral registers, input/output

ports, and communication interfaces (e.g., SPI, I2C,

UART).

Interrupts allow the system to respond immediately

to external events, ensuring real-time performance.

3.2.2.4 Real-Time Execution and Interrupts:

Embedded systems often need to respond to external

events within strict time limits.

Interrupts allow the microcontroller to pause the main

program and execute specific code when an external

event occurs (e.g., a button press or sensor signal).

3.2.5 ADVANTAGES:

Simplicity and Readability: Easy to learn and read,

especially for those familiar with standard C.

Efficiency: Generates compact, fast-executing code

suitable for resource-limited systems.

Portability: Code can be reused across different

microcontrollers with minimal modifications.

Direct Hardware Control: Provides precise control

over hardware components, enabling efficient system

design.

Wide Industry Adoption: Used extensively in

automotive, healthcare, consumer electronics, and

IOT applications.

3.2.6 APPLICATIONS:

Automotive Systems: Engine control units (ECUs),

anti-lock braking systems (ABS), and airbags.

Medical Devices: Pacemakers, blood pressure

monitors, and ventilators.

Consumer Electronics: Microwave ovens, washing

machines, and smart home devices.

Industrial Automation: Motor control, process

monitoring, and robotics.

IOT Devices: Sensors, actuators, and wireless

communication modules.

4. ARCHITECTURE

BLOCK DIAGRAM:

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175439 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2946

4.2 CIRCUIT DIAGRAM:

4.3 WORKING:

The Line Follower Robot follows a predefined path

using an IR sensor array, controls its movement via

an L298 motor driver, and operates on a renewable

power source (solar panel and Li-Po battery).

Power Supply & Management:

The system is powered by a 3-cell Li-Po battery and

a solar panel.

The solar panel provides additional energy to charge

the battery, making the robot energy-efficient.

A switch is included to manually turn the system on

or off.

Sensor-Based Line Detection:

The IR sensor array consists of multiple IR sensors

that detect the contrast between the path (black line)

and the surrounding surface (white background).

Each IR sensor outputs a high (1) or low (0) signal

based on whether it detects a line.

The ESP8266 Node MCU processes these signals to

determine the robot's position relative to the line.

 ESP8266 Node MCU Control Unit:

The ESP8266 Node MCU acts as the main processing

unit.

It takes input from the IR sensor array and decides

how the motors should move.

It sends control signals to the L298 motor driver to

regulate the movement of the four motors.

Motor Control Using L298 Driver:

The L298 motor driver receives commands from the

ESP8266 Node MCU to drive the motors.

It controls four motors (M1, M2, M3, M4) by

adjusting speed and direction.

The robot moves forward, turns left, or turns right

depending on the sensor input.

Robot Movement Logic:

When the line is centered:

The IR sensors detect the black line in the middle.

The ESP8266 sends a signal to move the motors

forward.

When the robot drifts left:

The right-side sensors detect the line.

The ESP8266 adjusts the left motors to slow down

and the right motors to speed up, making the robot

turn right to correct its path.

When the robot drifts right:

The left-side sensors detect the line.

The ESP8266 slows down the right motors and

speeds up the left motors, making the robot turn left.

If the line is lost:

The robot stops or moves in a predefined search

pattern to find the line again.

IOT & Wireless Monitoring (ESP8266):

The ESP8266 Node MCU can send real-time data via

Wi-Fi, allowing remote monitoring.

It can be connected to a cloud or mobile app for

performance tracking and troubleshooting.

5.RESULTS

1. The IR sensor array accurately detected and

followed the predefined path.

2. The robot adjusted its speed and direction

smoothly when making turns or correcting its

position.

3. The ESP8266 NodeMCU processed sensor data

efficiently, ensuring real-time navigation.

4. The L298 motor driver effectively controlled the

1kg 60RPM motors, ensuring precise movement.

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175439 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2947

5. The motors responded well to directional

commands, providing smooth acceleration and

deceleration.

6. The solar panel provided additional power to the

12V Li-Po battery, extending operational time.

7. The robot operated for a longer duration without

frequent battery recharging.

8. Power consumption was optimized, making the

system more sustainable.

9. The ESP8266 NodeMCU successfully

connected to a Wi-Fi network, enabling real-

time monitoring.

10. The robot’s status and sensor data were

transmitted wirelessly, allowing remote tracking

and troubleshooting.

6.CONCLUSION

The line follower robot successfully demonstrated

efficient autonomous navigation using an IR sensor

array, ESP8266 NodeMCU, and L298 motor driver.

The integration of a solar panel with a 12V Li-Po

battery significantly improved energy efficiency,

making the system more sustainable and self-

sufficient. The ESP8266 NodeMCU enabled IoT-

based remote monitoring and control, allowing real-

time tracking and potential automation in various

industries.

The results confirmed that the robot is accurate,

reliable, and adaptable for industrial automation,

logistics, and educational purposes. The use of

renewable energy and wireless communication

makes it a cost-effective and scalable solution for

modern automation needs.

With further enhancements such as AI-based

navigation, obstacle detection, and GPS integration,

this robot can be deployed in smart warehouses,

automated transportation, and industrial material

handling. The project showcases the potential of IoT-

driven, solar-powered robotics in shaping the future

of automation and sustainability.

7.REFERENCES

[1] Conceptual Details of Track Follower: Advances

in Robotics: FIRA RoboWorld Congress 2009,

Incheon,-Page 69 Jong-Hwan Kim, Shuzhi Sam

Ge, Prahlad Vadakkepat -2009 -322 pages.

[2] Concept of Line follower Robot: Evolutionary

swarm robotics: evolving self-

organisingbehaviours -Page 164Vito Triennia-

2008 -189 pages

[3] www.projectdesignline.com/howto/207800773

[4] http://en.wikipedia.org/wiki/Resistor

[5] http://en.wikipedia.org/wiki/Capacitor

[6] Simple Line

Follower.www.societyofrobots.com/member_tu

torials/node/62

[7] http://www.datasheetarchive.com/

[8] http://en.wikipedia.org/wiki/Dcmotor

http://www.projectdesignline.com/howto/207800773
http://www.datasheetarchive.com/
http://en.wikipedia.org/wiki/Dc

