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1. INTRODUCTION 

 

The graph energy is one of the most important graph 

invariants in chemical graph theory. It was originally 

inspired [1] by the Hückel molecular orbital 

approximation, where it relates to the π- electron 

energy. The energy E(G)  of a graph G is defined to 

be the sum of the absolute values of its eigenvalues. 

Hence if A(G) is the adjacency review articles matrix 

of G and if  𝜆1, 𝜆2  ,… .  𝜆𝑛re its eigenvalues, then. 

E(G) = ∑ |𝜆𝑖|
𝑛
𝑖=1  Numerous review articles have been 

written on the energy of graphs, see e.g. [1]-[11]. 

One of the ways of studying graphs is to make use of 

matrices. Several graph matrices have been defined 

and used in literature. Apart from the adjacency 

matrix, the incidency and Laplacian matrices are the 

most important ones. Another matrix, the maximum 

degree matrix was defined by Adiga and Smitha in 

[12]. Let G be a simple graph with n vertices 

𝑣1, 𝑣1, … , 𝑣𝑛 and let di be the degree of vi  for i  = 

1, 2, · · · , n. Define 

𝑑𝑖𝑗 = {
max{𝑑𝑖 , 𝑑𝑗}        𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0                                          𝑜𝑡ℎ𝑒𝑟𝑒𝑖𝑠𝑒
 

Then the n × n matrix M (G) =(dij ) is called the 

maximum degree matrix of G, [12]. Let    µ1 , µ2, · 

· · , µn be the maximum degree eigenvalues of M 

(G). Since M (G) is a real symmetric matrix with 

zero trace, these maximum degree eigenvalues are 

real with sum equal to zero. That is, ∑ 𝜇𝑖
𝑛
𝑖=0 = 0 

The maximum degree energy of a graph G is defined 

as 𝐸𝑀(𝐺) = ∑ |𝜇𝑖|
𝑛
𝑖=0  

It is shown that if the maximum degree energy of a 

graph is rational, then it must be an even integer, 

[12]. 

 

2. MAXIMUM DEGREE ENERGY 

 

In this section, maximum degree energy is 

computed by means of a certain integral involving 

the characteristic polynomial and obtain 𝐸𝑀(𝑆𝑛
4) <

𝐸𝑀(𝑆𝑛
3),    ∀𝑛 ≥ 5         

Lemma 2.1. For every real number a, we have  

∫
1

𝑥2 ln(1 + 𝑎2𝑥2) 𝑑𝑥,   ∀𝑛 ≥ 5
∞

0
  

Theorem 2.1.  Let ϕ(𝑥) = det (𝑥𝐼 − 𝑀(𝐺)) be the 

characteristic polynomial of the maximum degree 

matrix of a graph G with n vertices. Then maximum 

degree energy        EM (G) of given by the following 

integral: 

𝐸𝑀(𝐺) =
1

𝜋
∫

1

𝑥2
ln (𝑥2𝑛𝜙 (

𝑖

𝑥
) 𝜙 (−

𝑖

𝑥
)) 𝑑𝑥

∞

0

    =
2

𝜋
∫ 𝑛 ln 𝑥 + ln|(𝜙(𝑖/𝑥))| 𝑑𝑥

∞

0

 

Proof.   we can write the characteristic polynomial as 𝜙(𝑥) = ∏ (𝑥 − 𝜇𝑗)𝑛
𝑗=1  

Where µ1 , µ2, · · · , µn are the maximum degree eigenvalues. Now note that 

𝜙(𝑖/𝑥)𝜙(−𝑖/𝑥) =  ∏( 𝑖 𝑥 − 𝜇𝑗⁄ )(− 𝑖 𝑥 − 𝜇𝑗⁄ ) = ∏(
1

𝑥2
+ 𝜇𝑗

2)

𝑛

𝑗=1

𝑛

𝑗=1

 

So  𝑥2𝑛 𝜙(𝑖 𝑥⁄ )𝜙(−𝑖 𝑥⁄ ) = ∏ (1 + 𝜇𝑗
2𝑥2)𝑛

𝑗=1  
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and consequently 

∫
1

𝑥2
ln(𝑥2𝑛𝜙(𝑖 𝑥⁄ )𝜙(−𝑖 𝑥⁄ )) 𝑑𝑥 = ∑ ∫

1

𝑥2
ln (1 + 𝜇𝑗

2𝑥2)

∞

0

𝑛

𝑗=0

∞

0

 

By lemma 1.1 it follows that  

∫
1

𝑥2
ln(𝑥2𝑛𝜙(𝑖 𝑥⁄ )𝜙(−𝑖 𝑥⁄ )) 𝑑𝑥 = ∑ 𝜋|𝜇𝑗| = 𝜋𝐸𝑀(𝐺)

𝑛

𝑗=0

∞

0

 

and the first identity follows. Since 𝜙(𝑥) is a polynomial with real coefficients, we have 𝜙(𝑖 𝑥⁄ ) = 𝜙(−𝑖 𝑥⁄ ) for real 

values of x. Thus 

𝜙(𝑖 𝑥⁄ )𝜙(−𝑖 𝑥⁄ ) = | 𝜙(𝑖 𝑥⁄ )|2 

and we obtain 

𝐸𝑀(𝐺) =
1

𝜋
∫

1

𝑥2
ln(𝑥2𝑛| 𝜙(𝑖 𝑥⁄ )|2) 𝑑𝑥

∞

0

 

𝐸𝑀(𝐺) =
2

𝜋
∫(𝑛 ln 𝑥 + 𝑙𝑛 |𝜙(𝑖 𝑥⁄ )|)𝑑𝑥

∞

0

 

Theorem 2.2. [12] If G is bipartite and µ is an 

eigenvalue of G with respect to maximum degree 

matrix with multiplicity m, then −µ is also an 

eigenvalue with multiplicity m 

Lemma 2.2. Let G be a bipartite graph with n 

vertices.  If  m ≢ n mod 2, the the coefficient of x
m   

in the characteristic polynomial of G with respect to 

maximum degree matrix is 0 

Proof.  If G is bipartite graph, then from Theorem 

2.2 the spectrum of maximum degree matrix is 

symmetric with respect to 0. Hence the required 

result. 

Theorem 2.3. Let the characteristic polynomial of 

maximum degree matrix of a graph G 

be    𝜙(𝑥) = det(𝑥𝐼 − 𝑀(𝑔)) = ∑ 𝑎𝑘𝑥𝑛𝑛
𝑘=0  

The maximum degree energy of G can be expressed as 

 

𝐸𝑀(𝐺) =
1

𝜋
∫

1

𝑥2
𝑙𝑛

∞

0

[( ∑ (−1)𝑗𝑎2𝑗𝑥2𝑗

𝑗≤𝑛/2

)

2

+ ( ∑ (−1)𝑗𝑎2𝑗+1𝑥2𝑗+1

𝑗≤(𝑛−1)/2

)

2

] 𝑑𝑥 

In particular, if G is bipartite graph, then 

𝐸𝑀(𝐺) =
2

𝜋
∫

1

𝑥2
𝑙𝑛

∞

0

( ∑ (−1)𝑗𝑎2𝑗𝑥2𝑗

𝑗≤𝑛/2

) 𝑑𝑥 

Proof. We note that  

   𝑥2𝑛𝜙(𝑖 𝑥⁄ ) = ∑ 𝑎𝑘𝑖𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

  = 𝑖𝑛 ( ∑ (−1)𝑗𝑎2𝑗𝑥2𝑗 − 𝑖

𝑗≤𝑛/2

∑ (−1)𝑗𝑎2𝑗+1𝑥2𝑗+1

𝑗≤(𝑛−1)/2

) 

and analogously 

 𝑥2𝑛𝜙(− 𝑖 𝑥⁄ ) = ∑ 𝑎𝑘(−𝑖)𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

  = (−𝑖)𝑛 ( ∑ (−1)𝑗𝑎2𝑗𝑥2𝑗 + 𝑖

𝑗≤𝑛/2

∑ (−1)𝑗𝑎2𝑗+1𝑥2𝑗+1

𝑗≤(𝑛−1)/2

) 

It follows that 

                𝑥2𝑛𝜙(𝑖 𝑥⁄ )𝜙(− 𝑖 𝑥⁄ ) = ( ∑ (−1)𝑗𝑎2𝑗𝑥2𝑗

𝑗≤𝑛/2

)

2

+ ( ∑ (−1)𝑗𝑎2𝑗+1𝑥2𝑗+1

𝑗≤(𝑛−1)/2

)

2

 

Hence the required result is a direct consequence of Theorem 1.1 

If G is a bipartite graph, then from Lemma 2.2, we have  2 1 0ja + = , for all j. Hence  
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𝐸𝑀(𝐺) =
2

𝜋
∫

1

𝑥2
𝑙𝑛 ( ∑ (−1)𝑗𝑎2𝑗𝑥2𝑗

𝑗≤𝑛/2

) 𝑑𝑥

∞

0

 

Definition. 

The graph 𝑆𝑛
3 obtained by attaching 𝑛 − 3 pendent vertices to one of the vertices of the cycle 𝐶3. 

 
Figure 1.  𝑆𝑛

3 graph 

Lemma 2.3.  Let 𝑛 ≥ 4 then the characteristic polynomial of 𝑆𝑛
3 is  

𝜇𝑛−4(𝜇 + 2)(𝜇3 − 2𝜇2 − (𝑛 − 1)3𝜇 + 2(𝑛 − 3)(𝑛 − 1)2 

Proof.   The maximum degree matrix of  
3

nS  according to the vertex labeling shown in Fig.1 is of order  n × n and 

is given by 

𝑀(𝑆𝑛
3) = (

𝐴3×3 𝐵3×(𝑛−3)

𝐵(𝑛−3)×3
𝑇 𝑂(𝑛−3)×(𝑛−3)

) 

Where 𝐴 = (
0 𝑛 − 1 𝑛 − 1

𝑛 − 1 0 2
𝑛 − 1 2 0

) , 𝐵 = (
𝑛 − 1 𝑛 − 1 ⋯

0 0 ⋯
0 0 ⋯

    
𝑛 − 1

0
0

) and O is the null matrix of size (𝑛 −

3) × (𝑛 − 3). 

 

If 𝑅𝑖 is the 𝑖𝑡ℎ row of the determinant  |𝜇𝐼 − 𝑀(𝑆𝑛
3)|, 

then  𝑅2 = 𝑛 − 1, −𝜇, 2, 0, . . . ,0)   and 𝑅3 = 𝑛 −

1, 2, −𝜇, 0, . . . ,0). Replacing 𝑅2 by 𝑅2 − 𝑅3, we get 

the second row as          (𝜇 + 2)(0, −1, 1, 0, … , 0). 

Hence (𝜇 + 2) is one of the factors of  |𝜇𝐼 − 𝑀(𝑆𝑛
3)| 

Replacing 𝑅𝑖 by 𝑅𝑖 − 𝑅𝑗 for j = 4, 5, …, n-1, we 

conclude that 𝜇 is the common factor at each row 

between 4th and (n-1)-th. Hence 𝜇𝑛−4 is one of the 

factors of |𝜇𝐼 − 𝑀(𝑆𝑛
3)|.  Using elementary 

mathematical simplifications, we get the rest of the 

result. 

 

 

 

Definition. 

The graph 𝑆𝑛
4 obtained by attaching 𝑛 − 4 pendent 

vertices to one of the vertices of the cycle 𝐶4. 

 
Figure 2.  𝑆𝑛

4 graph 

 

 

Lemma 2.4.   Let 𝑛 ≥ 5 then the characteristic polynomial of 𝑆𝑛
4 is 

𝜇𝑛−4(𝜇4 − 𝑛((𝑛 − 2)(𝑛 − 4) + 4)𝜇2 + 8(𝑛 − 4)(𝑛 − 2)2) 

Proof.  The maximum degree matrix of 
4

nS  according to the vertex labeling shown in fig.1 is of size n n  and 

given by  

𝑀(𝑆𝑛
3) = (

𝐴4×4 𝐵4×(𝑛−4)

𝐵(𝑛−4)×4
𝑇 𝑂(𝑛−4)×(𝑛−3)

) 
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Where 

0 2 0 2 2 2 ... 2

2 0 2 0 0 0 ... 0
,

0 2 0 2 0 0 ... 0

2 0 2 0 0 0 ... 0

n n n n n

n
A B

n

− − − − −   
   

−   = =
   
   

−   

 and O is the null matrix of size 

(𝑛 − 4) × (𝑛 − 4) 

 

Let 𝑅𝑖 is the 𝑖𝑡ℎ row of the determinant |𝜇𝐼 − 𝑀(𝑆𝑛
4)|  

. Replacing 𝑅𝑖 by 𝑅𝑖 − 𝑅𝑖+1 for           i =  5,6,  …, n-

1,  we conclude that 𝜇  is the common factor at each 

row between 5th and (n-1)-th.. Also replacing 𝐶𝑛 −

𝐶𝑛−1. We get 𝜇 is the common factor.  Hence 𝜇 𝑛−4 is 

one of the factors of |𝜇𝐼 − 𝑀(𝑆𝑛
4)|. Using elementary 

mathematical simplifications, we get the rest of the 

result. 

Theorem 2.4. Let G be a unicyclic graph with 𝑛 ≥ 5 

vertices. Then 

𝐸𝑀(𝑆𝑛
4) < 𝐸𝑀(𝑆𝑛

5) 

 

 

Proof.   We have from Lemma 2.3.    

|𝜇𝐼 − 𝑀(𝑆𝑛
3)| = 𝜇𝑛−4[𝜇4 − ((𝑛 − 1)3 + 4))𝜇2 − 4(𝑛 − 1)𝜇 + 4(𝑛 − 3)(𝑛 − 1)2] 

Also from Lemma 2.4, we have  

|𝜇𝐼 − 𝑀(𝑆𝑛
4)| = 𝜇𝑛−4[𝜇4 − 𝑛((𝑛 − 2)(𝑛 − 4) + 4)𝜇2 + 8(𝑛 − 4)(𝑛 − 2)2] 

By theorem 2.3, we have  

𝐸𝑀(𝑆𝑛
4) − 𝐸𝑀(𝑆𝑛

3) =
1

𝜋
∫

1

𝑥2
[

(1 + 𝑛((𝑛 − 2)(𝑛 − 4) + 4)𝑥2 + 8(𝑛 − 4)(𝑛 − 2)2𝑥4)2

(1 + ((𝑛 − 1)3 + 4)𝑥2 + 4(𝑛 − 3)(𝑛 − 1)2𝑥4)2 + (4(𝑛 − 1)𝑥3)2
] 𝑑𝑥

∞

0

 

Let  

𝑓(𝑥) = [1 + 𝑛((𝑛 − 2)(𝑛 − 4) + 4)𝑥2 + 8(𝑛 − 4)(𝑛 − 2)2𝑥4]
2
 

                                            −[1 + ((𝑛 − 1)3 + 4)𝑥2 + 4(𝑛 − 3)(𝑛 − 1)2𝑥4]2 − 16(𝑛 − 1)2𝑥6   

Then 

𝑓(𝑥) = 2(𝑛(𝑛 − 2)(𝑛 − 4) − (𝑛 − 1)(𝑛 + 1)(𝑛 − 3))𝑥2 

+[𝑛2(𝑛 − 2)(𝑛 − 4)((𝑛 − 2)(𝑛 − 4) + 8) + 16(𝑛2 − 1) + 16(𝑛 − 2)2(𝑛 − 4)

− 8(𝑛 − 1)2(𝑛 − 3) − 8(𝑛 − 1)2 − (𝑛 − 1)6]𝑥4 

+[16𝑛(𝑛 − 2)2(𝑛 − 4)((𝑛 − 2)(𝑛 − 4)2 + 4) − 8(𝑛 − 1)2((𝑛 − 3)((𝑛 − 1)3 + 4) − 16(𝑛 − 1)2]𝑥6 

+[64(𝑛 − 2)4(𝑛 − 4)2 − 16(𝑛 − 1)4(𝑛 − 3)2]𝑥8 

It is clear that  𝑓(𝑥) < 0, ∀𝑛 ≥ 5 

Hence  𝐸𝑀(𝑆𝑛
4) < 𝐸𝑀(𝑆𝑛

5) 
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