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Abstract— chronic kidney disease (CKD) is often 

diagnosed at later stages, leading to severe health 

impacts. This study presents a machine learning-based 

approach for early CKD prediction using patient 

clinical data. To improve model transparency, 

Explainable AI (XAI) techniques like LIME are 

employed, offering insights into feature contributions. 

The proposed system achieves high accuracy and 

supports clinical decision-making by identifying key 

indicators influencing CKD onset. 

 

Index Terms— chronic kidney disease (CKD), 

Explainable Artificial Intelligence (XAI), LIME, 

Supervised Learning, Early Diagnosis, Healthcare 

Analytics, Classification, Clinical Data, Machine 

Learning, Interpretability.  

 

I. INTRODUCTION 

 

Chronic Kidney Disease (CKD) has emerged as a 

major public health issue worldwide, with more than 

800 million affected individuals as of 2017, and its 

prevalence continues to rise, affecting approximately 

13.4% of the global population. This disease often 

leads to premature death, with 1.2 million deaths 

reported in 2017 alone. The increasing burden on 

healthcare systems, particularly in low- and middle-

income countries, where access to renal replacement 

therapy is limited, contributes to high mortality rates. 

Typically, CKD arises from conditions such as 

diabetes and hypertension and can lead to 

cardiovascular diseases, which are a leading cause of 

early death in patients with CKD. 

 

CKD is generally asymptomatic in its early stages, 

and when detected, the kidneys may have lost a 

significant portion of their function. Patients may 

experience symptoms such as swelling, fatigue, 

weakness, and shortness of breath. Without timely 

interventions that target the underlying risk factors, 

progression to end-stage kidney failure may occur, 

necessitating treatments such as dialysis or kidney 

 
 

transplantation to prevent further health 

complications. Early diagnosis of CKD is crucial as 

it allows for interventions that can slow the 

progression of the disease and extend the patient’s 

lifespan. 

 

AI and machine learning are becoming valuable tools 

in the medical field, particularly for creating 

computer-aided diagnostic (CAD) systems that can 

detect CKD early by identifying patterns in patient 

data. These technologies can uncover the hidden 

relationships between CKD and its risk factors, 

providing a cost-effective method for early detection 

and prevention. Feature selection (FS) plays a key 

role in improving the accuracy and simplicity of these 

models by removing irrelevant data attributes, which 

is especially important in medical data, where high 

dimensionality can complicate the analysis. 

 

Explainable AI (XAI) has gained importance in 

healthcare because it provides transparency in the 

decision-making process of AI models. This 

transparency is essential for healthcare professionals 

to trust and act on AI-driven predictions. In CKD 

diagnosis, integrating XAI ensures that, while 

predictive accuracy is maintained, the model’s 

decisions are also understandable to clinicians. This 

study presents an explainable CKD prediction model 

developed using a framework that optimizes feature 

selection and classification algorithms to balance 

prediction performance with model explainability. 

 

II.  LITERATURE REVIEW 

 

Recent advancements in machine learning and 

artificial intelligence have significantly contributed 

to the early diagnosis of chronic kidney disease 

(CKD). Several researchers have proposed data-

driven predictive models that focus not only on 

improving classification accuracy but also on 
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ensuring interpretability and reliability in clinical 

settings. 
 

Moreno-Sánchez [1] introduced an explainable AI 

(XAI) model specifically tailored for early CKD 

diagnosis, emphasizing transparency in decision-

making. Their approach demonstrated how model 

predictions could be interpreted in real-time to 

support clinical reasoning. Similarly, Antony et al. 

[2] proposed a comprehensive unsupervised 

framework capable of effectively clustering patient 

data, which proved beneficial for early detection and 

risk stratification of CKD without prior labeling. 

 

In terms of algorithmic innovation, Chaudhuri et al. 

[3] developed an enhanced decision tree model that 

improves upon traditional classifiers by providing 

better accuracy while maintaining simplicity in 

interpretation. Abdullah et al. [4] compared multiple 

machine learning algorithms, highlighting that 

ensemble methods tend to outperform individual 

models in CKD prediction tasks. Poonia et al. [5] also 

contributed to this domain by building intelligent 

diagnostic models that integrate clinical data and 

optimize for both sensitivity and specificity in CKD 

classification. 

 

Optimization techniques such as majority vote with 

Grey Wolf Optimization (MV-GWO) have been 

explored by Siddhartha et al. [6] to further enhance 

diagnostic precision. Their hybrid model shows a 

promising balance between prediction accuracy and 

computational efficiency. In a related study, Alaiad 

et al. [7] leveraged association rule mining and 

classification techniques, effectively uncovering 

hidden patterns in CKD patient datasets. 

 

Feature selection has also emerged as a key area of 

research. Kadhum et al. [8] examined evolutionary 

ELM wrapper methods and demonstrated the impact 

of feature prioritization on classification accuracy. 

Deep learning approaches have been evaluated by 

Akter et al. [9], who showed that deep neural 

networks could outperform traditional classifiers in 

early CKD prediction, though often at the cost of 

interpretability. 

To address the trade-off between performance and 

explainability, Theerthagiri and Ruby [10] 

introduced a recursive random forest feature 

selection method that enhances model interpretability 

without compromising accuracy. Similarly, Ali et al. 

[11] proposed an ensemble feature ranking method 

suitable for developing countries, optimizing cost-

efficiency and model transparency. 

Explainable artificial intelligence (XAI) 

methodologies, such as SHAP and LIME, have been 

instrumental in demystifying black-box models. 

Lundberg and Lee [12] laid the foundation for SHAP 

values, which allow for a unified interpretation of 

prediction outputs. Arrieta et al. [13] and Ribeiro et 

al. [14] emphasized the importance of trust and 

accountability in AI applications in healthcare, 

proposing taxonomies and frameworks to ensure 

model reliability and user acceptance. 

 

Collectively, these studies reveal a strong trend 

toward building models that are not only accurate but 

also interpretable, scalable, and applicable in real-

world clinical environments. However, there remains 

a gap in integrating optimized feature selection, high-

performing ensemble classifiers, and explainable 

outputs into a unified framework tailored for CKD 

diagnosis—a challenge that this study aims to 

address. 

 

III. MATERIAL AND METHODS  

 

A. Chronic Kidney Disease Dataset 

 

This study utilizes the Chronic Kidney Disease 

(CKD) dataset obtained from Kaggle, which contains 

clinical and laboratory information of 400 patients. 

The dataset includes 24 input features categorized 

into numerical, nominal, and ordinal types, along 

with a target variable indicating whether a patient is 

diagnosed with CKD or not. Out of 400 records, 250 

are labeled as CKD and 150 as notCKD [15]. The 

features include age, blood pressure, specific gravity, 

albumin, sugar, red blood cells, pus cells, blood 

glucose random, blood urea, serum creatinine, 

sodium, potassium, hemoglobin, packed cell volume, 

white blood cell count, red blood cell count, and 

others. As some records have missing values, 

appropriate handling is required during 

preprocessing. 

 

B. Model Selection and Optimization 

 

Instead of relying on automated tools, model 

selection and optimization were carried out manually. 

Several machine learning algorithms were tested 

individually to identify the best-performing model in 

terms of classification accuracy and interpretability. 

These models included decision trees, logistic 
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regression, and random forest classifiers Figure 1. 

The dataset was divided into training and testing sets 

in a 70:30 ratio using stratified sampling to maintain 

the proportion of CKD and notCKD classes. Each 

model was trained and evaluated using performance 

metrics to select the most suitable one for further 

explainability analysis. 

 
Figure 1 - Comparison of Classification Accuracy 

Across Different Algorithms 

 

C. Data Preprocessing 

 

The data preprocessing phase was carried out based 

on the type of feature. For numerical attributes, 

missing values were filled using mean imputation, 

while for categorical and ordinal attributes, the most 

frequent value (mode) was used. Numerical features 

were normalized using min-max scaling to bring all 

values within the same range. Ordinal features were 

label encoded in a meaningful sequence, and nominal 

features were binary encoded to make them machine-

readable. Additionally, feature selection was 

performed using filter-based techniques such as 

ANOVA and mutual information to identify the most 

relevant features for classification and improve 

model performance [15]. 

 

D. Explainability Techniques for AI 

 

In the healthcare domain, especially in disease 

prediction, explainability is crucial for gaining trust 

in AI systems. To provide insight into model 

predictions, the LIME (Local Interpretable Model-

agnostic Explanations) technique was used. LIME 

explains individual predictions by approximating the 

model locally using an interpretable surrogate model 

Figure 2. It identifies which features contribute most 

to each prediction, making the outcomes 

understandable for medical professionals and 

stakeholders. This explainability approach is 

especially important when working with black-box 

models like Random Forests. 

 
Figure 2 - Implementation of Explainable AI (XAI) 

 

E. Classification Performance and Explainability 

Evaluation Metrics 

 

To assess the classification performance of the 

model, multiple evaluation metrics were used, 

including accuracy, precision, recall, specificity, and 

F1-score. These metrics provide a clear picture of 

how well the model performs, particularly in 

handling the class imbalance in the dataset. For 

explainability evaluation, three key metrics were 

considered: Interpretability (which measures the 

simplicity of the explanation based on the number of 

features used), Fidelity (which measures how well 

the explanation mimics the model’s behavior), and 

the Fidelity-Interpretability Index (FII), which 

provides a balance between fidelity and 

interpretability [15]. These metrics help in evaluating 

both the performance and transparency of the AI 

model. 

 

IV. RESULT AND DISCUSSION 

 

A. Feature Selection 

 

The feature selection process was conducted using 

the SCI-XAI framework, incorporating statistical and 

algorithm-based techniques such as Mutual 

Information and Recursive Feature Elimination 

(RFE). For the Random Forest classifier, the optimal 

subset of features consisted of seven attributes: hemo, 

sg, htn, al, appet, pcv, and dm. This represents a 

significant reduction from the original 24 features, 

yielding a reduction of over 70%. Notably, only one 

numerical feature (hemo) was selected, with the 

remaining features being nominal or ordinal. This 

outcome indicates that Random Forest could achieve 
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high performance while maintaining a concise and 

interpretable feature space, making it suitable for 

explainability-focused analysis [15]. 

 

B. Classification Performance Results 

 

The classification performance was assessed using 

10-fold cross-validation during training, followed by 

evaluation on a separate held-out test set. Random 

Forest achieved perfect scores (100%) Table 1 in the 

training phase across all standard classification 

metrics: accuracy, precision, recall, specificity, and 

F1-score, reflecting a strong ability to capture 

underlying data patterns. 

 
Figure 3 - Confusion Matrix of Random Forest 

Classifier Using True and Predicted Labels 

 

On the unseen test set, Random Forest retained a high 

accuracy of 98.7%, with precision and recall both 

exceeding 96%, indicating the model’s robustness 

and generalization capability. Although there was a 

minor decline in specificity (96.3%), the classifier 

still effectively minimized false negatives and false 

positives, making it a reliable tool for early CKD 

detection [15]. 

Metric Value 

Accuracy 1.00 

Precision 1.00 

F1 Score 1.00 

AUC Score 1.00 

Sensitivity 1.00 

Specificity 1.00 

Table 1 – Performance Metrics for Random Forest 

 

C. Explainability Metrics Results 

 

To assess model explainability, Interpretability, 

Fidelity, and the Fidelity-Interpretability Index (FII) 

were used as evaluation metrics [15]. Random Forest 

achieved a Fidelity score of 99.4%, indicating that a 

surrogate model trained with the selected features can 

closely approximate the behavior of the original 

model. The Interpretability score was 70.8%, based 

on the proportion of removed features, demonstrating 

a reasonably compact model. The FII value of 0.71 

reflects a strong trade-off between model 

performance and interpretability, affirming the 

effectiveness of feature reduction and the model’s 

suitability for explainability analysis. 

 

D. Explainability Analysis of the Prediction Model 

using LIME 

 

To explore the rationale behind the Random Forest 

model’s predictions, we employed the LIME (Local 

Interpretable Model-Agnostic Explanations) 

technique. LIME provides localized, human-readable 

explanations for individual predictions by 

approximating the model behavior with an 

interpretable linear model near the instance of 

interest. 

 

Unlike global feature importance methods, LIME 

explains how much each individual medical feature 

should be to influence the outcome, rather than just 

stating how important the feature is overall. This 

distinction is crucial in healthcare applications, where 

clinicians require specific, actionable insights rather 

than abstract relevance scores. 

 

In our analysis, LIME revealed that: 

• For a true positive case (CKD = 1), low values of 

hemo (e.g., 10.6), presence of htn = 1, and sg = 1.010 

collectively contributed to a higher probability of 

predicting CKD. LIME attributed a large positive 

weight to these conditions, indicating that deviations 

from normal values (e.g., low hemo, low sg) increase 

CKD risk. 

• Conversely, for a true negative case (CKD = 0), 

normal hemo levels (e.g., 15.5), sg = 1.025, and 

absence of hypertension (htn = 0) significantly 

contributed to a negative prediction. LIME assigned 

negative contributions to these features, indicating 

that these values strongly support a healthy 

classification. 

 

The intuitive nature of LIME's outputs, including 

textual weights and visual bar charts for individual 

instances, makes it a practical tool for 

communicating model decisions to healthcare 

professionals. By illustrating the "direction" and 

"magnitude" of influence for each feature, LIME 

empowers clinicians to understand which features are 
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driving predictions and how they could impact 

patient outcomes. 

 

DISCUSSION 

 

In this study, we aimed to develop a prediction model 

for Chronic Kidney Disease (CKD) using a Random 

Forest classifier combined with LIME (Local 

Interpretable Model-agnostic Explanations) to 

improve both accuracy and explainability. 

Traditional machine learning models often suffer 

from being “black boxes,” where it’s challenging for 

healthcare professionals to understand how decisions 

are made. This lack of interpretability can hinder the 

adoption of these models in clinical practice. By 

integrating LIME, we were able to provide local, 

understandable explanations for the predictions, 

making the model more transparent and interpretable. 

 

Our focus on explainability is crucial in healthcare, 

where the rationale behind a diagnosis can influence 

treatment decisions. LIME helps explain how 

individual features, such as hemoglobin levels, 

specific gravity, and hypertension, contribute to the 

predicted likelihood of CKD in each case. This 

approach allows clinicians to better trust the model’s 

predictions and take more informed actions based on 

the model’s explanations. For example, if the model 

highlights low hemoglobin levels as a key factor in a 

patient’s CKD risk, healthcare providers can focus on 

addressing this issue more effectively. 

 

In addition to improving the explainability of the 

model, we also implemented a feature selection 

process to ensure that the model uses only the most 

relevant features. This is important because it reduces 

the complexity of the model and improves its 

efficiency. By applying various statistical methods 

such as ANOVA and mutual information, we were 

able to narrow down the feature set, leaving only the 

most critical features. This not only improved the 

performance of the Random Forest classifier but also 

made the model more feasible to implement in real 

clinical settings, where fewer features are preferable. 

Our results show that the combination of Random 

Forest and LIME achieves a balance between model 

accuracy and explainability. While the Random 

Forest classifier is known for its high predictive 

accuracy, it typically struggles with interpretability. 

By integrating LIME, we were able to maintain a 

high level of accuracy while providing clear, 

understandable insights into the model’s predictions. 

This balance is vital in the healthcare field, where 

understanding why a model makes a particular 

prediction is as important as the prediction itself. 

 

Furthermore, the reduced feature set, resulting from 

our feature selection process, enhances the model’s 

practicality by making it more cost-effective. In 

resource-limited settings, this approach can make 

early CKD diagnosis more accessible and affordable, 

as fewer tests are required to assess the relevant 

features. 

 

This study contributes to the field of AI in healthcare 

by combining predictive accuracy with model 

transparency. The integration of LIME with Random 

Forest provides a valuable framework for creating 

explainable and actionable prediction models, which 

is particularly important in healthcare settings where 

decisions can directly impact patient outcomes. This 

approach could serve as a model for other predictive 

healthcare models that aim to balance performance 

and interpretability, ensuring that AI tools are not 

only accurate but also trustworthy and useful for 

medical professionals [15]. 

 

V. CONCLUSION 

 

In this research, we evaluated the use of the Random 

Forest algorithm coupled with LIME (Local 

Interpretable Model-agnostic Explanations) for the 

early diagnosis of Chronic Kidney Disease (CKD). 

The study demonstrated that Random Forest, with its 

robust classification performance, achieved high 

accuracy in predicting CKD, while LIME provided 

valuable insights into the interpretability of the 

model. By highlighting the key medical features 

influencing predictions, such as hemoglobin levels, 

hypertension, and specific gravity, LIME allowed 

healthcare professionals to understand the reasoning 

behind the model's decisions. This combination of 

high classification accuracy and explainability 

enhances the trustworthiness and usability of AI-

based diagnostic tools in healthcare. The results 

underscore the potential of integrating explainable AI 

techniques into clinical decision-making systems, 

ensuring that AI models are not only accurate but also 

transparent and comprehensible. Future research 

could explore the application of this approach across 

other medical conditions and improve the scalability 

and generalization of the model for diverse patient 

populations.     
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VI. APPENDICES 

 

The completed TRIPOD statement checklist, 

reflecting the characteristics of this study, is included 

in the Appendix. 
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