
© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4388

Podcast Summarizer Using Machine Learning

1Dr.Lutful Islam, 2Arshad Ahmed, 3Ansari Furqan, 4Usama Mulla, 5Shaikh Awez
1 Professor, 2 Student, 3 Student, 4 Student, 5 Student

Department of Computer Engineering, M. H. Saboo Siddik College of Engineering, Mumbai 400008,

India

Abstract—The project titled "Podcast Summarizer

using ML" aims to develop a sophisticated system that

automatically generates concise and accurate

summaries of spoken content in podcasts using

advanced natural language processing (NLP) and

machine learning techniques. The system will leverage

speech-to-text technologies to transcribe audio input

and employ summarization algorithms to extract the

most important information, delivering coherent and

informative summaries. This tool will enhance user

experience by allowing listeners to quickly grasp the

key points of lengthy podcasts, making the vast

amount of audio content more accessible and easier to

navigate. The project also addresses challenges such as

handling diverse accents, varying audio quality, and

ensuring summarization accuracy, providing a

valuable resource for podcast enthusiasts, researchers,

and content creators.

Keywords: Summarizer, NLP, BERT, Sentiment

Analysis, Podcasts.

I. INTRODUCTION

In today’s fast-paced digital era, podcasts have

become a cornerstone for sharing knowledge,

entertainment, and news. However, their popularity

comes with a challenge: the average episode spans

43 minutes, deterring time- constrained listeners.

Lengthy, informal conversations with digressions

and multi-speaker dynamics make it difficult to

extract key insights efficiently, often leading to

missed information or incomplete engagement.

To address this, an AI-driven solution automates the

conversion of lengthy audio into concise summaries.

Leveraging speech-to-text technologies like

OpenAI’s Whisper[6], it transcribes spoken content

accurately, even with accents or background noise.

Advanced natural language processing techniques

then analyze the text, identifying key themes and

generating structured summaries. This hybrid

approach combines extractive methods to highlight

critical sentences and abstractive techniques to

paraphrase content, ensuring clarity and brevity

while preserving context.

The system tackles technical challenges like noise

reduction, speaker identification, and maintaining

coherence in multi-topic discussions. By doing so, it

enhances accessibility for non- native speakers,

hearing-impaired users, and those in noisy

environments. This democratizes access to podcast

content, enabling users to grasp core ideas quickly

and decide which episodes merit deeper exploration.

As podcasts dominate digital media, this tool aligns

with the demand for efficient content consumption.

By condensing hours of audio into digestible

insights, it empowers users to navigate vast libraries

effectively. Future advancements aim to integrate

real-time summarization for live episodes and

personalized outputs based on user preferences,

redefining podcast engagement to be more adaptive,

inclusive, and aligned with modern needs.

II. LITERATURE REVIEW

Existing research in podcast summarization has

explored various approaches to address the

challenges of converting audio content into concise

summaries. Several studies have demonstrated

promising results using different methodologies.

Vartakavi's PodSumm[8] employs a fine-tuned

PreSumm model with data augmentation to

overcome dataset limitations, while Derkach's

work[1] highlights the effectiveness of GPT-2 for

abstractive summarization. Kang and Roy's

framework integrates LLMs with audio encoders for

flexible summarization, outperforming traditional

methods. Song et al. combine extractive and

abstractive techniques to handle open-domain

podcasts, focusing on informal language and diverse

topics. Real-time summarization systems by Jeeva et

al. and Liya et al. emphasize quick, digestible

outputs while addressing audio quality challenges.

However, significant limitations persist in current

systems. Many struggles with contextual

understanding, often oversimplifying complex

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4389

discussions. Audio quality variability and multi-

speaker scenarios frequently degrade performance,

while cultural and linguistic nuances are frequently

missed. These shortcomings highlight critical

research gaps, including the need for improved

transcription techniques for diverse accents, better

evaluation metrics, and platform integration[7].

Ethical considerations around content attribution

and the lack of multilingual capabilities also present

important challenges that require further

investigation to make podcast summarization more

robust and inclusive.

Table 1. Research Gap

Work

Cited

Paper Advanta

ges

Disadvan

tages

1. Aneesh

Vartakavi

PodSum

m:

Podcast

Audio

Summari

zation

The

paper

addresse

s the

specific

challeng

e of

summari

zing long

form

audio

content,

The

accuracy

of the

summariz

ation

depends

heavily on

the quality

of speech-

to- text

transcripti

on, which

 which is

increasin

gly

relevant

given the

rise of

podcasts.

may be

error-

prone,

especially

for noisy

or

accented

speech.

2. Ilia

Derkach

Abstracti

ve

Summari

zation

from

Audio

Transcri

ption

The

paper

tackles

abstracti

ve

summari

zation,

which

generate

s more

human-

like and

concise

summari

es

The

abstractiv

e

summariz

ation

models,

particularl

y those

based on

neural

networks,

are

computati

onally

intensive

compare

d to

extractiv

e

methods

that

merely

copy

portions

of the

transcrip

t.

and may

not be

easily

scalable or

feasible

for real-

time

applicatio

ns without

significan t

resources.

3.

Wonjune

Kang, Deb

Roy

Prompti

ng Large

Languag

e Models

with

Audio for

General

Purpose

Speech

Summari

zation

The paper

leverage

s the

power of

LLMs

(such as

GPT or

similar

architect

ures) to

enhance

the

Large

Language

Models are

computati

onally

expensive

and

require

significan t

resources

for both

 quality of

summari

zation,

which

can

handle a

wide

range of

general-

purpose

speech

data.

training

and

inference,

which may

hinder

real-time

or large-

scale

implemen

tations.

4.

Kaiqiang

Song,

Xiaoyang

Wang,

Dong Yu

Automat

ic

Summari

zation of

Open

Domain

Podcast

Episodes

The paper

addresse s

the

challeng e

of

summari

zing

open-

domain

podcast

episodes,

which

contain

diverse

and

unstructu

The

accuracy

of the

summariz

ation

model is

dependent

on the

quality of

the audio-

to-text

transcripti

on. Poor

transcripti

on (due to

accents,

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4390

red

content,

making it

highly

relevant

for real

world

podcast

applicati

ons.

backgrou

nd noise,

etc.) can

negatively

affect the

final

summary.

5. S.

Jeeva ,

GudlaSai

Sujan

,ArutlaSi

ddharth

Redd

Audio

Summari

zation in

Real Time

for

Podcasts

The

paper

focuses

on real-

time

summari

zation,

which

allows

users to

get

Real-time

summariz

ation may

sacrifice

accuracy

or depth

of the

summarie

s in favor

of speed,

potentiall

 summari

es on the

fly while

listening

to

podcasts,

offering

immedia

te insights

and

time-

saving

benefits.

y leading

to less

informati

ve or less

coherent

summarie

s.

6. Liya

B.S ,

Seenuvas

an V,

Sathya

Prakash K

Audio

summari

zation in

real time

for

podcast,

speeches

and audio

books

The paper

emphasi

zes real-

time

summari

zation for

a variety

of audio

content,

includin g

podcasts,

speeches

, and

audioboo

ks, which

makes it

versatile

for

Real-time

summariz

ation

requires

considera

ble

computati

onal

resources

to process

and

summariz

e audio

efficiently

, making it

less

feasible for

resource

different

audio

formats.

constraine

d environm

ents.

III. PROPOSED SYSTEM

This project represents a significant advancement in

the way we interact with audio content, addressing

the challenges posed by the rapidly growing podcast

industry. With thousands of episodes available on

diverse topics, listeners often face the dilemma of

time constraints, making it difficult to sift

through lengthy recordings to find pertinent

information. This project utilizes sophisticated

natural language processing algorithms to analyze

and condense podcast episodes into concise

summaries that capture the essence of discussions,

key insights, and important themes.

By converting spoken language into structured text,

the summarizer enhances accessibility for a wider

audience, including those who may prefer to skim

content rather than listen to every minute.

Furthermore, the tool aims to improve user

engagement by allowing listeners to personalize

their summaries based on interests, which can help

them prioritize content that resonates with their

preferences. As a result, users can make informed

decisions about which episodes to dive into fully,

saving time while still gaining valuable.

Figure. 1: Architecture Design

Additionally, the project seeks to tackle the issue of

multi-speaker dynamics, ensuring that the

summarization process accurately reflects the

contributions of different hosts and guests, thus

maintaining the richness and context of

conversations. By integrating this summarization

technology with existing podcast platforms, the

project envisions a seamless user experience where

summaries are readily available at the click of a

button. Ultimately, the "Podcast Summarizer using

AI" aims not only to streamline the listening

experience but also to foster a deeper understanding

of diverse topics, empowering users to stay

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4391

informed and engaged in an increasingly

information-rich environment.

Moreover, the project recognizes the importance of

user engagement and interactivity in modern digital

experiences. As such, the summarizer could

incorporate features that allow users to pose

questions or request specific information from the

podcast content, leading to more dynamic

interactions. This could be especially valuable for

educational or informative podcasts, where users

might seek clarification on subjects or themes. By

making summaries interactive, the project can cater

to different learning styles and preferences, further

enhancing the utility of the summarization tool.

Additionally, the ethical implications of

summarization are an essential aspect of this project.

As AI- generated summaries can alter the perception

of the original content, it is crucial to ensure that the

tool respects creators’ rights and maintains the

integrity of the source material. This includes

providing clear attribution to the original podcasts

and potentially offering creators insights into how

their content is being summarized and consumed.

By addressing these ethical considerations, the

project aims to foster a sense of trust and

transparency between content creators and

listeners.[3]

IV. IMPLEMENTATION

The implementation of Podcast summarizer was

guided by a modular, scalable, and user-centric

design philosophy. This section elaborates on the

key components of the system, detailing the

backend, frontend, API, and database

implementations. The goal was to create a seamless

platform that effectively bridges the gap between

elongated podcasts and user understanding, ensuring

robust functionality and a smooth user experience.

4.1 System Overview

The Podcast Summarizer using AI is an automated

system designed to convert lengthy podcast episodes

into concise, informative summaries. Leveraging

advanced speech recognition and natural language

processing technologies, the platform provides users

with quick access to key insights while maintaining

the context and essence of the original content.

The system follows a three-tier architecture

 Frontend – A user-friendly web interface that

allows users to upload podcasts, view

summaries, and customize output preferences.

The interface is responsive and accessible

across devices.

 Backend – Processes audio input using speech-

to-text (Whisper ASR) and applies NLP-based

summarization (BERT, PEGASUS) to generate

structured summaries. The backend also

handles speaker diarization, noise reduction,

and contextual analysis.

 Database – Stores user data, podcast transcripts,

and generated summaries securely, ensuring

fast retrieval and scalability.

By integrating these layers, the system delivers

accurate, efficient, and adaptable podcast

summarization, catering to diverse user needs while

addressing challenges like multi-speaker

conversations, varying audio quality, and contextual

understanding. Future enhancements include real-

time processing and multilingual support.

4.2 Backend Implementation

The backend of the Podcast Summarizer serves as the

core engine, handling podcast ingestion,

transcription, summarization, sentiment analysis,

and modular NLP-based processing. Built using

Python and Streamlit (with a Flask expansion

planned), the backend ensures scalability and

modularity to support advanced audio intelligence

workflows.

4.2.1 Audio & Video Ingestion

This module enables users to upload podcasts or

provide a YouTube video link for processing. Key

responsibilities include:

 Upload Support: Accepts audio

(.mp3,.wav)or video (.mp4) files via

Streamlit’s interface.

 YouTube Support: Uses yt-dlp to fetch and

download videos from user-provided URLs.

 Audio Extraction: Extracts audio using

MoviePy or FFmpeg for downstream

processing.

 Storage: Uploaded files are saved with

session-based unique names for later use.

4.2.2. Transcription & Speaker Diarization This core

module is responsible for converting audio content

into structured text:

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4392

 Whisper Integration: Utilizes OpenAI’s

Whisper model for accurate

transcription[6], handling multiple

languages and long-form speech.

 pyannote.audio: Optional speaker

diarization separates text by individual

speakers, labeling them (e.g., Speaker 1,

Speaker 2).

 Timestamps: Each utterance is aligned with

its original time range in the audio.

4.2.3 Summarization Engine

The summarization module extracts the essence of

the podcast into a concise, readable format:

 Chunking & MapReduce: Long transcripts

are broken into overlapping chunks and

summarized using a two- level

summarization approach.

 Hugging Face Transformers: Models like

BART[5] or T5 are used for generating

high-quality summaries.

 LLAMA 2 from Grok API: For ultra- fast

inference when supported by hardware.

4.2.4 Integration with APIs

While currently powered by Streamlit, the backend

is built to be transitioned into Flask- based REST

APIs.

4.2.5 Sentiment & Keyword Extraction

Natural Language Processing techniques analyze the

mood and essence of the podcast:

 Sentiment Analysis: Uses TextBlob or

VADER to assess polarity and subjectivity.

 Keyword Extraction: Employs NLTK for

stopword removal and CountVectorizer for

extracting dominant keywords.

 Topic Modeling: Applies LDA (Latent

Dirichlet Allocation) to identify major

themes across the episode.

4.2.6 Translation & Text-to-Speech

To enhance accessibility and reach:

 Google Translate API: Translates

summaries and transcripts to multiple

target languages.

 gTTS or Polly: Converts summary into

downloadable speech, enabling voice-

based summaries.

4.3 Frontend Implementation

The user interface is built using Streamlit for rapid

prototyping, with a modular layout and tab- based

navigation. Each major NLP task is presented as a

separate tab for seamless exploration.

Key Features:

 Upload Section: Drag-and-drop interface for

podcasts or YouTube URL input.

 Transcript Viewer: Displays timestamped or

speaker-separated transcripts.

 Summary Display: Presents a concise

overview of the episode.

 Keyword & Sentiment Tabs: Graphically shows

emotional tone, polarity, and key concepts.

 Translation Tab: Allows users to view content in

other languages.

 Audio Player: Play the summarized version

using generated TTS output.

UI elements are designed for clarity and

accessibility, with potential future migration to

React + Tailwind for enhanced control.

4.4 Database Management

The Podcast Summarizer platform uses PostgreSQL

as the primary relational database to store and

manage structured data efficiently. This ensures data

integrity, scalability, and ease of querying for

complex relationships between podcast sessions,

users, transcripts, and analyses.

PostgreSQL:

Stores structured data including user session

metadata, uploaded file references, transcription

segments, speaker diarization results, sentiment

scores, keywords, and summaries.

Well-suited for joining multiple related tables (e.g.,

podcast_sessions, transcriptions, speaker_segments,

nlp_analysis).

Allows use of advanced queries, indexing, and

stored procedures for optimized analytics and

reporting.

The combination of Firebase and MongoDB

enhances the platform's ability to handle dynamic

data flows and maintain scalability.

4.5 System Workflow

The Podcast Summarizer is designed for a seamless

end-to-end user journey:

 Upload or Link: User uploads a file or

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4393

provides a YouTube link.

 Transcription: Audio is transcribed with

Whisper, optionally separated by speakers.

 NLP Analysis: Summary, keywords,

sentiment, and topics are extracted.

 Translation & TTS: Users can convert

content to other languages or speech.

 Output Delivery: The UI presents

organized results across tabs, optionally

allowing export as text/audio.

4.6 Technology Stack Integration

The development of the Podcast Summarizer

platform relies on a modern and scalable technology

stack tailored for audio processing, summarization,

and intelligent content analysis. The stack ensures

high performance for NLP workflows, seamless

audio handling, and a modular architecture to

support both rapid prototyping and future

scalability. Each component plays a strategic role,

from transcription to summarization, keyword

extraction, and user interaction.

4.6.1 Frontend Technologies

The frontend of Podcast Summarizer is built using

React, providing a dynamic and component-driven

interface that supports responsive and intuitive user

experiences. Features such as audio upload, real-

time transcript visualization, summarization output,

and segmented tabs for each NLP task are handled

through this interactive interface.

Vite serves as the build tool and development

server, enabling lightning-fast hot module reloading

and optimized bundling for production. It

significantly improves developer productivity and

ensures the frontend remains lightweight and

performant.

Tailwind CSS is used to design a visually clean,

mobile-responsive UI with utility-first styling. This

allows for rapid prototyping and the creation of

reusable design components across the application

— including transcript cards, summary containers,

keyword lists, and sentiment analysis charts.

Axios facilitates communication between the

frontend and backend services by handling HTTP

requests efficiently. It ensures smooth data flow

when fetching processed transcripts, summaries, or

audio files from the backend, with built-in support

for error handling and asynchronous operations.

React Query further enhances data management by

abstracting fetch logic, caching, and background

updates. It simplifies the integration with backend

APIs, especially when polling for long-running

transcription or summarization jobs.

4.6.1 Backend Technologies

The backend is designed using Python with Flask, a

lightweight microframework that handles core API

endpoints for file uploads, audio processing,

transcription, and text summarization. Flask enables

fast development and easy integration with machine

learning libraries and external APIs.

FFmpeg and yt-dlp are used for pre-processing

audio files — including downloading audio from

YouTube, trimming, resampling, and converting

audio formats before feeding them into transcription

pipelines.

The backend is modular, with each NLP component

(transcription, summarization, sentiment analysis,

etc.) implemented as independent service logic,

enabling flexibility and easy scalability.

4.6.2 Databases

PostgreSQL is used as the primary relational

database to store user uploads, job status, processed

transcripts, summary data, and system logs.

SQLAlchemy ORM ensures smooth integration

with Python, making it easier to interact with

database tables via Pythonic classes and models.

GitHub manages source control, collaboration, and

CI/CD pipelines, ensuring continuous updates and

version control for the application codebase.

Streamlit is used as an internal prototyping tool

during development and testing of individual NLP

components such as keyword extractors, topic

models, and summarizers. This allows for rapid

experimentation and visualization of outputs

4.6.3 Integration Workflow

 Frontend Communication: The frontend,

built with React and styled with Tailwind

CSS, uses Axios to interact with backend

APIs. Redux Toolkit manages the

application state for smooth transitions

between components.

 Backend Processing: Spring Boot and

Flask power the backend logic, handling

requests, processing data, and interacting

with the databases.

V. RESULTS AND DISCUSSIONS

A. RESULTS

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4394

Figure 2: Feature Overview Page

Figure 2 showcases the core features, a YouTube

podcast summarization tool. The platform offers

accurate AI-powered summaries with adjustable

length, timestamp references, and speaker

identification. It supports Hindi and English

podcasts with native language processing and

regional dialect recognition. Additionally, this

includes a personalized note-taking system that

allows users to highlight, save, and export key

moments. These features demonstrate a user-

friendly approach to podcast summarization and

serve as a baseline for comparison in evaluating our

proposed system.

Figure 3: Workflow of the Summarization

This figure illustrates the simple three-step

workflow of the system tool for summarizing

YouTube podcasts. The process begins by pasting

the podcast URL into the summarizer interface.

Next, the system analyzes the audio and transcripts

using AI to extract key points and relevant content.

Finally, it generates a comprehensive summary

enriched with timestamps and emotion analysis.

This user- friendly workflow highlights automation

and accessibility, serving as a reference model for

comparison in the design of our proposed system.

Figure 4: Visualization of Podcast to Summary

Conversion

This figure demonstrates how system visualizes the

transition from a full-length podcast to a concise

summary. After the user pastes a YouTube podcast

URL and initiates the summarization, the tool

extracts key points, discussion topics, and speaker

quotes. The timeline graphic at the bottom

represents segments of the podcast, each annotated

with important insights. This visualization helps

users quickly identify and navigate through essential

parts of the content. It enhances usability and

offers a clear overview of the summarized material

in a visually intuitive manner.

Figure 5: Summary Generation

This figure presents the summarized output and

emotion analysis generated by the system tool for a

podcast on AI in healthcare. The summary

highlights main topics such as diagnostics,

personalized treatment, and automation, with key

points outlining the impact and advantages of AI. On

the right, an emotion detection chart shows that 72%

of the content conveys a positive tone, 23% is

neutral, and only 5% is negative. The analysis

suggests excitement when discussing breakthroughs.

A notes section allows users to add personal

reflections to the podcast. The export and saving

features enhance usability for future reference.

B. DISCUSSIONS

The proposed system, “Podcast Summarizer using

Machine Learning,” successfully demonstrates the

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4395

integration of multiple Natural Language Processing

techniques to automate the summarization of long-

form audio content. The results from our

implementation highlight the practicality and

usefulness of such a system, especially in

educational, professional, and infotainment domains

where time saving is essential.

One of the key strengths of our model is the use of

pre-trained models like Whisper[6] for transcription

and BART[5] for summarization. These models

provide high accuracy and fluency in output without

requiring extensive training on custom datasets. The

system also ensures that the summaries generated

retain the core context and structure of the original

podcasts, making them useful for quick

comprehension.

However, there are a few limitations observed. The

quality of the summaries can degrade for audio

inputs with poor sound quality, multiple speakers, or

heavy background noise. Additionally, highly

technical podcasts may lose some precision in their

summaries due to domain- specific terminology not

being handled adequately.

Despite these limitations, our project opens avenues

for future research and development. Integrating

speaker diarization, emotion detection, and multi-

lingual support could enhance the robustness and

versatility of the summarizer. Furthermore, real-

time summarization or keyword-based

summarization are promising directions for future

improvement.

VI. CONCLUSION

Our Podcast Summarizer Project demonstrates the

effective integration of modern technologies to

address the growing demand for digestible audio

content. By combining a Flask backend with a

React.js frontend, the system provides a modular

and scalable architecture. Core features like speech-

to-text transcription using Whisper, speaker

diarization, summarization via BART/Groq APIs,

sentiment analysis, translation, and text-to-speech

conversion are seamlessly orchestrated to deliver an

intuitive and intelligent platform. With PostgreSQL

handling structured data and Docker streamlining

deployment, the application ensures reliability,

performance, and ease of maintenance. This project

stands as a comprehensive solution for podcast

consumers and researchers seeking fast and focused

audio content insights.

ACKNOWLEDGEMENT

We extend our heartfelt gratitude to our esteemed

Director, Dr. Mohiuddin Ahmed, and our In- Charge

Principal Dr. Ganesh Kame at M.H. Saboo Siddik

College of Engineering for providing the facilities,

unwavering support, and an excellent environment

essential for fulfilling our project requirements. Our

deepest thanks go to our internal project guide, Prof.

Dr Lutful Islam for her invaluable guidance and

willingness to share her extensive knowledge. Her

continuous support and insights enabled us to gain a

profound understanding of the project and

successfully complete it. Additionally, we are

grateful to the staff of the Computer Department,

particularly the Laboratory staff, for granting us

access to the labs and providing the resources

required for the project. Lastly, we acknowledge the

guidance of other supervisors and project mentors.

Their constructive feedback and helpful suggestions

greatly enhanced our presentation skills and overall

project execution.

REFERENCES

[1] Chujie Zheng, Harry Jiannan Wang, Kunpeng

Zhang, and Ling Fan, “A baseline analysis for

podcast abstractive summarization,” PodRecs:

The Workshop on Podcast Recommendations,

September 25 2020.

[2] Damiano Spina, Johanne R. Trippas, Lawrence

Cavedon, and Mark Sanderson, “Extracting

audio summaries to support effective spoken

document search,” Journal of the Association

for Information Science and Technology,

September 16 2017.

[3] Nikhil Garg, Benoit Favre, Korbinian

Reidhammer, and Dilek Hakkani-Tur,

“Clusterrank: a graph based method for meeting

summarization,” ¨ in Tenth Annual Conference

of the International Speech Communication

Association, February 18 2009.

[4] Yaser Keneshloo, Tian Shi, Naren

Ramakrishnan, and Chandan K Reddy, “Deep

reinforcement learning for sequence-to-

sequence models,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 31, July 7

2019.

[5] Ramesh Nallapati, Feifei Zhai, and Bowen

Zhou, “Summarunner: A recurrent neural

network based sequence model for extractive

summarization of documents,” in 31st AAAI

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175700 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4396

Conference on Artificial Intelligence, San

Francisco, CA, USA, February 4 2017.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee,

and Kristina Toutanova, “BERT: Pre-training of

deep bidirectional transformers for language

understanding,” in 17th Annual Conference of

the North American Chapter of the Association

for Computational Linguistics: Human

Language Technologies, Minneapolis, MN,

USA, June 2 2019.

[7] Chin-Yew Lin, “ROUGE: A package for

automatic evaluation of summaries,” in

Workshop on Text Summarization Branches

Out, Barcelona, Spain, July 26 2004.

[8] A. Vartakavi, A. Garg and Z. Rafii, "Audio

Summarization for Podcasts," 29th European

Signal Processing Conference (EUSIPCO),

2021 27.

[9] R. K. Yadav, R. Bharti, R. Nagar and S. Kumar,

"A Model For Recapitulating Audio Messages

Using Machine Learning," International

Conference for Emerging Technology

(INCET), 2020.

[10] P. G. Shambharkar and R. Goel, "Analysis of

Real Time Video Summarization using

Subtitles," International Conference on

Industrial Electronics Research and

Applications (ICIERA), 2021.

[11] OpenAI, “Whisper: Robust Speech Recognition

via Large-Scale Weak Supervision,” 2022.

[Online]. Available:

https://openai.com/research/whisper

https://openai.com/research/whisper

