
© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002 

IJIRT 175775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      4664 

A Hybrid Machine Learning Framework Using Random 

Forest and XGBoost for Software Bug Prediction 
 

 
1P.C. SANDHYA, 2DR.I.NASRULLA 

1PG student, Vemu Instistute of Technology, P. Kothakota 
2Professor, Vemu Institute of Technology, P. Kothakota 

 

Abstract: Code smells, indicating poor design or 

implementation choices, can harm software 

maintainability and increase bug-proneness. This study 

explores the significance of code smell metrics in 

prediction models for detecting bug-prone code 

modules. By incorporating smell-based metrics, we aim 

to enhance bug prediction accuracy. Using 14 open-

source projects from the PROMISE repository, all 

written in Java, we trained models with metrics like F1-

score, accuracy, precision, and recall. Classifiers like 

Naïve Bayes, Random Forest (RF), Support Vector 

Machine (SVM), Logistic Regression, and k-Nearest 

Neighbor were applied. RF and SVM outperformed the 

other methods, delivering higher accuracy both within 

versions and across projects, proving their effectiveness 

in predicting buggy components. 

 

Keywords: Code smell, source code, smell-aware, bugs 

classification.  

 

INTRODUCTION 

 

Software systems play a critical role in today’s digital 

world, driving nearly every aspect of daily life. From 

economics, transportation, and healthcare to 

communication and entertainment, software 

applications are integral. Given this reliance, 

ensuring software functions accurately and remains 

as bug-free as possible is crucial. A software bug, 

which is a flaw in the code leading to incorrect 

results, can significantly impact software quality and 

user experience. Detecting and fixing bugs is a time-

consuming but essential task in software 

development. While it is impossible to create entirely 

bug-free software, predicting and addressing bugs 

early in the development process can improve 

performance, quality, and user satisfaction. 

Automated bug detection, using binary classification, 

helps identify buggy modules before release, 

enhancing the overall software development life 

cycle. This proactive approach is vital to delivering 

robust, reliable applications. 

 

LITERATURE SURVEY 

1. Antipattern Metrics for Bug Prediction (Taba et al., 

2019) 

Taba et al. developed one of the earliest bug 

classification models incorporating antipattern 

metrics. Antipatterns are recurring design flaws that 

negatively impact software quality. By analyzing 

PROMISE repository datasets, their study 

demonstrated that antipattern detection could 

significantly enhance bug prediction accuracy. 

However, their approach was limited to structural 

metrics and did not account for process-related 

factors affecting software bugs. 

2. Program Slicing Metrics for Bug Detection (Pan et 

al., 2014) 

Pan et al. introduced program slicing metrics to 

predict software bugs in Apache HTTP and Latex2rtf 

projects. Program slicing involves analyzing 

dependencies and control flows within software to 

identify critical bug-prone regions. Their study found 

that slicing metrics provide a more detailed 

understanding of program behavior compared to 

traditional complexity measures. However, the 

technique faced scalability challenges when applied 

to large-scale software systems. 

3. Code Coverage and Bug Classification 

(Varshneya, 2018) 

Varshneya’s research focused on using code 

coverage as a predictive feature for bug 

classification. The study analyzed software bug 

reports and found that code coverage metrics alone 

were insufficient for accurate bug prediction. While 

code coverage helps in identifying untested areas, it 

does not account for the quality of executed code. 

This limitation prompted further research into 

integrating additional metrics, such as code smells. 

4. Design Flaws and Antipatterns (Khomh et al., 

2012) 

Khomh et al. conducted a study demonstrating that 

classes exhibiting design flaws (antipatterns) were 

more likely to contain future bugs. Their research 

emphasized the importance of identifying code 

smells early in the software development process. 



© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002 

IJIRT 175775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      4665 

Using a dataset based on code smell metrics, they 

showed that certain antipatterns, such as large classes 

and cyclic dependencies, were strong predictors of 

software defects. However, implementing their 

model in dynamic environments posed significant 

challenges. 

5. Severity Index for Code Smells (Palomba et al., 

2016) 

Palomba et al. introduced the severity index for code 

smells, which quantifies the impact of design flaws 

on software maintainability. Their study on Java 

open-source projects demonstrated that severity 

indexing could refine bug classification accuracy. By 

combining source code metrics with smell severity, 

their approach improved the distinction between 

major and minor defects. However, the computation 

of severity indices required extensive processing, 

limiting its real-time applicability. 

 

PROBLEM STATEMENT 

 

Code smells negatively impact software 

maintainability and bug-proneness. Existing bug 

prediction models lack sufficient incorporation of 

these metrics. This project seeks to enhance the 

accuracy of bug prediction by integrating code smell 

metrics into predictive models, particularly in open-

source Java projects. 

 

PROPOSED METHOD 

 

In propose paper author employing machine learning 

algorithms to combat against buggy software’s. 

Propose work utilizing source code metrics and smell 

code metrics from 14 different open source projects 

such as ANT, XALAN, XERCES and many more.  

Source code metrics includes bugs related to 

Inheritance coupling, coding complexity, public 

methods and many more. Smell code metrics refers 

to ‘Number of anti-patterns which includes number 

of bugs in source code’, complexity metrics, 

recurrence length and cumulative pair wise 

difference. Complete details about this metrics can be 

read in TABLE2 in base paper. 

All existing algorithms were utilizing only coding 

metrics to detect bugs but propose paper utilizing 

both Source Code Metrics and Smell code metrics. 

Both metrics will be combined and then split into 

various number of TRAIN AND TEST split and then 

trained with different ML algorithms like Random 

Forest, SVM, KNN, Logistic Regression and Naïve 

Bayes. Each algorithm performance is evaluated in 

terms of accuracy, precision, recall, confusion 

matrix, AUC-ROC graph and FSCORE. Among all 

algorithms Random Forest and SVM is giving best 

accuracy. 

To get best results author employing 

CORRELATION based Features selection algorithm 

which will identify and remove highly co-related or 

similar values and then select unique features values. 

Dataset having imbalance issue where BUGGY class 

contains only 5000 records and NON_BUGGY class 

contains 10000 records so to balance both classes 

with equal number of records author has used 

SMOTE algorithm to generate synthetic instances of 

BUGGY instances. 

  

METHODOLOGY 

 

The research community has presented many bugs 

prediction [1], [2], [3], [4] and classification [5], [6] 

models based on various indicators to recognize more 

error-prone modules in software applications. Few of 

them [7] have enhanced accuracy and evaluation 

metrics as compared to others. However, only a few 

authors [8] did bug classification but their model is 

not smell-aware. This study used different 

approaches to do smell-aware bug classification 

through ML algorithms. Furthermore, we will do the 

result analysis of the algorithms with each other and 

compare their accuracy using dissimilar source code 

and smell-based metrics.  

We propose five ML models: LR, RF, SVM, NB, and 

k-NN, to detect and classify smell-aware bugs. Our 

objective in these proposed models is to achieve high 

accuracy. Multiple stages have been conducted to 

address the challenges in Machine Learning, 

resulting in significant success in achieving the 

highest possible accuracy for smell-aware bug 

classification. However, we aim to investigate the 

reasons behind the lower accuracy of the ML models 

and compare the results and performance of LR, 

SVM, RF, k-NN, and NB. Consequently, we will 

analyze which machine learning approach is best for 

smell-aware bug detection and classification. For our 

study, we proceeded with the datasetfrom Jureczko et 

al. [43], which is accessible from the PROMISE 

repository [44]. This dataset comprises a rich 

collection of 44 releases from 14 projects, each with 

20 code metrics. Additionally, the occurrence of bugs 

in each release is readily available. It is worth noting 

that the dataset includes systems of various sizes and 

scopes, allowing us to enhance the validity of our 

investigation [45]. Furthermore, we considered the 



© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002 

IJIRT 175775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      4666 

findings of Mende et al. [46], who discovered that 

models trained on limited datasets can yield 

unreliable performance estimations. 

 

A. INPUT  

The first step in our methodology is the input stage, 

where we gather data from different open-source 

projects containing bugs. These projects are obtained 

from the PROMISE bug repository and serve as the 

training data for our model. The details of the 

software projects dataset used in this study can be 

found in 3.3. A comprehensive description of the 

dataset is provided, including specific information 

about each project. For further reference, please 

consult Table 1, which presents the specific details of 

the dataset used in our study 

 

B. PROPOSED MACHINE LEARNING 

TECHNIQUES  

In this study, we developed a smell-aware bug 

prediction model using various machine learning 

approaches. Our chosen learning style is supervised 

learning, which meanswe focus on algorithms that 

support this type of learning. The prediction outputs 

of our model are classified into two types: 

classification and regression. Classification involves 

linking input variables to discrete output values, 

while regression predictive analysis maps input 

factors to continuous output variables. In the case of 

our bug prediction model, the output type is binary, 

meaning we categorize a source code segment as 

either buggy or non-buggy. Consequently, we will 

only explore methods that support binary 

classification, as this paper specifically focuses on 

the binary classification of bugs. For our 

investigation, we selected five commonly used 

classifiers in bug prediction research: LR classifier, 

RF classifier, SVM classifier, k-NN, and NB 

classifier. These classifiers will be utilized in our 

study to develop and evaluate the performance of the 

smell-aware bug prediction model.  

 

RESULTS 

 

 

CONCLUSION 

 

Software defects are called bugs in a software 

development process - unanticipated deeds and 

actions figured out by quality control engineers 

during application testing and are preserved as 

software bugs. Bugs have high effects on software 

quality. The process of bug fixing is exceptionally 

steady and time-consuming. Therefore, it is crucial to 

detect bugs automatically. The primary goal of this 

investigation is to create a smell-aware bug 

prediction model by using code smell as a nominee 

metric. To be smell-aware, we added an intensity 

index to the dataset. The results showed that using the 

intensity index as a predictor for bug prediction 

improves the accuracy of the bug prediction model. 

Furthermore, the data show that the severity index is 

more significant than any other quality metric in 

predicting the bug-proneness of the smelly classes. 

The findings suggest that using the severity index as 

a reliable indicator of buggy modules improves the 

effectiveness of structurally based baseline models 

for bug prediction. Furthermore, they also emphasize 

the significance of the intensity of code smells in the 

process metrics-based prediction approaches.’’ We 

provided empirical evidence in this study that code 

smell-based metrics are quite useful in bug 

prediction. Using several source code metrics and 

code smell-based metrics proposed in the literature, 

we constructed a bug prediction model. To create the 

model, we employed k-NN, NB, RF, SVM, and LR 

algorithms. Multiple versions of fourteen different 

open-source projects were used to train the bug 

prediction model. We experimented with how our 

bug prediction model behaved within the version, 

within the project, and across the projects. 

 

REFERENCES 

 

[1] G. M. Ubayawardana and D. D. Karunaratna, 

‘‘Bug prediction model using code smells,’’ in 

Proc. 18th Int. Conf. Adv. ICT for Emerg. 

Regions (ICTer), Sep. 2018, pp. 70–77. 

[2] N. K. Nagwani and P. Singh, ‘‘Bug mining 

model based on eventcomponent similarity to 

discover similar and duplicate GUI bugs,’’ in 

Proc. IEEE Int. Advance Comput. Conf., Mar. 

2009, pp. 1388–1392. 

[3] N. K. Nagwani and S. Verma, ‘‘Predictive data 

mining model for software bug estimation using 

average weighted similarity,’’ in Proc. IEEE 2nd 



© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002 

IJIRT 175775   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      4667 

Int. Advance Comput. Conf. (IACC), Feb. 2010, 

pp. 373–378.  

[4] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. 

N. Nguyen, ‘‘Fuzzy setbased automatic bug 

triaging: NIER track,’’ in Proc. 33rd Int. Conf. 

Softw. Eng. (ICSE), May 2011, pp. 884–887. 

[5] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. 

Nguyen, and X. Wang, ‘‘Improving automated 

bug triaging with specialized topic model,’’ 

IEEE Trans. Softw. Eng., vol. 43, no. 3, pp. 272–

297, Mar. 2017. 

[6] R. Varshneya, ‘‘There’s no such thing as a bug-

free app,’’ Entrepreneur, vol. 22, Oct. 2015.  

[7] A. Hammouri, M. Hammad, M. Alnabhan, and 

F. Alsarayrah, ‘‘Software bug prediction using 

machine learning approach,’’ Int. J. Res. Appl. 

Sci. Eng. Technol., vol. 11, no. 12, pp. 1401–

1404, Dec. 2023. 


