
© April 2025| IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5022

Enhanced Bug Report Classification using XGBoost

and Transformer-based NLP Models

P Vamsi1, Dr. I. Nasrulla2

1PG Student, Vemu Institute of Technology, P. Kothakota
2Assistant professor, Vemu Institute of Technology, P. Kothakota

Abstract: In software development, maintaining

software systems has garnered attention due to the

critical task of fixing defects identified during testing

through bug reports (BRs). These BRs contain key

details such as description, status, priority, and

severity of bugs. The challenge lies in analyzing these

growing numbers of BRs, which can be time-

consuming and labor-intensive when done manually.

Automation offers a promising solution. While much

research focuses on automating tasks like predicting

bug severity or priority, little attention is given to

classifying the nature of the bugs. This paper proposes

a new prediction model using natural language

processing (NLP) and machine learning to automate

this process. Simulated on publicly available datasets,

the model demonstrated improved accuracy in

predicting multi-class bug categories. Bug reports are

essential for identifying and resolving issues in

software systems. However, manual analysis of these

reports is often time-consuming, error-prone, and

inefficient due to the increasing volume and complexity

of data. To address these challenges, this project

proposes a nature-based prediction model that

leverages ensemble machine learning techniques,

particularly XGBoost, in combination with

transformer-based Natural Language Processing

(NLP) models. The approach automates the

classification of bug reports into six distinct categories:

Client, General, Hyades, Releng, Xtext, and CDT-core.

Utilizing publicly available datasets from Eclipse and

Mozilla, the model demonstrates superior

performance, with XGBoost achieving an accuracy of

92%, outperforming other traditional models like

SVM, Random Forest, and Logistic Regression. This

system enhances software maintenance by improving

classification accuracy, reducing manual effort, and

expediting the bug resolution process.

INTRODUCTION

In today’s fast-paced software development

environment, bug tracking systems are essential for

ensuring software quality and reliability. Bug reports

serve as crucial documentation that helps developers

identify, categorize, and resolve issues. However,

with the growing scale and complexity of software

applications, the number of bug reports has

increased significantly, making manual analysis

both time-consuming and error-prone. This results in

delays in identifying and fixing bugs, ultimately

affecting the software maintenance process. To

address these challenges, automation using Natural

Language Processing (NLP) and Machine Learning

(ML) techniques has emerged as a promising

solution. This project introduces a nature-based

prediction model that leverages ensemble machine

learning, particularly the XGBoost algorithm,

combined with transformer-based NLP models to

classify bug reports into six categories: Client,

General, Hyades, Releng, Xtext, and CDT-core. The

model is trained and tested on publicly available

datasets from Eclipse and Mozilla. Experimental

results demonstrate that XGBoost achieves a

classification accuracy of 92%, outperforming

traditional models like SVM (74%), Random Forest

(77%), Logistic Regression (70%), and even a

Voting Classifier (89%). By automating the

classification process, the proposed model

significantly reduces manual effort, improves

accuracy, and enhances the overall efficiency of

software maintenance.

MOTIVATION

The increasing complexity and scale of software

development have led to a rapid surge in the volume

of bug reports generated by users and developers.

Traditionally, these reports are analyzed manually,

which is not only time-consuming but also prone to

inconsistencies and human error. This inefficiency

delays the bug-fixing process and affects the quality

and reliability of software products. Moreover,

existing automated tools often lack the precision and

adaptability required for multi-class bug

classification. These limitations inspired the need

for a more accurate, efficient, and intelligent system

that can handle large-scale bug data with minimal

© April 2025| IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5023

human intervention. The motivation behind this

project is to harness the power of ensemble machine

learning and advanced NLP techniques to automate

bug report classification. By introducing a model

based on XGBoost and transformer-based NLP, the

goal is to improve classification accuracy, reduce

developer workload, and accelerate the overall bug

resolution process. This not only enhances software

maintenance but also ensures faster delivery of

stable and high-quality software systems.

PROPOSED SYSTEM

The proposed system introduces an advanced,

automated framework for classifying bug reports

using a combination of ensemble machine learning

and natural language processing (NLP) techniques.

Specifically, the model utilizes the XGBoost

algorithm, known for its high performance in

classification tasks, alongside transformer-based

NLP models to effectively analyze and understand

the textual content of bug reports. The system is

designed to classify bug reports into six predefined

categories: Client, General, Hyades, Releng, Xtext,

and CDT-core. It processes bug data collected from

publicly available datasets (such as Eclipse and

Mozilla) by performing data cleaning,

preprocessing, and feature extraction using NLP

techniques. Multiple machine learning models,

including SVM, Random Forest, and Logistic

Regression, are trained and evaluated, but XGBoost

delivers the highest accuracy of 92%. The system

also includes modules for performance evaluation

using metrics like precision, recall, F1-score, and

confusion matrix. Overall, this proposed solution

aims to reduce manual effort, enhance bug triaging

accuracy, and improve the speed and efficiency of

software maintenance workflows. So author of this

paper trying to automate bug reports using machine

learning algorithms. All existing bug prediction

models are based on individual machine learning

algorithms whose detection accuracy is not accurate.

So author of this paper employing ensemble

algorithm by combining various algorithms using

Voting Classifier and then this algorithm will vote

out each algorithm and then select algorithm with

highest accuracy. Voting classifier combining

various classifier such as Logistic Regression,

Multinomial Naïve Bayes, SVM and Random

Forest. Each algorithms run individually and with

Voting classifier and Voting Classifier giving high

accuracy.

LITERATURE REVIEW

1. M. A. Jamil, M. Arif, N. S. A. Abubakar, and A.

Ahmad, “Software testing techniques: A literature

review,” Proc. 6th Int. Conf. Inf. Commun. Technol.

Muslim World (ICT4M), Nov. 2016, pp. 177–182.

2. S. Adhikarla, “Automated bug classification: Bug

report routing,” M.S. thesis, Fac. Arts Sci., Dept.

Comput. Inf. Sci., Linköping Univ., Sweden, 2020.

3. K. C. Youm, J. Ahn, and E. Lee, “Improved bug

localization based on code change histories and bug

reports,” Inf. Softw. Technol., vol. 82, pp. 177–192,

Feb. 2017.

4. N. Safdari et al., “Learning to rank faulty source

files for dependent bug reports,” Proc. SPIE, vol.

10989, 2019, Art. no. 109890B.

5. A. Kukkar et al., “A novel deep-learning-based

bug severity classification technique using CNN and

random forest with boosting,” Sensors, vol. 19, no.

13, p. 2964, Jul. 2019.

6. A. Aggarwal. (May 2020). “Types of Bugs in

Software Testing: 3 Classifications With Examples.”

[Online]. Available: https://www.scnsoft.com/

software-testing/types-of-bugs

7. A. Kukkar and R. Mohana, “A supervised bug

report classification with incorporated textual field

knowledge,” Proc. Comput. Sci., vol. 132, pp. 352–

361, Jan. 2018.

8. A. F. Otoom, S. Al-jdaeh, and M. Hammad,

“Automated classification of software bug reports,”

Proc. 9th Int. Conf. Inf. Commun. Manage., Aug.

2019, pp. 17–21.

9. P. J. Morrison et al., “Are vulnerabilities

discovered and resolved like other defects?”

Empirical Softw. Eng., vol. 23, no. 3, pp. 1383–1421,

Jun. 2018.

10. F. Lopes et al., “Automating orthogonal defect

classification using ML algorithms,” Future Gener.

Comput. Syst., vol. 102, pp. 932–947, Jan. 2020.

11.T. Hirsch and B. Hofer, “Root cause prediction

based on bug reports,” IEEE Int. Symp. Softw. Rel.

Eng. Workshops (ISSREW), Oct. 2020, pp. 171–176.

12.Q. Umer, H. Liu, and I. Illahi, “CNN-based

automatic prioritization of bug reports,” IEEE Trans.

Rel., vol. 69, no. 4, pp. 1341–1354, Dec. 2020.

13.H. Bani-Salameh et al., “A deep-learning-based

bug priority prediction using RNN-LSTM neural

networks,” e-Inform. Softw. Eng. J., vol. 15, no. 1,

pp. 1–17, 2021.

14.Ö. Köksal and B. Tekinerdogan, “Automated

classification of unstructured bilingual bug reports,”

Appl. Sci., vol. 12, no. 1, p. 338, Dec. 2021.

© April 2025| IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5024

15. B. Alkhazi et al., “Learning to rank developers

for bug report assignment,” Appl. Soft Comput., vol.

95, Oct. 2020, Art. no. 106667.

16.L. Jonsson et al., “Automated bug assignment:

Ensemble-based ML in industrial contexts,”

Empirical Softw. Eng., vol. 21, no. 4, pp. 1533–1578,

Aug. 2016.

17. X. Ye, R. Bunescu, and C. Liu, “Learning to rank

relevant files for bug reports,” Proc. 22nd ACM

SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2014,

pp. 689–699.

18.Y. Tian et al., “Learning to rank for bug report

assignee recommendation,” Proc. IEEE 24th Int.

Conf. Program Comprehension (ICPC), May 2016,

pp. 1–10.

19.D. Devaiya, Castr: A Web-Based Tool for

Creating Bug Report Assignment Recommenders,

Univ. Lethbridge, 2019.

20.M. Alenezi, S. Banitaan, and M. Zarour, “Using

categorical features in mining bug tracking

systems,” arXiv:1804.07803, 2018.

21.H. A. Ahmed, N. Z. Bawany, and J. A. Shamsi,

“CaPBug—a framework for automatic bug

categorization and prioritization using NLP and

ML,” IEEE Access, vol. 9, pp. 50496–50512, 2021.

22. R.-M. Karampatsis and C. Sutton, “How often

do single-statement bugs occur?: The

ManySStuBs4J dataset,” Proc. 17th Int. Conf.

Mining Softw. Repositories, Jun. 2020, pp. 573–577.

22. X. Han, T. Yu, and D. Lo, “PerfLearner:

Learning from bug reports to generate performance

test frames,” Proc. 33rd IEEE/ACM Int. Conf.

Automated Softw. Eng. (ASE), Sep. 2018, pp. 17–28.

23P. E. Strandberg et al., “Intermittently failing tests

in embedded systems,” Proc. 29th ACM SIGSOFT

Int. Symp. Softw. Test. Anal., Jul. 2020, pp. 337–348.

MODULUS AND WORKING

1. Data Collection and Preprocessing

The first step in the system is gathering bug report

data from publicly available sources like the Eclipse

and Mozilla datasets. These datasets contain real-

world bug reports labeled into multiple categories.

Once collected, the data undergoes preprocessing to

remove noise and irrelevant information. This

includes converting text to lowercase, removing

stopwords, punctuation, and applying techniques

like tokenization and lemmatization. These steps

help in cleaning the text and making it suitable for

further processing by machine learning models.

2. Feature Extraction

After preprocessing, the next module involves

converting the cleaned textual data into numerical

form so that it can be understood by machine

learning algorithms. This is done using feature

extraction techniques such as TF-IDF (Term

Frequency–Inverse Document Frequency), which

gives importance to significant words in the text, or

word embeddings like Word2Vec or BERT. These

features capture the context and meaning of the

words, providing a robust representation of each bug

report.

3. Model Training

This module is focused on training various machine

learning models using the extracted features. The

models include Support Vector Machine (SVM),

Random Forest, Logistic Regression, and a Voting

Classifier, which is a combination of several models.

Each of these models is trained on 80% of the data

and tested on the remaining 20% to assess their

performance. The goal of this module is to identify

the best-performing model for accurate bug

classification.

4. XGBoost Integration

To further improve classification accuracy, the

XGBoost model is introduced. XGBoost is an

advanced gradient boosting algorithm that builds a

series of decision trees to make predictions. It is

known for its high efficiency, accuracy, and speed.

In this project, XGBoost outperformed all other

models by achieving an impressive accuracy of

92%, making it the most effective model for

classifying bug reports.

5. Model Evaluation

Once the models are trained, their performance is

evaluated using standard metrics such as accuracy,

precision, recall, and F1-score. Additionally, a

confusion matrix is used to visualize the number of

correct and incorrect predictions for each bug

category. These metrics help compare the models

and validate the effectiveness of the proposed

approach. Among all models, XGBoost showed the

highest performance in terms of accuracy and

reliability.

6. Bug Prediction and Classification

The final module deals with the real-world

application of the trained model. When a new or

unseen bug report is input into the system, the model

© April 2025| IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 175786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5025

 nalyses its content and automatically classifies it

into one of six categories: Client, General, Hyades,

Releng, Xtext, or CDT-core. This automation

reduces manual work, increases classification speed,

and helps software teams prioritize and address bugs

more efficiently.

SYSTEM ARCHITECTURE

RESULT

Selecting and uploading dataset and then click on

‘Open’ button to select dataset.

CONCLUSION

In conclusion, this project presents a robust and

efficient approach to automating bug report

classification using ensemble machine learning and

NLP techniques. By integrating the XGBoost

algorithm with advanced textual feature extraction

methods, the system achieves high accuracy and

significantly outperforms traditional classifiers like

SVM, Random Forest, and Logistic Regression. The

model effectively classifies bug reports into six

meaningful categories, thereby reducing manual

effort, minimizing classification errors, and

accelerating the bug triaging process. With a peak

accuracy of 92%, the proposed system demonstrates

its potential to greatly enhance software

maintenance and support faster issue resolution in

real-world development environments. This work

lays the foundation for future improvements such as

real-time classification, multilingual support, and

integration with modern development tools.

REFERENCE

[1] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A.

Ahmad, “Software testing techniques: A

literature review,” Proc. 6th Int. Conf. Inf.

Commun. Technol. Muslim World (ICT4M),

Nov. 2016, pp. 177–182.

[2] S. Adhikarla, “Automated bug classification:

Bug report routing,” M.S. thesis, Fac. Arts Sci.,

Dept. Comput. Inf. Sci., Linköping Univ.,

Sweden, 2020.

[3] K. C. Youm, J. Ahn, and E. Lee, “Improved bug

localization based on code change histories and

bug reports,” Inf. Softw. Technol., vol. 82, pp.

177–192, Feb. 2017.

[4] N. Safdari et al., “Learning to rank faulty source

files for dependent bug reports,” Proc. SPIE,

vol. 10989, 2019, Art. no. 109890B.

[5] A. Kukkar et al., “A novel deep-learning-based

bug severity classification technique using

CNN and random forest with boosting,”

Sensors, vol. 19, no. 13, p. 2964, Jul. 2019.

[6] A. Aggarwal. (May 2020). “Types of Bugs in

Software Testing: 3 Classifications With

Examples.” [Online]. Available:

https://www.scnsoft.com/software-

testing/types-of-bugs

[7] A. Kukkar and R. Mohana, “A supervised bug

report classification with incorporated textual

field knowledge,” Proc. Comput. Sci., vol. 132,

pp. 352–361, Jan. 2018.

[8] A. F. Otoom, S. Al-jdaeh, and M. Hammad,

“Automated classification of software bug

reports,” Proc. 9th Int. Conf. Inf. Commun.

Manage., Aug. 2019, pp. 17–21.

[9] P. J. Morrison et al., “Are vulnerabilities

discovered and resolved like other defects?”

Empirical Softw. Eng., vol. 23, no. 3, pp. 1383–

1421, Jun. 2018.

[10] F. Lopes et al., “Automating orthogonal defect

classification using ML algorithms,” Future

Gener. Comput. Syst., vol. 102, pp. 932–947,

Jan. 2020.

