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Abstract: In software development, maintaining 

software systems has garnered attention due to the 

critical task of fixing defects identified during testing 

through bug reports (BRs). These BRs contain key 

details such as description, status, priority, and 

severity of bugs. The challenge lies in analyzing these 

growing numbers of BRs, which can be time-

consuming and labor-intensive when done manually. 

Automation offers a promising solution. While much 

research focuses on automating tasks like predicting 

bug severity or priority, little attention is given to 

classifying the nature of the bugs. This paper proposes 

a new prediction model using natural language 

processing (NLP) and machine learning to automate 

this process. Simulated on publicly available datasets, 

the model demonstrated improved accuracy in 

predicting multi-class bug categories. Bug reports are 

essential for identifying and resolving issues in 

software systems. However, manual analysis of these 

reports is often time-consuming, error-prone, and 

inefficient due to the increasing volume and complexity 

of data. To address these challenges, this project 

proposes a nature-based prediction model that 

leverages ensemble machine learning techniques, 

particularly XGBoost, in combination with 

transformer-based Natural Language Processing 

(NLP) models. The approach automates the 

classification of bug reports into six distinct categories: 

Client, General, Hyades, Releng, Xtext, and CDT-core. 

Utilizing publicly available datasets from Eclipse and 

Mozilla, the model demonstrates superior 

performance, with XGBoost achieving an accuracy of 

92%, outperforming other traditional models like 

SVM, Random Forest, and Logistic Regression. This 

system enhances software maintenance by improving 

classification accuracy, reducing manual effort, and 

expediting the bug resolution process. 

 

INTRODUCTION 

 

In today’s fast-paced software development 

environment, bug tracking systems are essential for 

ensuring software quality and reliability. Bug reports 

serve as crucial documentation that helps developers 

identify, categorize, and resolve issues. However, 

with the growing scale and complexity of software 

applications, the number of bug reports has 

increased significantly, making manual analysis 

both time-consuming and error-prone. This results in 

delays in identifying and fixing bugs, ultimately 

affecting the software maintenance process. To 

address these challenges, automation using Natural 

Language Processing (NLP) and Machine Learning 

(ML) techniques has emerged as a promising 

solution. This project introduces a nature-based 

prediction model that leverages ensemble machine 

learning, particularly the XGBoost algorithm, 

combined with transformer-based NLP models to 

classify bug reports into six categories: Client, 

General, Hyades, Releng, Xtext, and CDT-core. The 

model is trained and tested on publicly available 

datasets from Eclipse and Mozilla. Experimental 

results demonstrate that XGBoost achieves a 

classification accuracy of 92%, outperforming 

traditional models like SVM (74%), Random Forest 

(77%), Logistic Regression (70%), and even a 

Voting Classifier (89%). By automating the 

classification process, the proposed model 

significantly reduces manual effort, improves 

accuracy, and enhances the overall efficiency of 

software maintenance. 

 

MOTIVATION 

 

The increasing complexity and scale of software 

development have led to a rapid surge in the volume 

of bug reports generated by users and developers. 

Traditionally, these reports are analyzed manually, 

which is not only time-consuming but also prone to 

inconsistencies and human error. This inefficiency 

delays the bug-fixing process and affects the quality 

and reliability of software products. Moreover, 

existing automated tools often lack the precision and 

adaptability required for multi-class bug 

classification. These limitations inspired the need 

for a more accurate, efficient, and intelligent system 

that can handle large-scale bug data with minimal 
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human intervention. The motivation behind this 

project is to harness the power of ensemble machine 

learning and advanced NLP techniques to automate 

bug report classification. By introducing a model 

based on XGBoost and transformer-based NLP, the 

goal is to improve classification accuracy, reduce 

developer workload, and accelerate the overall bug 

resolution process. This not only enhances software 

maintenance but also ensures faster delivery of 

stable and high-quality software systems. 

 

PROPOSED SYSTEM 

 

The proposed system introduces an advanced, 

automated framework for classifying bug reports 

using a combination of ensemble machine learning 

and natural language processing (NLP) techniques. 

Specifically, the model utilizes the XGBoost 

algorithm, known for its high performance in 

classification tasks, alongside transformer-based 

NLP models to effectively analyze and understand 

the textual content of bug reports. The system is 

designed to classify bug reports into six predefined 

categories: Client, General, Hyades, Releng, Xtext, 

and CDT-core. It processes bug data collected from 

publicly available datasets (such as Eclipse and 

Mozilla) by performing data cleaning, 

preprocessing, and feature extraction using NLP 

techniques. Multiple machine learning models, 

including SVM, Random Forest, and Logistic 

Regression, are trained and evaluated, but XGBoost 

delivers the highest accuracy of 92%. The system 

also includes modules for performance evaluation 

using metrics like precision, recall, F1-score, and 

confusion matrix. Overall, this proposed solution 

aims to reduce manual effort, enhance bug triaging 

accuracy, and improve the speed and efficiency of 

software maintenance workflows. So author of this 

paper trying to automate bug reports using machine 

learning algorithms. All existing bug prediction 

models are based on individual machine learning 

algorithms whose detection accuracy is not accurate. 

So author of this paper employing ensemble 

algorithm by combining various algorithms using 

Voting Classifier and then this algorithm will vote 

out each algorithm and then select algorithm with 

highest accuracy. Voting classifier combining 

various classifier such as Logistic Regression, 

Multinomial Naïve Bayes, SVM and Random 

Forest. Each algorithms run individually and with 

Voting classifier and Voting Classifier giving high 

accuracy. 
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MODULUS AND WORKING 

 

1. Data Collection and Preprocessing 

The first step in the system is gathering bug report 

data from publicly available sources like the Eclipse 

and Mozilla datasets. These datasets contain real-

world bug reports labeled into multiple categories. 

Once collected, the data undergoes preprocessing to 

remove noise and irrelevant information. This 

includes converting text to lowercase, removing 

stopwords, punctuation, and applying techniques 

like tokenization and lemmatization. These steps 

help in cleaning the text and making it suitable for 

further processing by machine learning models. 

 

2. Feature Extraction 

After preprocessing, the next module involves 

converting the cleaned textual data into numerical 

form so that it can be understood by machine 

learning algorithms. This is done using feature 

extraction techniques such as TF-IDF (Term 

Frequency–Inverse Document Frequency), which 

gives importance to significant words in the text, or 

word embeddings like Word2Vec or BERT. These 

features capture the context and meaning of the 

words, providing a robust representation of each bug 

report. 

 

3. Model Training 

This module is focused on training various machine 

learning models using the extracted features. The 

models include Support Vector Machine (SVM), 

Random Forest, Logistic Regression, and a Voting 

Classifier, which is a combination of several models. 

Each of these models is trained on 80% of the data 

and tested on the remaining 20% to assess their 

performance. The goal of this module is to identify 

the best-performing model for accurate bug 

classification. 

 

4. XGBoost Integration 

To further improve classification accuracy, the 

XGBoost model is introduced. XGBoost is an 

advanced gradient boosting algorithm that builds a 

series of decision trees to make predictions. It is 

known for its high efficiency, accuracy, and speed. 

In this project, XGBoost outperformed all other 

models by achieving an impressive accuracy of 

92%, making it the most effective model for 

classifying bug reports. 

 

5. Model Evaluation 

Once the models are trained, their performance is 

evaluated using standard metrics such as accuracy, 

precision, recall, and F1-score. Additionally, a 

confusion matrix is used to visualize the number of 

correct and incorrect predictions for each bug 

category. These metrics help compare the models 

and validate the effectiveness of the proposed 

approach. Among all models, XGBoost showed the 

highest performance in terms of accuracy and 

reliability. 

 

6. Bug Prediction and Classification 

The final module deals with the real-world 

application of the trained model. When a new or 

unseen bug report is input into the system, the model 
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 nalyses its content and automatically classifies it 

into one of six categories: Client, General, Hyades, 

Releng, Xtext, or CDT-core. This automation 

reduces manual work, increases classification speed, 

and helps software teams prioritize and address bugs 

more efficiently. 

 

SYSTEM ARCHITECTURE 

 

 
 

RESULT 

 

Selecting and uploading dataset and then click on 

‘Open’ button to select dataset. 

 
 

CONCLUSION 

 

In conclusion, this project presents a robust and 

efficient approach to automating bug report 

classification using ensemble machine learning and 

NLP techniques. By integrating the XGBoost 

algorithm with advanced textual feature extraction 

methods, the system achieves high accuracy and 

significantly outperforms traditional classifiers like 

SVM, Random Forest, and Logistic Regression. The 

model effectively classifies bug reports into six 

meaningful categories, thereby reducing manual 

effort, minimizing classification errors, and 

accelerating the bug triaging process. With a peak 

accuracy of 92%, the proposed system demonstrates 

its potential to greatly enhance software 

maintenance and support faster issue resolution in 

real-world development environments. This work 

lays the foundation for future improvements such as 

real-time classification, multilingual support, and 

integration with modern development tools. 
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