Optimization of Biofiltration Systems for Dairy Wastewater Treatment Using Local Materials

Rohit Depeang, Aditya Madankar, Pankaj Sonwane, Pranay Agare, Swapnil Kamdi, Nitin Ghuguskar Prof. Mohan Wake

[Department of Civil Engineering, Agnihotri College of Engineering, Wardha, Maharashtra, India]

Abstract— This study investigates the efficacy of a lowcost biofiltration system utilizing indigenous materials (cow dung, sand, gravel) for treating high-strength dairy wastewater. Through comprehensive testing at flow rates of 3-20 ml/min over 15 days, the system demonstrated optimal performance at 3 ml/min, achieving 72.3% COD reduction (from 620 mg/l to 171.6 mg/l) and 68.4% BOD removal. The research establishes practical design parameters for rural applications while addressing the economic constraints of small-scale dairy operations in developing regions.

Index Terms— Sustainable wastewater treatment, biofiltration optimization, dairy effluent, agricultural waste reuse, decentralized treatment systems.

I. INTRODUCTION

A. Problem Background

India's dairy sector, producing 210 million tonnes annually [1], generates wastewater with extreme organic loads (COD: 450-2000 mg/l). Conventional treatment remains economically unviable for 85% of small producers (<50 LPD capacity) [2]. Our field surveys in Wardha district revealed untreated discharge causing 40-60% groundwater contamination in dairy-intensive zones.

B. Biofiltration Potential

Biofilters offer advantages for decentralized treatment:

Low energy (0.1-0.3 kWh/m³ vs 1.2-1.8 for ASP)

Local material utilization

Simple operation

However, performance varies significantly with:

Media composition

Hydraulic loading

Microbial ecology

This study systematically evaluates these parameters using regionally available materials.

II. MATERIALS AND METHODS

A. Filter Media Characterization

Table I

Material	Particle	Specific	Porosity		
	Size (mm)	Gravity	(%)		
Cow	2-5	1.15	62		
dung					
Sand	1-2	2.65	38		
Gravel	5-20	2.70	42		
Table 1					

. . . .

B. Experimental Setup

1. Biofilter Configuration

Three identical columns ($Ø30cm \times H1.2m$) with:

Layer 1 (30cm): Cow dung + sand (1:1)

Layer 2 (40cm): Graded gravel

Layer 3 (20cm): Coarse aggregate

2. Wastewater Characteristics

pH: 9.2 ± 0.3

COD: $620 \pm 45 \text{ mg/l}$

BOD: 285 ± 32 mg/l

3. Testing Protocol

Flow rates: 3,5,10,15,20 ml/min

Daily monitoring of 12 parameters

Sampling at 3 depths for spatial analysis

III. RESULTS AND ANALYSIS

A. Flow Rate Optimization

Table II						
PERFORMANCE COMPARISON ACROSS						
FLOW RATES						
Flow Rate	COD	HRT	Clogging			
(ml/min)	Removal	(hours)	Frequency			
	(%)					
3	72.3	4.2	<1/week			
5	65.1	2.5	2/week			
10	53.7	1.3	3/week			
Table 2						

Key Findings:

3 ml/min showed optimal trade-off between efficiency (72.3% COD removal) and practicality (4.2h HRT)

Clogging increased exponentially beyond 5 ml/min $(R^2=0.93)$

B. Longitudinal Performance

Fig. 1 shows pollutant reduction across filter depths:

Top layer: 58% COD removal (microbial action dominant)

Middle layer: 32% removal (filtration + biodegradation)

Bottom layer: 10% removal (final polishing)

C. Microbial Analysis

DNA sequencing revealed:

Dominant phyla: Proteobacteria (42%), Firmicutes (28%)

Key species: Pseudomonas putida, Bacillus subtilis

IV. DISCUSSION

A. Comparative Advantages

Our system outperforms conventional options:

Table III

С	COST-TO-PERFORMANCE COMPARISON						
	Technology	COD Removal	Cost (\Box/m^3)				
		(%)					
	Present study	72.3	5.2				
	Activated	85-90	18.7				
	Sludge						
	RBC	75-80	12.3				
	Table 3						

Table 3

B. Rural Applicability

Material costs reduced by 89% vs commercial biofilters

Maintenance requires only weekly media stirring

Skill requirements suitable for village-level operators

V. CONCLUSION & RECOMMENDATIONS

A. Key Conclusions

The 3-layer biofilter achieves 70%+ organic removal at 3 ml/min

Cow dung demonstrates superior microbial diversity vs synthetic inoculants

System payback period <8 months for typical 500LPD operations

B. Implementation Guidelines

For dairy units producing 300-1000 LPD wastewater:

Design: 1m³ filter bed per 200L daily flow

Operation: Maintain 3-5 cm/day hydraulic loading

Maintenance: Replace top 10cm media quarterly

C. Future Research Directions

Integration with phytoremediation

Nutrient recovery from spent media

IoT-based performance monitoring

VI. REFERENCES

- [1] NDDB Annual Report 2022-23. National Dairy Development Board.
- [2] CPCB (2019). Guidelines for Dairy Effluent Management.
- [3] Metcalf & Eddy (2014). Wastewater Engineering. McGraw-Hill.
- [4] Gunasekaran, K. et al. (2012). *Bioresource Tech.*, 113, 228-234.