
© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176118 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7021

3-Tier Application in a DevOps

Parag Patle, Saime Shaikh

B.Tech, Cloud Technology and Information Security Ajeenkya Dy Patil School of Engineering, Pune

Abstract: A Three-Tier Application architecture is a

widely used design pattern that enhances scalability,

maintainability, and security in software applications.

It consists of three layers: the Presentation Tier, which

handles user interactions; the Application Tier,

responsible for business logic; and the Data Tier, where

databases store and manage information. Integrating

DevOps practices with this architecture further

improves agility, automation, and deployment

efficiency.

This paper explores the integration of DevOps

methodologies in managing and automating three-tier

applications using CI/CD pipelines, containerization

(Docker, Kubernetes), infrastructure as code (IaC), and

cloud services. The research highlights how DevOps

enhances the scalability, reliability, and deployment

speed of three-tier applications while reducing

operational overhead and minimizing downtime. Case

studies and real-world implementations demonstrate

the advantages of DevOps in optimizing the

development, testing, and deployment phases of such

applications.

By leveraging automation, monitoring, and continuous

feedback loops, organizations can ensure seamless

updates, improved security, and enhanced system

performance. This paper concludes that DevOps-driven

three-tier architectures provide a robust framework for

modern application development, aligning with

business agility and cloud-native best practices.

INTRODUCTION

A 3-tier application architecture consists of three

distinct layers: the presentation layer (user interface),

the logic layer (business logic), and the data layer

(storage). This separation enhances modularity and

maintainability, making it a preferred architecture in

many modern applications. Integrating DevOps

practices such as Continuous Integration (CI),

Continuous Deployment (CD), and automated testing

is essential for efficiently managing these tiers,

ensuring scalability, and maintaining high

performance standards. DevOps implementation in

3-tier applications delivers tangible benefits

including faster deployment cycles, reduced

downtime, improved fault isolation, enhanced

security through automated checks, and better

resource utilization across all tiers.

Key Components and Practices in a DevOps Context

Continuous Monitoring of Performance Metrics

Continuous monitoring is vital for maintaining the

high availability, scalability, and optimal

performance of a 3-tier application. Key performance

metrics to monitor include:

1. CPU Usage: Identifies if any tier is overburdened,

potentially causing performance bottlenecks.

2. Memory Usage: Ensures each tier has sufficient

resources to handle workloads without

slowdowns or crashes.

3. Response Times: Measures how quickly each tier

responds to requests, identifying delays or

inefficiencies.

4. Transaction Throughput: Evaluates the number of

transactions processed over time, indicating the

application's capacity.

5. Latency: Identifies delays in data processing and

transmission between tiers.

6. Requests per Minute (RPM) and Bytes per

Request: Provides insights into server load and data

handling efficiency.

Monitoring Tools and Practices:

 Application Performance Monitoring (APM)

Tools: Tools like Dynatrace, New Relic, and

AppDynamics offer comprehensive monitoring

solutions for tracking performance metrics and

detecting anomalies.

 Dashboards and Alerts: Real-time dashboards and

alerts for threshold breaches ensure timely

responses to potential issues.

Best Practices:

 Regular testing and optimization of each tier.

 Scalability planning to handle increased demands.

 Adequate resource allocation to prevent

performance degradation.

 Disaster recovery planning to minimize downtime

and data loss.

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176118 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7022

Fig 1. AWS Three Tier Architecture

Automated Testing in a 3-Tier Architecture

Implementing automated testing in a 3-tier

architecture involves several best practices to ensure

each layer is tested effectively:

1. Layered Testing Strategy:

 Unit Tests: Focus on individual components

or functions in the logic tier. For example,

testing a specific function that calculates tax

in the business logic layer without

dependencies on other components.

 Service (Integration) Tests: Test interactions

between different components within the

logic tier and between the logic and data

tiers. For instance, verifying that a user

authentication service correctly interacts

with the database to validate credentials.

 UI Tests: Verify the functionality and

usability of the presentation tier. For

example, ensuring that a login form

correctly displays validation messages and

redirects users after successful

authentication.

2. Test Pyramid Approach:

 Prioritize unit tests and have fewer but more

comprehensive service and UI tests for faster

feedback and more reliable test suites.

3. Separation of Concerns:

 Ensure that each test type is focused on its

specific layer. For example, UI tests should

not directly test database operations, and

unit tests should mock external

dependencies.

4. Continuous Integration and Continuous

Deployment (CI/CD):

 Integrate automated tests into CI/CD

pipelines to ensure tests are run

automatically with each new build or

deployment.

5. Clear Testing Objectives:

 Define clear testing objectives and

requirements for each layer.

6. Test Data Management:

 Effectively manage test data to ensure

consistency and reliability.

Fig 2. Deployment

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176118 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7023

Optimizing CI/CD Pipelines

Optimizing CI/CD pipelines for a 3-tier application

involves several strategies to ensure efficient, reliable,

and scalable deployments:

1. Infrastructure Configuration: Properly configure

the required infrastructure using services such as

AWS EC2 instances or Azure VMs, ensuring

seamless integration and monitoring of each tier.

2. Continuous Integration Setup: Set up robust CI

pipelines using tools like Azure Pipelines, GitLab

CI, or GitHub Actions, including unit tests,

integration tests, and automated security scans.

3. Continuous Deployment: Automate the

deployment process to different environments

using CD tools, ensuring each tier can be

deployed independently using strategies like

blue-green deployments, canary releases, or

rolling updates.

4. Monitoring and Logging: Implement

comprehensive monitoring and logging for each

tier using tools like Prometheus, Grafana, ELK

stack, or cloud-native solutions like AWS

CloudWatch or Azure Monitor.

5. Scaling and Optimization: Regularly review and

refine the CI/CD pipeline to eliminate bottlenecks

and improve performance through process

streamlining, task parallelization, and caching

mechanisms.

6. Security and Compliance: Integrate security

checks into the CI/CD pipeline to detect

vulnerabilities early through static code analysis,

dependency checks, and compliance audits.

Impact of Infrastructure as Code (IaC) on Scalability

Infrastructure as Code (IaC) significantly enhances the

scalability of 3-tier applications by enabling

automated, consistent, and documented infrastructure

management:

1. Scalability and Flexibility:

 Horizontal and Vertical Scaling: Allows

independent scaling of each tier to handle

increased demand.

 Automated Scaling: Enables automatic

resource scaling using services like AWS

Auto Scaling Groups (ASGs).

2. Consistency and Repeatability:

 Consistent Provisioning: Ensures consistent

and reliable provisioning and configuring of

resources.

3. Documentation and Version Control:

 Documented Configurations: The code

serves as documentation for the infrastructure

setup, aiding in understanding,

modification, and scaling.

4. Challenges:

 Complexity at Scale: Managing large and

complex environments requires careful

planning and management.

Measuring DevOps Practices: Team Collaboration and

Productivity

Key metrics for measuring DevOps practices include:

1. Deployment Frequency: Indicates a streamlined

process and ability to deliver updates and new

features promptly.

2. Lead Time for Changes: Reflects the efficiency in

delivering changes quickly.

3. Mean Time to Recovery (MTTR): Indicates the

capability to recover swiftly from failures.

4. Change Failure Rate: Reflects the quality of

changes and effectiveness of testing and validation

processes.

Additional Considerations:

Automated Testing and CI/CD Pipelines: Enhance

collaboration by ensuring code changes are tested and

deployed efficiently.

Feedback Loops: Establish fast and effective feedback

loops between development and operations teams.

Measuring DevOps Efficiency:

Metrics help assess DevOps maturity:

 Deployment Frequency: Indicates velocity.

 Lead Time for Changes: Reflects development

efficiency.

 Mean Time to Recovery (MTTR): Shows

resilience to failures.

 Change Failure Rate: Gauges deployment

reliability.

Enhancers:

 Establish feedback loops between Dev and Ops.

 Use dashboards to track delivery and recovery

KPIs.

CONCLUSION

Implementing and optimizing a 3-tier application in a

DevOps context requires a comprehensive approach

encompassing several key areas. Continuous

monitoring ensures optimal performance by tracking

metrics like CPU usage, memory consumption, and

response times across all tiers.

Automated testing frameworks provide confidence in

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176118 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7024

code quality through a layered strategy of unit,

integration, and UI tests. Optimized CI/CD pipelines

enable rapid, reliable deployments while maintaining

security and compliance standards. Infrastructure as

Code delivers scalability benefits through consistent,

automated resource provisioning and management.

Finally, measuring DevOps practices through metrics

like deployment frequency and mean time to

recovery helps teams continuously improve their

processes.

By adhering to these best practices and utilizing

appropriate tools, organizations can ensure efficient,

reliable, and scalable deployments of 3-tier

applications, ultimately providing a seamless user

experience while maintaining high performance

standards. The integration of DevOps principles into

3-tier architectures not only improves technical

outcomes but also fosters better collaboration

between development and operations teams, creating

a more responsive and innovative technological

environment.

REFERENCES

[1] [Middleware.io](https://middleware.io/blog/w

hat-is-application-performance-monitoring/)

[2] [TechTarget](https://www.techtarget.com/sear

chapparchitecture/tip/5-application-

performance-metrics-all-dev-teams-should-

track)

[3] [Granulate.io](https://granulate.io/blog/applica

tion-performance-monitoring-apm-metrics-

tools-tips/)

[4] [Medium](https://medium.com/@rvaradharaja

n69/a-comprehensive-3-tier-architecture-with-

disaster-recovery-and-continuous-integration-

continuous-da308743cc7a)

[5] [ThoughtWorks](https://www.thoughtworks.c

om/en-us/insights/blog/guidelines-structuring-

automated-tests)

[6] [Quora](https://www.quora.com/How-do-you-

handle-testing-for-complex-multi-tiered-

software-systems)

[7] [Rainforest QA

Blog](https://www.rainforestqa.com/blog/the-

layers-of-testing-architecture)

[8] [Microtica](https://www.microtica.com/blog/o

ptimize-your-ci-cd-pipeline-for-faster-

deployments)

[9] [LinkedIn](https://www.linkedin.com/pulse/se

cure-three-tier-web-application-github-actions-

cicd-jegede-ikm4f)

[10] [Spacelift](https://spacelift.io/blog/scaling-ci-

cd)

[11] [vfunction.com](https://vfunction.com/blog/3-

tier-application/)

[12] [codefresh.io](https://codefresh.io/learn/infrast

ructure-as-code/)

[13] [Atlassian's DevOps

metrics](https://www.atlassian.com/devops/de

vops-tools/devops-metrics)

[14] [DORA's research on

DevOps](https://www.devops-

research.com/research.html)

[15] [BrowserStack](https://www.browserstack.co

m/guide/test-automation-architecture)

[16] [Medium](https://medium.com/engineering-

varo/3-layer-automated-testing-fe2d230939a2)

[17] [Codewave](https://codewave.com/insights/be

st-practices-for-testing-software/)

[18] [Medium](https://medium.com/@gokulnath78

76/multi-tier-ci-cd-pipeline-project-

1456cba30366)

[19] [Medium](https://medium.com/@achraf.jarbo

ui/ci-cd-pipeline-for-a-3-tier-application-on-

azure-devops-project-part1-629a74c32c02)

[20] [DevOps Blog](https://blog.devops.dev/3-tier-

app-azure-devops-project-part-1-setting-up-ci-

pipeline-and-spinning-up-a-vm-through-

1980864ac388)

[21] [Medium](https://medium.com/@sriharimalap

ati/building-a-scalable-3-tier-architecture-on-

aws-using-terraform-a-modular-approach-

5117378789f0)

[22] [Medium](https://dev.to/574n13y/building-a-

scalable-3-tier)

[23] [Medium](https://medium.com/@dev.am.bala

murugan/building-a-highly-available-fault-

tolerant-aws-3-tier-architecture-using-

cloudformation-part-1-51076bccde5b)

[24] [Faun](https://faun.pub/deploying-a-highly-

secure-3-tier-infrastructure-on-aws-with-

terraform-and-github-actions-fa7320d47416)

[25] [TechAhead](https://www.techaheadcorp.com/

blog/infrastructure-as-code-iac-in-devops-the-

key-to-streamlined-devops-infrastructure-

management/

[26] Fig 1.(

https://miro.medium.com/v2/resize:fit:640/for

mat:webp/1*8CHGzZLGSCvi9vdJiMmFqQ.p

ng)

https://middleware.io/blog/what-is-application-performance-monitoring/
https://middleware.io/blog/what-is-application-performance-monitoring/
https://www.techtarget.com/searchapparchitecture/tip/5-application-performance-metrics-all-dev-teams-should-track
https://www.techtarget.com/searchapparchitecture/tip/5-application-performance-metrics-all-dev-teams-should-track
https://www.techtarget.com/searchapparchitecture/tip/5-application-performance-metrics-all-dev-teams-should-track
https://www.techtarget.com/searchapparchitecture/tip/5-application-performance-metrics-all-dev-teams-should-track
https://granulate.io/blog/application-performance-monitoring-apm-metrics-tools-tips/
https://granulate.io/blog/application-performance-monitoring-apm-metrics-tools-tips/
https://granulate.io/blog/application-performance-monitoring-apm-metrics-tools-tips/
https://medium.com/@rvaradharajan69/a-comprehensive-3-tier-architecture-with-disaster-recovery-and-continuous-integration-continuous-da308743cc7a
https://medium.com/@rvaradharajan69/a-comprehensive-3-tier-architecture-with-disaster-recovery-and-continuous-integration-continuous-da308743cc7a
https://medium.com/@rvaradharajan69/a-comprehensive-3-tier-architecture-with-disaster-recovery-and-continuous-integration-continuous-da308743cc7a
https://medium.com/@rvaradharajan69/a-comprehensive-3-tier-architecture-with-disaster-recovery-and-continuous-integration-continuous-da308743cc7a
https://www.thoughtworks.com/en-us/insights/blog/guidelines-structuring-automated-tests
https://www.thoughtworks.com/en-us/insights/blog/guidelines-structuring-automated-tests
https://www.thoughtworks.com/en-us/insights/blog/guidelines-structuring-automated-tests
https://www.quora.com/How-do-you-handle-testing-for-complex-multi-tiered-software-systems
https://www.quora.com/How-do-you-handle-testing-for-complex-multi-tiered-software-systems
https://www.quora.com/How-do-you-handle-testing-for-complex-multi-tiered-software-systems
https://www.microtica.com/blog/optimize-your-ci-cd-pipeline-for-faster-deployments
https://www.microtica.com/blog/optimize-your-ci-cd-pipeline-for-faster-deployments
https://www.microtica.com/blog/optimize-your-ci-cd-pipeline-for-faster-deployments
https://www.linkedin.com/pulse/secure-three-tier-web-application-github-actions-cicd-jegede-ikm4f
https://www.linkedin.com/pulse/secure-three-tier-web-application-github-actions-cicd-jegede-ikm4f
https://www.linkedin.com/pulse/secure-three-tier-web-application-github-actions-cicd-jegede-ikm4f
https://spacelift.io/blog/scaling-ci-cd
https://spacelift.io/blog/scaling-ci-cd
https://vfunction.com/blog/3-tier-application/
https://vfunction.com/blog/3-tier-application/
https://codefresh.io/learn/infrastructure-as-code/
https://codefresh.io/learn/infrastructure-as-code/
https://www.atlassian.com/devops/devops-tools/devops-metrics
https://www.atlassian.com/devops/devops-tools/devops-metrics
https://www.devops-research.com/research.html
https://www.devops-research.com/research.html
https://www.browserstack.com/guide/test-automation-architecture
https://www.browserstack.com/guide/test-automation-architecture
https://medium.com/engineering-varo/3-layer-automated-testing-fe2d230939a2
https://medium.com/engineering-varo/3-layer-automated-testing-fe2d230939a2
https://codewave.com/insights/best-practices-for-testing-software/
https://codewave.com/insights/best-practices-for-testing-software/
https://medium.com/@gokulnath7876/multi-tier-ci-cd-pipeline-project-1456cba30366
https://medium.com/@gokulnath7876/multi-tier-ci-cd-pipeline-project-1456cba30366
https://medium.com/@gokulnath7876/multi-tier-ci-cd-pipeline-project-1456cba30366
https://medium.com/@achraf.jarboui/ci-cd-pipeline-for-a-3-tier-application-on-azure-devops-project-part1-629a74c32c02
https://medium.com/@achraf.jarboui/ci-cd-pipeline-for-a-3-tier-application-on-azure-devops-project-part1-629a74c32c02
https://medium.com/@achraf.jarboui/ci-cd-pipeline-for-a-3-tier-application-on-azure-devops-project-part1-629a74c32c02
https://blog.devops.dev/3-tier-app-azure-devops-project-part-1-setting-up-ci-pipeline-and-spinning-up-a-vm-through-1980864ac388
https://blog.devops.dev/3-tier-app-azure-devops-project-part-1-setting-up-ci-pipeline-and-spinning-up-a-vm-through-1980864ac388
https://blog.devops.dev/3-tier-app-azure-devops-project-part-1-setting-up-ci-pipeline-and-spinning-up-a-vm-through-1980864ac388
https://blog.devops.dev/3-tier-app-azure-devops-project-part-1-setting-up-ci-pipeline-and-spinning-up-a-vm-through-1980864ac388
https://medium.com/@sriharimalapati/building-a-scalable-3-tier-architecture-on-aws-using-terraform-a-modular-approach-5117378789f0
https://medium.com/@sriharimalapati/building-a-scalable-3-tier-architecture-on-aws-using-terraform-a-modular-approach-5117378789f0
https://medium.com/@sriharimalapati/building-a-scalable-3-tier-architecture-on-aws-using-terraform-a-modular-approach-5117378789f0
https://medium.com/@sriharimalapati/building-a-scalable-3-tier-architecture-on-aws-using-terraform-a-modular-approach-5117378789f0
https://dev.to/574n13y/building-a-scalable-3-ti
https://dev.to/574n13y/building-a-scalable-3-ti
https://medium.com/@dev.am.balamurugan/building-a-highly-available-fault-tolerant-aws-3-tier-architecture-using-cloudformation-part-1-51076bccde5b
https://medium.com/@dev.am.balamurugan/building-a-highly-available-fault-tolerant-aws-3-tier-architecture-using-cloudformation-part-1-51076bccde5b
https://medium.com/@dev.am.balamurugan/building-a-highly-available-fault-tolerant-aws-3-tier-architecture-using-cloudformation-part-1-51076bccde5b
https://medium.com/@dev.am.balamurugan/building-a-highly-available-fault-tolerant-aws-3-tier-architecture-using-cloudformation-part-1-51076bccde5b
https://faun.pub/deploying-a-highly-secure-3-tier-infrastructure-on-aws-with-terraform-and-github-actions-fa7320d47416
https://faun.pub/deploying-a-highly-secure-3-tier-infrastructure-on-aws-with-terraform-and-github-actions-fa7320d47416
https://faun.pub/deploying-a-highly-secure-3-tier-infrastructure-on-aws-with-terraform-and-github-actions-fa7320d47416
https://www.techaheadcorp.com/blog/infrastructure-as-code-iac-in-devops-the-key-to-streamlined-devops-infrastructure-management/
https://www.techaheadcorp.com/blog/infrastructure-as-code-iac-in-devops-the-key-to-streamlined-devops-infrastructure-management/
https://www.techaheadcorp.com/blog/infrastructure-as-code-iac-in-devops-the-key-to-streamlined-devops-infrastructure-management/
https://www.techaheadcorp.com/blog/infrastructure-as-code-iac-in-devops-the-key-to-streamlined-devops-infrastructure-management/
https://miro.medium.com/v2/resize:fit:640/format:webp/1*8CHGzZLGSCvi9vdJiMmFqQ.png

