
© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176133 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7107

Efficinet Malware Detection System Using JADX

Algorithm

Dr. R.BHARATHI, AP/IT1, SANTHIYA .P2, SWATHI.S3, TARINI SRI.M4, THIRISHA.N5
1Professor, Department of Information Technology, M.Kumarasamy College of Engineering, Karur,

Tamil Nadu, India-639113
2,3,4,5 UG Students, Department of Information Technology, M.Kumarasamy College of Engineering,

Karur, Tamil Nadu, India

Abstract: Software forensics is a specialized branch of

cybersecurity that focuses on the investigation and

analysis of software to uncover evidence of malicious

activities, security incidents, or other forms of

suspicious behaviour. It involves a detailed examination

of software-level data, including application logs, user

interactions, and system events, to identify anomalies or

patterns that may indicate a security breach. This

process helps investigators trace the source of an attack,

assess the impact of the incident, and understand how

malicious actions were executed within a system. By

analysing these digital footprints, software forensics can

provide crucial insights into the nature of the threat and

its potential consequences.

A key aspect of software forensics is the investigation of

application logs, which capture detailed information

about user activities, data access, and system

operations. By examining these logs, forensic experts

can reconstruct a timeline of events leading up to an

incident, pinpoint the origin of suspicious behaviour,

and detect any unauthorized access or data

manipulation. This evidence is not only vital for

identifying the attackers but also plays a critical role in

incident response, allowing organizations to mitigate

ongoing threats, patch vulnerabilities, and prevent

future attacks. Moreover, software forensics often

involves the use of specialized tools and techniques to

reverse engineer software code, inspect system files, and

perform memory analysis, further enhancing its ability

to detect sophisticated threats.

Keywords

1. Malware Detection

2. Static Analysis

3. JADX

4. Decompilation

5. Android Security

6. Code Analysis

7. Pattern Recognition

8. APK Analysis

1.INTRODUCTION

*Efficient malware detection using the JADX

algorithm* is a method that leverages static code

analysis and reverse engineering techniques to

analyze Android applications for malicious

behaviour. With the increasing prevalence of

Android malware, effective tools like JADX have

become essential for security researchers and

professionals to dissect Android Package (APK) files

and reveal any hidden or obfuscated malicious code.

Unlike dynamic analysis, where the malware must be

executed to observe its behavior, JADX allows for a

safer approach by decompiling the APK and

examining its source code without executing the

potentially harmful application. This method not only

improves detection accuracy but also minimizes the

risks associated with analyzing malware.

The process begins with the *reverse engineering of

APKs*, where JADX decompiles an Android app

into human-readable Java code. This is crucial in

uncovering hidden malicious behavior that may have

been disguised through techniques like code

obfuscation. By breaking down the app's code

structure, security analysts can inspect essential

components, such as activities, services, broadcast

receivers, and permissions. Through this inspection,

researchers can detect malicious intent by identifying

unusual behaviors or calls to APIs that access

sensitive user data, transmit information to external

servers, or perform actions that the app is not

intended to do.

2. RELATED WORK

It’s essential to provide an overview of existing

research and tools in the field of malware detection

and reverse engineering, highlighting how your

approach or findings build on or differ from previous

efforts. Here's a structured outline of what to include:

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176133 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7108

1. Overview of Reverse Engineering in Malware

Detection: Discuss the general approaches to

malware detection—static analysis (reviewing

the code without execution) and dynamic

analysis (monitoring behavior during execution).

Emphasize the strengths and weaknesses of both

and how they complement each other.

2. Existing Tools and Methods: Cite studies and

projects where JADX has been utilized as part of

the malware detection pipeline. Focus on how

researchers have used it for tasks such as

identifying malicious code signatures, detecting

suspicious API calls, and analyzing obfuscation

techniques.

3. Static Analysis Approaches in Malware

Detection: Review research on signature-based

malware detection and discuss the limitations of

traditional methods in handling obfuscation and

polymorphic malware.

4. Challenges in Decompiled Code Analysis:

Summarize papers discussing common

obfuscation strategies used by malware

developers, such as control flow obfuscation,

string encryption, and method renaming. Discuss

how these techniques can reduce the efficacy of

decompilers, including JADX.

Fig 1: overall flow diagram

3. IMPLEMNTATION

1. System Architecture Overview

High-Level Description:

Provide a brief overview of your malware detection

system and its architecture. Mention the key

components involved in the process, such as the input

module (APK files), JADX for decompilation,

analysis module, and report generation.

Workflow Steps:

Outline the sequence of operations, from the initial

APK input to the final detection report.

2. Implementation Details

Input Processing:

Describe how APK files are fed into the system,

detailing any preprocessing steps, such as file

validation or metadata extraction.

Decompilation with JADX:

Explain how JADX is integrated into the system.

Discuss any configurations, custom scripts, or

modifications you made to optimize its use for

malware analysis.

Static Code Analysis Module:

Detail how the decompiled Java code is analyzed for

malicious patterns. Highlight any algorithms or

techniques used to identify specific behaviors, such

as scanning for known API calls, permissions, or

suspicious code segments.

SAMPLE CODE:

import os

import re

import tempfile

import requests

from flask import Flask, request, render_template,

jsonify

from androguard.core.bytecodes.apk import APK

app = Flask(_name_)

VirusTotal API key (replace

'YOUR_VIRUSTOTAL_API_KEY' with your

actual API key)

VIRUSTOTAL_API_KEY =

'352b09c0854412b40870ce39cb61ef919050800e51

de5d30e3ab4902d3e9684a'

Improved regex patterns

url_pattern = re.compile(

 r'\b(?:https?://)?(?:[a-zA-Z0-9-]+\.)+[a-zA-

Z]{2,6}(?:/[^\s]*)?\b',

 re.IGNORECASE

)

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176133 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7109

ip_pattern = re.compile(

 r'\b(?:25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-

9])(?:\.(?:25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-

9])){3}\b'

)

network_libs = re.compile(

r'(HttpURLConnection|OkHttpClient|Retrofit|HttpCl

ient|Request|Response|AsyncTask)',

 re.IGNORECASE

)

def decompile_apk_with_jadx(apk_file: str,

output_dir: str) -> None:

 """Decompile APK using JADX."""

 os.system(f'jadx -d {output_dir} {apk_file}')

def check_trustworthiness(apk_file: str) -> dict:

 """Check APK for permissions, activities,

receivers, and services."""

 apk = APK(apk_file)

 # Check permissions, activities, receivers,

services

 permissions = apk.get_permissions()

 activities = apk.get_activities()

 receivers = apk.get_receivers()

Use Case Diagram:

Fig 2: Feature of Gas detection system

4.RESULT

The results of implementing an efficient malware

detection system using the JADX algorithm

demonstrate significant improvements in the

accuracy and speed of static code analysis for

Android applications. By leveraging JADX for high-

quality decompilation and integrating automated

pattern recognition techniques, the system was able

to identify malicious code structures with high

precision. The approach proved particularly effective

at detecting known malware signatures and

suspicious API calls, even in partially obfuscated

code.

Fig 3: Home page

Fig 4: Display Sensor page.

4. CONCLUSION AND FUTUREWORK

In conclusion, the integration of the JADX algorithm

in the proposed malware detection system has shown

that effective static analysis of Android applications

can be achieved with high precision and efficiency.

The results underline the system's capability to

decompile APKs and identify malicious patterns

swiftly, making it a valuable tool for security analysts

and researchers.

Future Work

The system can be enhanced by incorporating

machine learning algorithms to detect previously

unknown malware patterns and improve adaptability

to emerging threats. Additionally, combining the

static analysis of JADX with dynamic analysis

methods could provide a more comprehensive

detection mechanism. Expanding the system to

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176133 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7110

support real-time analysis and integration with

CI/CD pipelines for automated security checks would

further increase its utility and scalability in larger

organizational contexts.

5.REFFERENCE

[1] P. Faruki, A. Bharmal, V. Laxmi, et al., "Android

security: A survey of issues, malware

penetration, and defenses," IEEE

Communications Surveys & Tutorials, vol. 17,

no. 2, pp. 998-1022, 2015.This paper provides an

overview of Android security challenges,

including malware analysis methods and

defensive techniques.

[2] Y. Zhou and X. Jiang, "Dissecting Android

malware: Characterization and evolution," IEEE

Symposium on Security and Privacy, 2012, pp.

95-109.

