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ABSTRACT- This study presents an innovative 

approach to lunar surface exploration by developing 

automated systems for crater detection and safe rover 

navigation. The project uses advanced artificial 

intelligence (AI) and machine learning (ML) 

techniques to address the challenge of detecting 

craters and boulders from high-resolution Orbiter 

High Resolution Camera (OHRC) images. It also 

incorporates a pathfinding algorithm to ensure 

obstacle-free navigation for lunar rovers in 

challenging terrains, particularly the Moon’s south 

pole. The proposed method improves the efficiency 

and accuracy of lunar exploration and facilitates 

scientific research and mission planning. 

By enhancing both the accuracy and speed of 

navigation processes, this approach facilitates 

obstacle-free routes, optimizing rover performance 

and supporting scientific re- search and mission 

planning. The integration of automated systems for 

crater detection and navigation not only paves the way 

for safer lunar exploration but also contributes to our 

understanding of the Moon’s geological features. 

Through experiments and simulations, this research 

aims to demonstrate the feasibility of the proposed 

technologies, setting a foundation for future lunar 

missions that require autonomous navigation 

capabilities. As the exploration of space advances, our 

project stands to impact the next generation of rovers 

capable of conducting long- duration missions on the 

lunar surface. 

 

I. INTRODUCTION 

 

The Moon has long captivated humanity with its 

mysteries, serving as a beacon of exploration and 

discovery. Over the past several decades, 

advancements in technology, coupled with renewed 

interest in lunar exploration, have reignited efforts 

to uncover the secrets of our celestial neighbor. 

Among the most promising near-term goals is the 

deployment of autonomous rovers capable of 

navigating the diverse and challenging lunar terrain. 

These rovers are envisioned to explore scientifically 

significant sites, such as impact craters, boulder 

fields, and ancient lava flows, while transmitting 

valuable live data and high-definition video back to 

Earth. Accomplishing this bold vision necessitates 

overcoming numerous challenges in both hardware 

and software domains. 

 

The hardware requirements for lunar rovers are 

formidable and include critical factors such as 

power management, thermal regulation, 

communication reliability, and mechanical 

durability. These aspects ensure that the rovers can 

operate effectively in the harsh lunar environment, 

where extreme temperatures, radiation, and dust can 

impede performance. However, equally demanding 

are the software control aspects, which dictate how 

the rovers will navigate, make decisions, and 

interact with their environment. Effective 

navigation on the Moon requires sophisticated 

algorithms that can process sensory data in real-

time, make autonomous decisions, and ensure safety 

without the constant oversight of human operators. 

 

Historically, time delays in teleoperation have 

presented significant limitations for planetary 

missions, as evidenced by the challenges faced 

during the operation of Lunokhod 2 and Viking 

landers. The delays inherent in commanding rovers 

from Earth can result in missed opportunities for 

exploration and increased risk of accidents. To 

address these challenges, researchers have proposed 

and developed advanced systems that enable 

supervised teleoperation and autonomous 

navigation. These systems aim to minimize the need 

for direct human intervention while allowing for 

operator oversight when necessary, thereby 

enhancing the efficiency and effectiveness of lunar 

rover missions. 

 

This project focuses on pioneering technologies that 

facilitate automated crater detection and obstacle 

pathfinding for lunar rovers. Specifically, it 

investigates the application of artificial intelligence 

(AI) and machine learning (ML) techniques within 

a framework that leverages stereo vision for 

obstacle detection and local terrain analysis. By 
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employing these advanced technologies, the project 

aims to create a robust system capable of performing 

real-time analysis of the lunar environment, 

enabling the rover to identify potential hazards such 

as craters and boulders while also planning safe 

paths for traversal. 

 

In particular, the project will explore various 

learning algorithms that can adapt to the dynamic 

challenges presented by the lunar landscape. By 

integrating AI and ML, the system will enhance its 

ability to learn from past experiences, resulting in 

improved detection accuracy and decision-making 

capabilities. This adaptive learning approach aims 

to optimize rover operations, allowing for efficient 

and safe navigation across rugged and varied 

terrain. 

 

By combining autonomous decision-making with 

human oversight, the proposed system aspires to 

facilitate long- distance navigation while ensuring 

operator safety and reducing fatigue. This dual 

approach not only harnesses the computational 

power of AI but also keeps human operators in 

the loop, providing the necessary assurance and 

flexibility during critical mission phases. 

Ultimately, the successful implementation of such 

technologies will represent a significant 

advancement in lunar exploration, paving the way 

for future missions that could yield unprecedented 

insights into the Moon’s geological history and 

potential resources for human settlement. 

 

II. LITERATURE REVIEW 

 

A. Crater Detection in Lunar Exploration 

The detection of lunar craters represents a 

fundamental aspect of planetary exploration, 

significantly influencing mission planning and 

surface navigation strategies. Precise crater 

identification facilitates not only navigation but also 

geological assessments, including the understanding 

of the Moon’s history of impact events. Recent 

advancements in deep learning have revolutionized 

the accuracy and efficiency of crater detection 

processes. Silburt et al. (2019) demonstrated the 

transformative application of deep learning 

techniques for lunar crater detection, achieving 

remarkable enhancements in automated 

identification capabilities. Their research show- 

cased the efficacy of convolutional neural networks 

(CNNs) in processing and analyzing complex lunar 

imagery, which enabled precise crater detection in 

varying conditions. The methodologies established 

in their work have become pivotal benchmarks for 

subsequent investigations, laying the ground- work 

for further innovations in lunar surface analysis [1]. 

 

B. YOLO Framework for Real-Time Object 

Detection 

The emergence of the You Only Look Once 

(YOLO) framework has fundamentally altered the 

landscape of real- time object detection tasks across 

various domains, including the critical area of 

lunar surface analysis. Recent studies have 

elaborated on the evolution of the YOLO 

architecture, tackling the inherent challenges 

associated with balancing real- time processing and 

detection accuracy. Diwan et al. (2019) provided 

comprehensive insights into the various YOLO 

architectures and the datasets pertinent to these 

implementations, emphasizing its applications in 

planetary exploration where rapid and reliable crater 

detection is essential [2]. Furthermore, Mahendru et 

al. (2021) explored the integration of real- time 

object detection using YOLO alongside audio 

feedback mechanisms, illustrating how the 

framework’s versatility can enhance interactivity 

and responsiveness within dynamic environments 

of lunar exploration [3]. Adding to this, Lu et al. 

(2020) introduced YOLO-Compact, an optimized 

version of the original network designed for 

efficiency, specifically targeting single-category 

detection. This adaptation is particularly beneficial 

for applications involving crater identification 

where computational efficiency and reduced latency 

are crucial in ensuring smooth operations in 

resource-limited scenarios [4]. The advancements 

made in YOLO technology not only facilitate 

immediate crater detection but also enhance the 

over- arching capabilities of autonomous robotic 

systems deployed on lunar missions. 

 

C. U-Net Architecture for Obstacle Detection 

In conjunction with crater detection, effective 

navigation within lunar environments necessitates 

the accurate identification of obstacles to mitigate 

potential hazards during rover operations. The U-

Net architecture has garnered acceptance and 

extensive utilization in segmentation tasks, 

especially in remote sensing applications, where 

delineating objects from backgrounds is critical. A 

review by Zhu et al. (2017) illustrated the growing 

impact of deep learning in remote sensing, 
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validating U-Net’s position as a preferred model for 

semantic segmentation in complex terrains, such as 

in the context of lunar landscapes [5]. The relevance 

of U-Net in extraterrestrial navigation is further 

corroborated by Emami et al. (2021), who 

employed convolutional neural networks in Mars 

rover missions while emphasizing the potential of 

transfer learning approaches to enhance crater 

detection capabilities. This highlights the 

applicability of U-Net-type architectures not only 

for effective crater detection but also as vital tools 

for obstacle identification, ensuring the safety and 

success of robotic navigation in extraterrestrial 

environments [6]. 

 

D. Deep Learning Applications in Lunar Missions 

The implementation of deep learning algorithms 

extends far beyond the realms of crater detection 

and obstacle avoidance. Notably, Wang et al. (2019) 

demonstrated the capabilities of deep learning in 

crafting tailored crater detection algorithms 

specifically designed for the Chang’E lunar 

mission. Their work elucidated how these 

methodologies can be adapted to meet specific 

mission objectives and accommodate diverse data 

types, showcasing versatility in a challenging 

exploration context [7]. This adaptability not only 

exemplifies the transformative role of deep learning 

frameworks like YOLO and U-Net but also 

emphasizes their integration to address multifaceted 

challenges inherent in lunar exploration. 

Consequently, the convergence of these technologies 

enables reliable crater and obstacle detection while 

optimizing the operational efficiency of lunar 

rovers. 

 

In conclusion, the current literature underscores the 

trans- formative influence of deep learning in lunar 

crater detection and obstacle identification, 

positioning it as a cornerstone of modern planetary 

exploration. The synergistic combination of 

advanced algorithms such as YOLO and U-Net 

significantly enhances detection accuracy and 

accelerates real-time processing capabilities. These 

innovations pave the way for greater autonomy in 

rover navigation across the challenging terrains of 

the Moon, reducing the risks associated with human 

oversight while increasing mission success rates. As 

research continues to evolve, the ongoing 

integration of deep learning technologies alongside 

traditional space exploration techniques promises to 

enhance the efficacy and reliability of future lunar 

missions, ultimately contributing vital knowledge to 

our understanding of the Moon and beyond. 

 

III. METHODOLOGY 

 

A. Lunar Crater Detection using YOLOv8 

The identification of craters is a critical task in lunar 

navigation and exploration, as craters can pose 

potential risks to rover mobility. To automate this 

process, the YOLOv8 (You Only Look Once 

version 8) object detection architecture is employed 

due to its efficiency and high accuracy in detecting 

objects in real-time. This model is particularly well-

suited for this application because it processes 

images in a single forward pass, making it highly 

effective for real-time crater detection onboard 

lunar rovers with limited computational resources. 

 

The detection pipeline begins with the curation of 

a comprehensive dataset of high-resolution 

grayscale lunar images. These images are manually 

annotated to mark crater locations, with each 

annotation specifying the bounding box coordinates 

and crater class. These annotations are then 

converted into a YOLO-compatible format, which 

involves normalizing the bounding box coordinates 

relative to the image dimensions and encoding the 

data into text files corresponding to each image. 

Once the dataset is prepared, the images undergo 

pre- processing, which includes resizing to a 

fixed resolution, normalization of pixel values, 

and augmentation techniques such as rotation and 

flipping to increase dataset diversity. The YOLOv8 

model is then trained using this preprocessed dataset. 

During training, the model optimizes a loss function 

that com- bines localization loss, objectness loss, 

and classification loss. The performance of the 

model is monitored using standard object 

detection metrics like mean Average Precision 

(mAP), Intersection over Union (IoU), precision, 

and recall. 

 

In the inference phase, a new image is passed 

through the trained YOLOv8 model, which outputs 

a set of bounding boxes, each associated with a 

confidence score indicating the likelihood of 

containing a crater. These bounding boxes represent 

the predicted spatial coordinates of detected objects, 

while the confidence scores provide a measure of 

certainty for each detection, based on the model’s 

learned features. To refine these raw predictions, a 

post-processing step is performed using non-
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maximum suppression (NMS), which systematically 

removes redundant or overlapping bounding boxes 

by retaining only the box with the highest 

confidence in each region. This ensures that 

multiple detections of the same crater are 

consolidated into a single, most accurate 

representation. 

 

Additionally, thresholds are applied during NMS to 

filter out low-confidence predictions, reducing false 

positives and enhancing overall detection precision. 

The resulting bounding boxes are then mapped back 

to the original image dimensions, allowing for real-

time visualization and georeferencing if needed. 

This refined output can be seamlessly integrated 

into downstream components of the navigation 

system, enabling the rover to assess terrain safety, 

update its situational aware- ness, and make 

informed decisions regarding path selection. The 

speed and efficiency of YOLOv8 during inference 

make it particularly well-suited for onboard 

deployment, where computational resources are 

limited and real-time performance is critical for 

mission success. 

 
Fig. 1. Flowchart of Lunar Crater Detection 

System using YOLOv8 

 

B. Obstacle Path Planning using U-Net 

In addition to crater detection, identifying general 

obstacles such as rocks, steep slopes, and debris is 

essential for path planning. This is achieved through 

semantic segmentation using the U-Net architecture. 

U-Net is a convolutional neural network designed 

for biomedical image segmentation, but its 

encoder-decoder structure with skip connections 

makes it highly effective for pixel-wise 

classification tasks in other domains as well. 

The obstacle segmentation pipeline begins with the 

preparation of a dataset containing lunar surface 

images paired with binary or multi-class masks. 

These masks label each pixel according to whether 

it belongs to an obstacle or a safe region. To 

enhance the model’s ability to generalize, transfer 

learning is utilized by initializing the U-Net encoder 

with pretrained weights from ImageNet. This 

enables the model to leverage low-level visual 

features such as edges and textures, which are 

common across various image types. 

 

Once pretrained, the encoder weights are frozen, 

and only the decoder and final classification layers 

are fine-tuned using the lunar dataset. This approach 

helps in reducing overfitting and accelerates 

convergence during training. The training process 

uses a pixel-wise loss function, commonly binary 

cross- entropy or Dice loss, to ensure accurate 

segmentation. Data augmentation techniques are 

applied to the training images to account for 

different lighting conditions and terrain variations 

on the lunar surface. 

 

During inference, a lunar image is fed into the 

trained U- Net model, which produces a 

segmentation map where each pixel is labeled 

based on whether it is part of an obstacle or a 

navigable path. This segmentation map acts as a 

guide for the path planning algorithm, allowing the 

rover to avoid risky regions and choose optimal 

routes.  

 
Fig. 2. Workflow of Obstacle Path Planning using 

U-Net 

 

C. Integrated System Overview 

The integration of crater detection and obstacle 
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segmentation systems results in a robust, multi-

layered perception pipeline for autonomous lunar 

rovers. While YOLOv8 handles the task of object-

level crater detection with high speed and 

efficiency, U-Net complements this by offering 

dense, pixel- level understanding of the terrain. This 

dual capability ensures that both discrete threats like 

craters and continuous terrain features like rocky 

regions are accurately mapped. 

 

The outputs from both models are fused to generate 

a comprehensive situational awareness map. This 

map is then fed into the navigation and control 

module of the rover, which uses it to make informed 

decisions regarding movement and path 

adjustments. This fusion of detection and 

segmentation enhances the safety and autonomy 

of the rover, allowing it to operate effectively in 

the harsh and unpredictable lunar environment. 

Moreover, the modular design of the system allows 

it to be extended or adapted to other planetary 

bodies or tasks, making it a scalable solution for 

future space exploration missions. The use of state-

of-the-art deep learning techniques ensures that the 

system can improve over time with more data and 

better models. 

 

IV. RESULTS AND DISCUSSION 

 

This section elaborates on the outcomes derived 

from the implementation of our AI-powered lunar 

navigation system. The results are organized across 

multiple dimensions, including crater detection 

accuracy using the YOLOv8 model, terrain 

segmentation with U-Net, dynamic path planning, 

performance comparisons with traditional 

algorithms, and implications for lunar exploration 

missions. The integration of deep learning 

technologies has demonstrably improved both the 

efficiency and accuracy of lunar surface analysis, 

crucial for autonomous navigation in extraterrestrial 

environments. 

 

A. Crater Detection Performance 

The crater detection capability of the system was 

rigorously evaluated using a curated dataset of 

1,000 high-resolution lunar images collected from 

multiple lunar missions. Utilizing YOLOv8, a state-

of-the-art object detection model, our system was 

able to achieve an accuracy of 94%, demonstrating 

its robustness in identifying crater boundaries across 

diverse surface textures and lighting conditions. The 

precision and recall rates, calculated at 0.91 and 

0.89 respectively, underscore the model’s reliability 

in correctly identifying true crater instances while 

minimizing false detections. This high-performance 

detection significantly outpaces traditional 

algorithms, such as circular Hough Transform, 

which typically achieved sub- 80% accuracy and 

were limited by their dependency on distinct edges 

and geometric assumptions. By learning from 

annotated examples, YOLOv8 adapts to varying 

crater shapes, overlaps, and erosion levels, thereby 

offering more consistent and context-aware 

detection. 

 
Fig. 3. Crater Detection on Martian Surface Using 

Bounding Boxes 

 

 
Fig. 4. Grayscale Detection of Craters in Lunar for 

Navigational Safety 

 

B. Obstacle Segmentation and Terrain 

Classification 

The obstacle segmentation component, powered by 

the U- Net model, produced detailed classification 

maps that segmented lunar surfaces into various 

terrain types, such as rocky fields, uneven plateaus, 

and smooth traversable zones. U- Net’s encoder-
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decoder architecture allows it to capture both global 

context and fine-grained spatial features, making it 

particularly effective for delineating small obstacles 

and subtle topographical variations. These 

segmentation outputs serve as foundational inputs 

for the subsequent path planning phase. By 

distinguishing hazardous regions from safe paths 

with high spatial accuracy, the system supports 

autonomous navigation decisions, ensuring that the 

rover avoids potential entrapment or mechanical 

damage. Additionally, the model was able to detect 

nuanced textural changes across terrain types, 

offering insights into soil composition and 

mechanical interaction potential, both of which are 

critical for real-time maneuvering on the lunar 

surface. 

 
Fig. 5. Density Crater Detection on Lunar Surface 

with Confidence Levels 

 

 
Fig. 6. Lunar Crater Detection Confidence Scores 

 

C. Path Planning Visualization 

By integrating segmentation maps with crater 

detection results, a real-time path planning module 

was developed to support autonomous rover 

navigation. The system dynamically mapped out 

optimal paths over a 100-meter route, taking into 

account both traversal safety and scientific value. 

The algorithm prioritizes areas with minimal terrain 

risk and proximity to scientifically interesting 

craters, enabling dual-purpose navigation. Routes 

are recalculated in response to incoming sensor 

data, making the system robust to environmental 

un- certainties. The planned paths also incorporate 

terrain slope and crater rim proximity to ensure 

mechanical stability during rover movement. 

Through this dynamic planning, the system 

facilitates exploration of new lunar zones that were 

previously considered high-risk due to navigation 

uncertainties. 

 
Fig. 7. Semantic Segmentation of Lunar Terrain 

for Autonomous Rover 

 

 
Fig. 8. Lunar Terrain: Safe vs. Unsafe 

 

D. Comparison with Existing Methods 

The effectiveness of our AI-based crater detection 

and navigation system was benchmarked against 

conventional image processing techniques. 

Algorithms like the Hough Transform and Canny 

edge detector were found to be inadequate in 

scenarios involving complex crater overlaps, partial 

erosion, or low-contrast surfaces. Traditional 

methods exhibited increased false negatives and 

required manual parameter tuning, which hindered 

scalability. In contrast, the AI-driven solution 

reduced processing times drastically, completing 

image analysis tasks in under 30 seconds—a 

significant improvement over manual inspections 

that often take several hours. This performance 

boost is vital for real-time applications, such as in-

situ navigation support during rover missions or 

ground-based mission control operations where 

rapid decision-making is required. 

 
Fig. 9. Obstacle Detection on the Moon: 

Segmentation of Rocks and Craters 
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E. Impact on Lunar Science 

The deployment of this AI-powered crater detection 

and navigation system introduces several 

transformative impacts for lunar science and 

exploration missions. First, the ability to 

automatically detect and analyze craters at scale 

improves the efficiency of handling large volumes 

of lunar imagery data, which is essential given the 

vast datasets generated by current and future 

missions. Second, the increased detection precision 

enables more accurate geological interpretations, 

including crater age estimation and stratigraphic 

mapping. This, in turn, enhances our understanding 

of the Moon’s geological history. Third, the insights 

provided by terrain segmentation support optimal 

landing site selection and path optimization, 

reducing mission risk and maximizing scientific 

return. Furthermore, the automation of these tasks 

reduces reliance on manual annotation and analysis, 

thereby accelerating mission timelines and enabling 

more frequent exploratory operations. As a result, 

the system holds significant potential to support 

upcoming missions, such as NASA’s Artemis 

program and private lunar landers, by providing a 

reliable decision-support framework grounded in 

AI. 

 

V. CONCLUSION 

 

This study presents a comprehensive AI-driven 

framework for crater detection and autonomous 

path planning in the context of lunar navigation, 

leveraging the capabilities of deep learning models 

such as YOLOv8 for object detection and U- Net 

for semantic segmentation. Through rigorous 

evaluation on a dataset of 1,000 lunar images, 

the system achieved a high detection accuracy of 

94%, significantly outperforming traditional image 

processing techniques in both precision and 

processing speed. This performance validates the 

applicability of deep learning approaches in 

planetary exploration tasks that require real-time 

decision-making and high levels of reliability. 

Beyond the quantitative metrics, the integration 

of crater detection with obstacle-aware path 

planning represents a significant advancement in the 

field of autonomous robotic navigation on 

extraterrestrial surfaces. By dynamically identifying 

safe traversal routes while simultaneously detecting 

geological points of interest, the system enables 

dual-purpose navigation that can support both 

scientific exploration and operational safety. 

These features are especially critical for missions 

involving rovers or landers, where terrain 

unpredictability poses substantial risks. 

 

The successful implementation of this system also 

provides a scalable solution for future lunar 

missions. As space agencies and private entities 

continue to expand their exploration efforts, 

systems capable of analyzing complex lunar 

topographies autonomously will be instrumental in 

reducing mission costs, improving efficiency, and 

minimizing the reliance on ground-based manual 

intervention. The modular architecture of the 

proposed system further allows for adaptability 

across different celestial bodies with minimal 

reconfiguration. 

 

Looking forward, several pathways for 

enhancement have been identified. Future work will 

include expanding the diversity and volume of 

training data to improve generalization across 

varying lunar terrains and lighting conditions. 

Incorporating transfer learning from pre-trained 

terrestrial datasets and fine-tuning on lunar-specific 

features may boost model robustness. Additionally, 

integrating multimodal data—such as thermal 

imaging, LiDAR, and hyperspectral data—could 

pro- vide richer context for surface analysis, 

enabling the detection of subsurface features or 

composition variations that are not visible in 

standard visual imagery. 

 

Furthermore, we aim to optimize system 

performance for deployment in resource-

constrained environments typical of onboard rover 

processors. Techniques such as model pruning, 

quantization, and edge computing deployment 

strategies will be explored to ensure efficient 

operation without compromising detection accuracy. 

Real-world field testing in lunar analog 

environments on Earth will also play a crucial role 

in validating system performance under realistic 

mission conditions. 

 

In conclusion, the proposed deep learning-based 

system represents a meaningful step toward 

autonomous, intelligent lunar navigation. It not only 

improves our capability to detect and interpret lunar 

craters with high fidelity but also lays the 

groundwork for intelligent exploration frameworks 

that are essential for future manned and unmanned 

lunar missions. By merging robust AI algorithms 
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with planetary science objectives, this work 

contributes to the next generation of space 

exploration technologies that are more autonomous, 

adaptive, and scientifically insightful. 

 

REFERENCES 

 

[1] A. Silburt, et al., “Automated Lunar Crater 

Detection Using Deep Learning,” Journal of 

Geophysical Research: Planets, vol. 124, no. 

12, 2019, pp. 3425-3443. 

[2] M. Diwan, et al., “An Overview of YOLO 

Architecture and its Applications in Real-time 

Object Detection,” International Journal of 

Computer Applications, vol. 182, no. 45, 

2019, pp. 1-8. 

[3] P. Mahendru, et al., “Real-time Object 

Detection through YOLO: Enhancing 

Performance with Audio Feedback,” in 

Proceedings of the International Conference 

on Image Processing, Computer Vision, and 

Pattern Recognition, 2021, pp. 100-106. 

[4] C. Lu, et al., “YOLO-Compact: A Lightweight 

Object Detection Model,” IEEE Transactions 

on Signal Processing, vol. 68, 2020, pp. 345-

355. 

[5] X. Zhu, et al., “Deep Learning for Remote 

Sensing Image Analysis: A Review,” IEEE 

Geoscience and Remote Sensing Magazine, 

vol. 5, no. 4, 2017, pp. 58-78. 

[6] S. Emami, et al., “Utilizing Deep Learning 

Techniques for Crater Detection in Mars 

Rover Missions,” Advances in Astronautical 

Sciences, vol. 168, no. 3, 2021, pp. 555-565. 

[7] Y. Wang, et al., “Deep Learning Techniques 

for Lunar Crater Detection in Chang’E 

Mission,” Lunar and Planetary Science 

Conference, vol. 50, 2019, p. 1946. 

[8] A. Baronia, J. Sarup, S. Gupta, R. Shanker, K. 

Chourasia, D. Soni, “Multi-scale Based 

Approach for Crater Detection on Lunar 

Surface using Clustering algorithm,” SR 

University, Warangal India, 2023. 

[9] C. Yang, X. Wang, D. Zhao, R. Guan, H. 

Zhao, “Accurate Mapping and Evaluation of 

Small Impact Craters within the Lunar 

Landing Area,” Journal of Lunar Research, 

vol. 42, 2022, pp. 103-118. 

[10] J. A. Christian, H. Derksen, R. Watkins, 

“Lunar Crater Identification in Digital 

Images,” IEEE Transactions on Aerospace 

and Electronic Systems, vol. 57, no. 3, 2021, 

pp. 1532-1545. 

[11] Y. Bandyopadhyay, “Lunar Crater Detection 

Using YOLOv8 Deep Learning,” Debahuti 

Tech Private Limited, Purulia, West Bengal, 

India, 2023. 

[12] A. A. Al Shehri, “Mapping moon craters: 

Scientific knowledge from 1965 to 2022: 

Systematic review,” Advances in Space 

Research, vol. 70, no. 4, 2022, pp. 1218-

1236. 

[13] A. Baronia, J. Sarup, “Crater Detection on 

Moon Surface,” International Journal of 

Remote Sensing, vol. 43, no. 6, 2022, pp. 

2201-2217. 

[14] H. Gajera, P. Trada, “Lunar Crater Detection 

Walkthrough – A Review,” Babaria Institute 

of Technology, Vadodara, India, 2023. 

[15] S. Huang, J. Yin, H. Zhu, Z. Cao, “Gaussian 

Attractive Force-Based Alternative 

Parametric Active Contour Model for 3D 

Lunar Crater Detection,” School of 

Astronautics, Beihang University, Beijing, 

China, 2022. 

[16] T. Ishida, S. Fukuda, K. Kariya, H. Kamata, K. 

Takadama, H. Kojima, S. Sawai, S. Sakai, 

“Vision-based navigation and obstacle 

detection flight results in SLIM lunar 

landing,” Acta Astronautica. 

[17] K. Nishiguchi, S. Yoshikawa, T. Kinoshita, 

“Obstacle Detection Method for a Soft 

Landing on the Moon,” Journal of the Japan 

Society for Aeronautical and Space Sciences, 

vol. 48, no. 554, 2000, pp. 55-60. 

[18] S. Kanade, S. Kande, A. Wanare, S. Gunjal, 

“Obstacle Detection on Lunar Surface using 

U-Net,” Dept. of Computer Engineering, 

PVGCOE and S.S.D. Institute of 

Management, Nashik-422004. 

[19] R. Simmons, L. Henriksen, L. Chrisman, G. 

Whelan, “Obstacle Avoidance and 

Safeguarding for a Lunar Rover,” School of 

Computer Science/Robotics Institute, 

Carnegie Mellon University, Pittsburgh, PA 

15213. 

[20] P. Ms, H. Negi, K. Bhargava, K. Rana, N. 

Meswal, “Deep Learning based Moon Rock 

Obstacle Detection for Rover Navigation,” 

HMR Institute of Technology and 

Management, GGSIPU, Delhi, India. 

[21] S. Chen, J. Li, W. Zhang, S. Zhang, Y. Xu, Z. 

Tang, “Lunar Surface Obstacle Detection and 

3D Reconstruction System Based on 



© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002 

IJIRT 176448   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      8043 

YOLOv9,” Conference paper, pp. 333-343. 

[22] S. Coloma, A. Frantz, D. van der Meer, E. 

Skrzypczyk, A. Orsula, M. Olivares-Mendez, 

“Immersive Rover Control and Obstacle 

Detection based on Extended Reality and 

Artificial Intelligence.” 


