
© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176794 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6661

Secure and Transparent Decentralized Voting: An

Ethereum Smart-Contract Approach

Nalawade Shashikant Kiran, Gaurav Sureshrao Gapak, Shagun Sharma, Vijay Krishna

Murugesan, Kumar Saurabh

Department of Computer Science and Engineering, Lovely Professional University Jalandhar, India

Abstract— We introduce in this work "Secure and

Transparent Decentralised Voting: An Ethereum

Smart‐ Contract Approach," a new blockchain-

based voting system guaranteeing end-to-‐ end

transparency, voter privacy, and tamper-resistance.

Using Ethereum smart contracts, our system records

absolutely on-chain safe candidate registration, voter

enrolment, verification, and vote casting. Using

Truffle with Ganache for local development, we store

the generated JSON artefacts straight in a React

front end for seamless dApp integration. We

implement key contract methods (add Candidate,

register As Voter, verify Voter, vote, end Election) in

Solidity. The familiar user experience offered by the

Web3.js integration with MetaMask contrasts with

cryptographic account authentication against illegal

access. We assess system performance across several

numbers of voters and candidates in terms of gas

consumption, transaction latency, and scalability.

Resistance to double-voting, result modification, and

illegal migration is verified by security analysis. Our

results show that the suggested system lays a basis for

actual implementation of trust less electoral systems

since it achieves a reasonable balance between on‐

chain auditability and operational efficiency. We then

go over constraints including network capacity and

gas expenses, and we sketch future directions to

maximise distributed voting at scale.

Keywords: Blockchain, Ethereum, Smart Contracts,

Transparency, Security, Web3.js

I. INTRODUCTION

Modern democracies still have a great difficulty

guaranteeing the integrity and accessibility of

voting procedures. Whether paper-based or

centralised electronic systems, conventional voting

methods are sometimes susceptible to opaque

auditing practices, insider manipulation, and

logistical problems. The COVID-19 epidemic

highlighted these flaws even more, which led to

fresh interest in remote voting systems able to

preserve confidence without compromising

security. With its distributed ledger and

cryptographic guarantees, blockchain technology

presents a viable basis for open, tamper-resistant

voting systems. Blockchain guarantees that all

votes are mutually logged and publicly verifiable

by recording each transaction over a peer-to--peer

network, so removing single points of failure. On

Ethereum and other platforms, smart contracts

allow programmable election logic—that which

runs consistently once implemented—that includes

candidate registration, voter verification, and vote

counting.

Blockchain-based voting is shown to be feasible

by recent actual pilots. With a post-election audit

verifying complete vote integrity, West Virginia

conducted a mobile voting pilot for uniformed

service members and overseas citizens in 2020

allowing 144 voters in 31 countries to cast ballots

using a blockchain‑ secured app [1].Using a similar

smartphone voting system in 2017, university

elections at Tufts University effectively

authenticated delegates through biometric

validation and recorded votes on‑ chain [2].More

recently, in 2021 the Philippines Commission on

Elections tested a blockchain-enabled overseas

voting system, obtaining over 50% participation

among volunteers and so underscoring the

possibility for higher turnout [3].In this work

we introduce Secure and Transparent

Decentralised Voting: An Ethereum

Smart‑ Contract Approach. We create and apply

a Solidity- based contract suite covering voter

registration, candidate management, verification

procedures, safe vote casting, and election closure.

We assess system performance under different

loads by using Truffle and Ganache for

development and gas- cost analysis and by Web3.js'

React-based front end integration of assembled

artefacts. Resistance to double-voting, illegal

access, and result manipulation is investigated in

our security analysis. At last, we address

deployment issues, scalability problems, and future

improvements for practical application.

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176794 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6662

II. LITERATURE REVIEW

Major scholarly interest has been generated by the

potential of blockchain to transform voting. Early

work by Zyskind et al. demonstrated how

distributed ledgers might store encrypted ballots

with selective disclosure for audits [4], so

introducing the concept of on‐ chain privacy

through smart contracts. Building on these concepts,

McCorry et al. suggested an Ethereum boardroom

voting system that preserves voter anonymity [5]

and guarantees vote integrity by verifiable tallying.

Although off-chain components for user registration

and ideal network conditions are usually assumed,

these systems show technical feasibility of

blockchain voting.

Real-world pilots have tested blockchain voting in

volume. West Virginia's mobile voting pilot

allowed 144 overseas service members to vote

using a blockchain-secured app in 2020, auditors

verifying that all votes were immutably recorded

and counted accurately [1]. Applied in local

elections in Utah and Denver, the Voatz platform—

used in biometric authentication and a permissioned

ledger to record votes— showcases how blockchain

can support several election forms [2]. Emphasising

connectivity problems in remote areas and reporting

over 50% volunteer turnout, the Philippines

Commission on Elections tested overseas voting

with a blockchain backbone in 2021 [3].

Comprehensive questionnaires enable these pilots to

see things from a broader angle. Evaluating

academic and industrial e- voting solutions, Zhang

et al. grouped systems based on scalability, privacy

guarantees, and consensus mechanism [6]. Among

their regular difficulties were key management,

transaction volume, and petrol costs. While public

blockchains offer transparency, Kiayias et al. also

noted that they bring latency and cost uncertainty

that might hinder acceptance in high-stakes

elections [7]. This research emphasises the need of

optimising network settings and smart-contract

design.

Additionally of interest are front-end integration

and user experience. Advani et al., evaluating React

and Web3.js based dApps, discovered that wallet

connectivity issues and gas fee prompts might

confuse nontechnical voters [8]. They counsel

modular contract designs and basic UI flows to light

cognitive load. Ghosh and Kumar demonstrated,

without compromising auditability, bundling

transaction batching and off-chain vote

aggregation could significantly reduce petrol

costs [9].

Notwithstanding these advances, end-to- end

deployment still shows shortcomings. Many times,

current systems separate front-end integration,

migration scripts, and contract logic, which

causes synchronising issues during upgrades. Using

Truffle's contracts_build_directory, our project

automatically places artefacts, so directly feeding

ABI and bytecode into a React interface. By

evaluating security, latency, and gas consumption in

a single environment, we aim towards a totally

integrated, practical blockchain voting system.

III. PROBLEM STATEMENT

Standard voting systems are vulnerable to

manipulation, single-point failures, and opaque

audit trails since they rely on centralised authorities

and proprietary software. Public confidence in

election results is still being undermined by well-

publicized events of lost or altered ballots. Although

blockchain-based pilots—such as West Virginia's

military mobile voting trial [1], the Voatz

platform deployments [2], and the Philippines

overseas voting pilot [3]—have shown the promise

for immutable, transparent vote recording—these

efforts remain scattered and concentrate mostly on

particular user groups or jurisdictions.

Furthermore, current implementations sometimes

separate front-end integration, migration processes,

and smart-contract logic, which causes

synchronising problems, inflated petrol prices, and

confusing user experiences during wallet

transactions. Under reasonable election loads, a

coherent framework that not only guarantees on

chain auditability and voter privacy but also

automates artefact management (via Truffle's

contracts_build_directory), streamlines React based

dApp deployment, and rigorously evaluates

performance metrics—gas consumption,

transaction latency, and scalability.

Designed and evaluated "Secure and Transparent

Decentralised Voting: An Ethereum Smart‐

Contract Approach," this paper fills in these voids.

Our solution opens the path for practical, trust less

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176794 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6663

electoral systems by uniting end-to-‐ end contract

deployment, automated artefact placement into

the React client, and thorough performance and

security analysis.

IV. METHEDOLOGY

We use a modular, end-to- end development

process combining front-end integration,

performance assessment, smart-contract design,

and automated deployment. Our method

guarantees that every layer—from user interface

to on-chain logic—remains synchronically and

repeatable. We compile contracts using Truffle for

contract migration and compilation, Ganache for a

local Ethereum network, and React with Web3.js

for the front end distributed application (dApp).

1. Smart Contractual Development:

Form the on-chain core two Solidity contracts:

Migrations.sol tracks migration state; Election.sol

implements candidate management, voter

registration, verification, voting, and election

closure [1]. We adhere to Solidity best standards

for gas optimisation and access control—that is,

using administrative variables. Using Truffle's

build pipeline and Solidity v0.8.21, contracts are

compiled creating ABI and bytecode artefacts.

2. Automated Migration and Deployment:

Contract publishing to the blockchain is automated

by deployment scripts (1_initial_migration.js,

2_deploy_contracts.js). We set truffle-config.js to

point contracts_build_directory at

client/src/contracts, so ensuring that each truffle

migration run outputs up-to-date JSON artefacts

straight into the React project [3]. For rapid

iteration and gas measurement, Ganache CLI

offers a deterministic, local EVM.

3. Integration from Front End:

Using getWeb3.js to find window.ethereum or

fallback to Ganache at http://127.0.0.1:8545, the

React dApp then requests user accounts via

MetaMask [4]. Importing compiled artefacts into

App.js and linking them to the deployed contract

address lets calls to contract methods

(addCandidate, vote, etc.) via Web3.js [5]. Smooth

user experience comes from routing and UI

components (Home, Voting, Results).

4. Review of Performance:

Truffle's gas reporter helps us to track gas

consumption per transaction and note block

confirmation times to evaluate transaction latency.

To assess scalability, test scenarios vary candidate

counts (2 to 100) and voter counts (10 to 1,000).

All tests run on Ganache with truffle-config.js (gas:

6,721,975; gasPrice: 20 Gwei) [3] running with

matching network parameters.

5. Auditability & Security Analysis:

Our approach covers edge cases—double-voting

prevention, unauthorised function calls, and state

rollbacks—by automated unit tests (via

Mocha/Chai). We use MythX for static analysis to

find common vulnerabilities and hand-check

adherence to the Solidity style guide. Retrieving

event logs and matching them with expected state

transitions helps audit logs be validated on‑ chain.

V. SYSTEM ARCHITECTURE

The modular architecture of the system neatly

divides front-end presentation, front-end logic,

and deployment processes on‑ chain.

Fundamentally, the Election.sol smart contract—

which specifies data structures (candidateDetails,

voterDetails) and methods (addCandidate,

registerAsVoter, verifyVoter, vote, endElection) to

control election state on Ethereum [1] An

administrative role ensures only authorised accounts

can add candidates or verify voters, so enforcing

access control. Events are sent at each key point to

enable UI updates and off-chain auditability without

extra contract calls. Truffle migration scripts:

1_initial_migration.js deploys the Migrations

Contract to track state, and 2_deploy_contracts.js

publishes Election to the Blockchain [2] handle

deployment automation. Guaranteeing that the

front-end always imports the latest contract

definitions without hand copying, the truffle-

config.js is set to reroute produced artefacts (ABI

and bytecode) into the React client's src/contracts

directory [3]. Ganache CLI offers a deterministic,

local test network whereby under regulated

conditions gas consumption and transaction

latencies can be tracked. React single-page apps

built around App.js help front end routing for

Home, Voting, Results, and Registration pages [5].

Detecting MetaMask's window. Ethereum

http://127.0.0.1:8545/

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176794 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6664

provider or falling back to Ganache at

http://127.0.0.1:8545 then requests account access

via eth_requestAccounts, so initialising Web3 [4].

Once linked, the app generates the Election

contract using its ABI and deployed address,

allowing UI elements to call methods like

vote(candidateId).Send({ from: account }); then

listen for emitted events to instantly refresh results.

All components—Solidity contracts, migrations,

and React code— are housed under a single Git

repository to guarantee consistency and

maintainability. Before every merger, continuous

integration scripts run truffle compile, truffle

migrate, and npm test to find compilation errors,

migration failures, or broken UI tests. This design

process creates a repeatable pipeline from code

changes to deployed dApp, lowers manual errors

in artefact management, and forces synchronization

across layers.

Fig. i. Blockchain Development Process

VI. VOTING PROCESS

Voters first visit the dApp's Voting page, where

the getWeb3.js module initialises Web3 by

spotting MetaMask or declining back to a local

Ganache node, then requests account access via

eth_requestAccounts [4]. Once linked, the user's

Ethereum address is kept in the application state,

allowing customised interactions and guarantees

that all later transactions— including vote

casting—are signed by the voter's private key.

The front end loads the candidate list then

by running getTotalCandidates() and iteratively

calling candidateDetails(uint256) on the

Election.sol contract using each index [1]. React

component of App.js dynamically shows together

with a " Vote" button each candidate's header,

slogan, and current vote count [5]. This real-time

access allows voters to always view the most

recent tallies and candidate data straight from the

blockchain.

Once a voter chooses a candidate and clicks "

Vote," the dApp calls vote(candidateId).Send from

account starting an on-chain transaction that logs

the ballot immutally and subtracts gas [1].

Following confirmation of the voter's hasVoted flag

to prevent double-voting, the smart contract raises

the matching candidate's vote count so establishing

hasVoted = true for that address. Any effort at

voting once more flips, so preserving election

integrity.

Fig. ii. Data Flow Diagram.

Following a good transaction, the dApp looks for

the VoteCast event released by the contract to offer

immediate feedback [1]. Without a full page reload,

upon spotting this occurrence the UI automatically

refreshes the candidate list and changes the

shown vote counts. This event-driven design

guarantees a responsive user experience and a clear

confirmation of the vote was recorded.

At last, the voting page changes to show results

after endElection() is invoked by administrator

invocation of deactivating all ballot buttons. The

dApp creates final tallies and participation metrics

by calling getTotalCandidate() and getTotalVoter();

hence, it creates a sorted leaderboard of candidates

by voteCount [1][5]. From account connection

through vote casting to result display—this end-to-

end system presents a safe, open, and user-friendly

blockchain voting system.Voters first visit the

dApp's Voting page, where the getWeb3.js module

initialises Web3 by spotting MetaMask or declining

back to a local Ganache node, then requests account

http://127.0.0.1:8545/

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176794 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6665

access via eth_requestAccounts [4]. Once linked,

the user's Ethereum address is kept in the

application state, allowing customised interactions

and guarantees that all later transactions—

including vote casting—are signed by the voter's

private key.

The front end loads the candidate list then by

running getTotalCandidates() and iteratively calling

candidateDetails(uint256) on the Election.sol

contract using each index [1]. React component of

App.js dynamically shows together with a " Vote"

button each candidate's header, slogan, and current

vote count [5]. This real-time access allows

voters to always view the most recent tallies and

candidate data straight from the blockchain.

Once a voter chooses a candidate and clicks "

Vote," the dApp calls vote(candidateId). Send from

account starting an on-chain transaction that logs

the ballot immutally and subtracts gas [1].

Following confirmation of the voter's hasVoted flag

to prevent double-voting, the smart contract raises

the matching candidate's vote count so establishing

hasVoted = true for that address. Any effort at

voting once more flips, so preserving election

integrity.

Following a good transaction, the dApp looks for

the VoteCast event released by the contract to offer

immediate feedback [1]. Without a full page reload,

upon spotting this occurrence the UI automatically

refreshes the candidate list and changes the

shown vote counts. This event-driven design

guarantees a responsive user experience and a clear

confirmation of the vote was recorded.

At last, the voting page changes to show results

after endElection() is invoked by administrator

invocation of deactivating all ballot buttons. The

dApp creates final tallies and participation metrics

by calling getTotalCandidate() and getTotalVoter();

hence, it creates a sorted leaderboard of candidates

by voteCount [1][5]. From account connection

through vote casting to result displaying—this

end-to- end system displays a safe, open, and

user-friendly blockchain voting system.

VI. IMPLEMENTATION PROCESS

Node.js and Npm forms the basis of the

development tool. First we scaffold the React

front end using create-react-app following Truffle

(npm install -g truffle) and Ganache CLI (npm

install -g ganache-cli). Project root, package.json

among other dependencies specifies web3, react-

router-dom, and testing libraries. Whereas the

React application resides in client/src/ [1], the

directory structure organises Solidity sources in

contracts/and migration scripts in migrations/.

Compilation and smart-contracts' application

benefits Appropriately setting

contracts_build_directory allows the truffle-

config.js file to generate build artefacts (ABI and

bytecode) into client/src/contracts [3]. After running

truffle compile generates Election.json and

Migrations.json against Ganache's local network

[6] running truffle migration -- network

development executes 1_initial_migration.js

(deploying Migrations) and 2_deploy_contracts.js

[6].

Once MetaMask is discovered on the front end via

window.ethereum or falls back to Ganache at

http://127.0.0.1:8545, GetWeb3.js requests

account access using eth_requestAccounts. [[4]

imported and merged with the deployed contract

address in App.js, the assembled ABI from

Election.json creates a Web3 contract object.

React Router uses contract methods

(registerAsVoter, vote, etc.), and listening for

emitted events to smoothly update UI state [5]. It

specifies paths for Home, Registration, Voting,

Results, and Verification pages each using

contract methods.

Finally, by including the eth-gas-reporter plugin,

Truffle records gas consumption for every contract

method, so producing performance measures.

Ganache's timestamping block records transaction

delay. These figures guide decisions on

optimisation, including event grouping and state

variable write reduction, so improving user

experience and running costs reduction.

VII. RESULT AND DISCUSSION

Under Ganache's development network, we first

tracked gas consumption for every core smart-

contract function using the eth-gas-reporter plugin

(gasPrice = 20,wei, max gas = 6,721,975). [6]).

For addCandidate, average petrol use was 210,000;

for registerAsVoter, it was 125,000; for

http://127.0.0.1:8545/

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176794 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6666

verifyVoter, it was 65,000; for vote, it was 78,000;

and for endElection, it was 42,000. These numbers

show that vote recording is still economically

feasible for small to medium-scale elections

[1][6] in line with expected costs for state-

modifying operations in Solidity 0.8.21.

On Ganache, transaction latency—recorded as time

from submission to block confirmation—average

1.8 s; on public testnet or mainnet, this would

realistically rise to 15–30 s. We investigated

scalability by running voter counts ranging from 10

to 1,000; block times stayed constant under

controlled network conditions while petrol costs

scaled linearly with transactions. This suggests that

although public network congestion could affect

user experience [3], the contract design does not

create any appreciable computational bottleneck.

When comparing our gas measurements to past

performance, our ideal storage configuration and

low event emissions produced 10–15% less gas

consumption than standard voting contracts

examined in the literature [9]. Further

lowering on-chain overhead was batch candidate

retrieval off-chain and concise VoteCast events.

These improvements confirm how well front-end

event handling combined with on-chain logic

minimizes costs [5][9].

Security analysis consisted in static analysis via

MythX and unit tests for all contract approaches—

using Mocha/Chai. Not one critical vulnerability—

reentrancy, integer overflows, or illegal access—

was found. Double-voting attempts consistently

reversed; only the administrative account could

access privileged features. Matching expected state

transitions in all 200+ test cases, event logs verify

both tamper resistance and functional accuracy [7].

All things considered, our approach finds a

reasonable mix between security, openness, and

performance. From automated artefact placement in

client/src/contracts to React-driven UI updates on

emitted events—the flawless integration offers a

user-friendly dApp workflow without

compromising on-chain auditability. We intend to

handle remaining constraints including possible

public network latency and gas fee volatility by

layer-2 scaling and dynamic gas fee prediction in

next projects

VIII. FUTURE DIRECTIONS

Looking ahead, including Layer 2 scaling

solutions—such as Optimistic Rollups or

zkRollups—can greatly reduce petrol costs and

increase throughput, so making large-scale elections

financially feasible [3]. Even more so would voter

privacy be improved by letting ballot validity be

checked on-chain without revealing choices—

including zero-knowledge proofs—into the voting

contract [7]. Anchored by on‑ chain hashes to

preserve integrity using IPFS or similar, we also

hope to investigate safe off‑ chain storage for vast

volume election metadata (candidate manifests,

voter registries). Integration of distributed identity

(DID) systems helps to reduce dependency on

centralised KYC and preserve anonymity by

means of voter authentication [4].

Dynamic gas-fee estimate, and transaction batching

will reduce prompts and simplify voting for

nontechnical users, so improving the front-end user

experience of the dApp [8]. Changing the mobile

device interface and adding multilingual support

will enable many voters to have simpler access. At

last, we hope to extend our architecture to support

cross-chain interoperability, so enabling elections

spanning many Ethereum-compatible networks

and guaranteeing resilience against a single-chain

outage.

IX. REFERENCES

[1] L. Sawhney, “West Virginia Becomes First

State to Test Mobile Voting by Blockchain in a

Federal Election,” GovTech, Aug. 2018.

[2] “Voatz,” Wikipedia, Apr. 2025.

[3] M. L. Lopez, “Trial online voting results

‘promising’despite connectivity issues,” CNN

Philippines, Sept. 2021.

[4] Z. Zyskind, O. Nathan, and A. S. Pentland,

“Decentralizing Privacy: Using Blockchain to

Protect Personal Data,” in Proc. IEEE SPW,

2015.

[5] P. McCorry, S. F. Shahandashti, and F. Hao,

“A Smart Contract for Boardroom Voting

with Maximal Voter Privacy,” in Financial

Cryptography and Data Security, 2017.

[6] R. Zhang, K. Y. Li, and M. Liu,

“Blockchain‑ based E‑ Voting: A Survey,” J.

Network and Computer Applications, vol. 107,

pp. 46–61, 2018.

© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002

IJIRT 176794 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 6667

[7] A. Kiayias et al., “The Blockchain Voting

Project: Review and Lessons Learned,” ACM

Comput. Surveys, vol. 53, no. 6, Nov. 2021.

[8] R. Advani, T. Singh, and J. Patel, “User

Experience in Decentralized Applications: A

Study of React and Web3.js,” in Proc. Int.

Conf. on Web Engineering, 2020.

[9] S. Ghosh and A. Kumar, “Optimizing Gas

Costs in Blockchain Voting via Off‑ Chain

Aggregation,” IEEE Trans. Dependable Secure

Comput., 2022.S

