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Abstract— We introduce in this work "Secure and 

Transparent Decentralised Voting: An Ethereum 

Smart‐  Contract Approach," a new blockchain-

based voting system guaranteeing end-to-‐ end 

transparency, voter privacy, and tamper-resistance. 

Using Ethereum smart contracts, our system records 

absolutely on-chain safe candidate registration, voter 

enrolment, verification, and vote casting. Using 

Truffle with Ganache for local development, we store 

the generated JSON artefacts straight in a React 

front end for seamless dApp integration. We 

implement key contract methods (add Candidate, 

register As Voter, verify Voter, vote, end Election) in 

Solidity. The familiar user experience offered by the 

Web3.js integration with MetaMask contrasts with 

cryptographic account authentication against illegal 

access. We assess system performance across several 

numbers of voters and candidates in terms of gas 

consumption, transaction latency, and scalability. 

Resistance to double-voting, result modification, and 

illegal migration is verified by security analysis. Our 

results show that the suggested system lays a basis for 

actual implementation of trust less electoral systems 

since it achieves a reasonable balance between on‐

chain auditability and operational efficiency. We then 

go over constraints including network capacity and 

gas expenses, and we sketch future directions to 

maximise distributed voting at scale. 
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I. INTRODUCTION 

 

Modern democracies still have a great difficulty 

guaranteeing the integrity and accessibility of 

voting procedures. Whether paper-based or 

centralised electronic systems, conventional voting 

methods are sometimes susceptible to opaque 

auditing practices, insider manipulation, and 

logistical problems. The COVID-19 epidemic 

highlighted these flaws even more, which led to 

fresh interest in remote voting systems able to 

preserve confidence without compromising 

security. With its distributed ledger and 

cryptographic guarantees, blockchain technology 

presents a viable basis for open, tamper-resistant 

voting systems. Blockchain guarantees that all 

votes are mutually logged and publicly verifiable 

by recording each transaction over a peer-to--peer 

network, so removing single points of failure. On 

Ethereum and other platforms, smart contracts 

allow programmable election logic—that which 

runs consistently once implemented—that includes 

candidate registration, voter verification, and vote 

counting. 

Blockchain-based voting is shown to be feasible 

by recent actual pilots. With a post-election audit 

verifying complete vote integrity, West Virginia 

conducted a mobile voting pilot for uniformed 

service members and overseas citizens in 2020 

allowing 144 voters in 31 countries to cast ballots 

using a blockchain‑ secured app [1].Using a similar 

smartphone voting system in 2017, university 

elections at Tufts University effectively 

authenticated delegates through biometric 

validation and recorded votes on‑ chain [2].More 

recently, in 2021 the Philippines Commission on 

Elections tested a blockchain-enabled overseas 

voting system, obtaining over 50% participation 

among volunteers and so underscoring the 

possibility for higher turnout [3].In this work 

we introduce Secure and Transparent 

Decentralised Voting: An Ethereum 

Smart‑ Contract Approach. We create and apply 

a Solidity- based contract suite covering voter 

registration, candidate management, verification 

procedures, safe vote casting, and election closure. 

We assess system performance under different 

loads by using Truffle and Ganache for 

development and gas- cost analysis and by Web3.js' 

React-based front end integration of assembled 

artefacts. Resistance to double-voting, illegal 

access, and result manipulation is investigated in 

our security analysis. At last, we address 

deployment issues, scalability problems, and future 

improvements for practical application. 
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II. LITERATURE REVIEW 

 

Major scholarly interest has been generated by the 

potential of blockchain to transform voting. Early 

work by Zyskind et al. demonstrated how 

distributed ledgers might store encrypted ballots 

with selective disclosure for audits [4], so 

introducing the concept of on‐ chain privacy 

through smart contracts. Building on these concepts, 

McCorry et al. suggested an Ethereum boardroom 

voting system that preserves voter anonymity [5] 

and guarantees vote integrity by verifiable tallying. 

Although off-chain components for user registration 

and ideal network conditions are usually assumed, 

these systems show technical feasibility of 

blockchain voting. 

 

Real-world pilots have tested blockchain voting in 

volume. West Virginia's mobile voting pilot 

allowed 144 overseas service members to vote 

using a blockchain-secured app in 2020, auditors 

verifying that all votes were immutably recorded 

and counted accurately [1]. Applied in local 

elections in Utah and Denver, the Voatz platform—

used in biometric authentication and a permissioned 

ledger to record votes— showcases how blockchain 

can support several election forms [2]. Emphasising 

connectivity problems in remote areas and reporting 

over 50% volunteer turnout, the Philippines 

Commission on Elections tested overseas voting 

with a blockchain backbone in 2021 [3]. 

 

Comprehensive questionnaires enable these pilots to 

see things from a broader angle. Evaluating 

academic and industrial e- voting solutions, Zhang 

et al. grouped systems based on scalability, privacy 

guarantees, and consensus mechanism [6]. Among 

their regular difficulties were key management, 

transaction volume, and petrol costs. While public 

blockchains offer transparency, Kiayias et al. also 

noted that they bring latency and cost uncertainty 

that might hinder acceptance in high-stakes 

elections [7]. This research emphasises the need of 

optimising network settings and smart-contract 

design. 

 

Additionally of interest are front-end integration 

and user experience. Advani et al., evaluating React 

and Web3.js based dApps, discovered that wallet 

connectivity issues and gas fee prompts might 

confuse nontechnical voters [8]. They counsel 

modular contract designs and basic UI flows to light 

cognitive load. Ghosh and Kumar demonstrated, 

without compromising auditability, bundling 

transaction batching and off-chain vote 

aggregation could significantly reduce petrol 

costs [9]. 

 

Notwithstanding these advances, end-to- end 

deployment still shows shortcomings. Many times, 

current systems separate front-end integration, 

migration scripts, and contract logic, which 

causes synchronising issues during upgrades. Using 

Truffle's contracts_build_directory, our project 

automatically places artefacts, so directly feeding 

ABI and bytecode into a React interface. By 

evaluating security, latency, and gas consumption in 

a single environment, we aim towards a totally 

integrated, practical blockchain voting system. 

 

III. PROBLEM STATEMENT 

 

Standard voting systems are vulnerable to 

manipulation, single-point failures, and opaque 

audit trails since they rely on centralised authorities 

and proprietary software. Public confidence in 

election results is still being undermined by well-

publicized events of lost or altered ballots. Although 

blockchain-based pilots—such as West Virginia's 

military mobile voting trial [1], the Voatz 

platform deployments [2], and the Philippines 

overseas voting pilot [3]—have shown the promise 

for immutable, transparent vote recording—these 

efforts remain scattered and concentrate mostly on 

particular user groups or jurisdictions. 

 

Furthermore, current implementations sometimes 

separate front-end integration, migration processes, 

and smart-contract logic, which causes 

synchronising problems, inflated petrol prices, and 

confusing user experiences during wallet 

transactions. Under reasonable election loads, a 

coherent framework that not only guarantees on 

chain auditability and voter privacy but also 

automates artefact management (via Truffle's 

contracts_build_directory), streamlines React based 

dApp deployment, and rigorously evaluates 

performance metrics—gas consumption, 

transaction latency, and scalability. 

 

Designed and evaluated "Secure and Transparent 

Decentralised Voting: An Ethereum Smart‐

Contract Approach," this paper fills in these voids. 

Our solution opens the path for practical, trust less 
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electoral systems by uniting end-to-‐ end contract 

deployment, automated artefact placement into 

the React client, and thorough performance and 

security analysis. 

 

IV. METHEDOLOGY 

 

We use a modular, end-to- end development 

process combining front-end integration, 

performance assessment, smart-contract design, 

and automated deployment. Our method 

guarantees that every layer—from user interface 

to on-chain logic—remains synchronically and 

repeatable. We compile contracts using Truffle for 

contract migration and compilation, Ganache for a 

local Ethereum network, and React with Web3.js 

for the front end distributed application (dApp). 

 

1. Smart Contractual Development: 

 

Form the on-chain core two Solidity contracts: 

Migrations.sol tracks migration state; Election.sol 

implements candidate management, voter 

registration, verification, voting, and election 

closure [1]. We adhere to Solidity best standards 

for gas optimisation and access control—that is, 

using administrative variables. Using Truffle's 

build pipeline and Solidity v0.8.21, contracts are 

compiled creating ABI and bytecode artefacts. 

 

2. Automated Migration and Deployment: 

 

Contract publishing to the blockchain is automated 

by deployment scripts (1_initial_migration.js, 

2_deploy_contracts.js). We set truffle-config.js to 

point contracts_build_directory at 

client/src/contracts, so ensuring that each truffle 

migration run outputs up-to-date JSON artefacts 

straight into the React project [3]. For rapid 

iteration and gas measurement, Ganache CLI 

offers a deterministic, local EVM. 

 

3. Integration from Front End: 

 

Using getWeb3.js to find window.ethereum or 

fallback to Ganache at http://127.0.0.1:8545, the 

React dApp then requests user accounts via 

MetaMask [4]. Importing compiled artefacts into 

App.js and linking them to the deployed contract 

address lets calls to contract methods 

(addCandidate, vote, etc.) via Web3.js [5]. Smooth 

user experience comes from routing and UI 

components (Home, Voting, Results). 

4. Review of Performance: 

 

Truffle's gas reporter helps us to track gas 

consumption per transaction and note block 

confirmation times to evaluate transaction latency. 

To assess scalability, test scenarios vary candidate 

counts (2 to 100) and voter counts (10 to 1,000). 

All tests run on Ganache with truffle-config.js (gas: 

6,721,975; gasPrice: 20 Gwei) [3] running with 

matching network parameters. 

 

5. Auditability & Security Analysis: 

 

Our approach covers edge cases—double-voting 

prevention, unauthorised function calls, and state 

rollbacks—by automated unit tests (via 

Mocha/Chai). We use MythX for static analysis to 

find common vulnerabilities and hand-check 

adherence to the Solidity style guide. Retrieving 

event logs and matching them with expected state 

transitions helps audit logs be validated on‑ chain. 

 

V. SYSTEM ARCHITECTURE 

 

The modular architecture of the system neatly 

divides front-end presentation,  front-end  logic,  

and  deployment  processes on‑ chain. 

Fundamentally, the Election.sol smart contract— 

which specifies data structures (candidateDetails, 

voterDetails) and methods (addCandidate, 

registerAsVoter, verifyVoter, vote, endElection) to 

control election state on Ethereum [1] An 

administrative role ensures only authorised accounts 

can add candidates or verify voters, so enforcing 

access control. Events are sent at each key point to 

enable UI updates and off-chain auditability without 

extra contract calls. Truffle migration scripts: 

1_initial_migration.js deploys the Migrations 

Contract to track state, and 2_deploy_contracts.js 

publishes Election to the Blockchain [2] handle 

deployment automation. Guaranteeing that the 

front-end always imports the latest contract 

definitions without hand copying, the truffle-

config.js is set to reroute produced artefacts (ABI 

and bytecode) into the React client's src/contracts 

directory [3]. Ganache CLI offers a deterministic, 

local test network whereby under regulated 

conditions gas consumption and transaction 

latencies can be tracked. React single-page apps 

built around App.js help front end routing for 

Home, Voting, Results, and Registration pages [5]. 

Detecting MetaMask's window. Ethereum 

http://127.0.0.1:8545/
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provider or falling back to Ganache at 

http://127.0.0.1:8545 then requests account access 

via eth_requestAccounts, so initialising Web3 [4]. 

Once linked, the app generates the Election 

contract using its ABI and deployed address, 

allowing UI elements to call methods like 

vote(candidateId).Send({ from: account }); then 

listen for emitted events to instantly refresh results. 

All components—Solidity contracts, migrations, 

and React code— are housed under a single Git 

repository to guarantee consistency and 

maintainability. Before every merger, continuous 

integration scripts run truffle compile, truffle 

migrate, and npm test to find compilation errors, 

migration failures, or broken UI tests. This design 

process creates a repeatable pipeline from code 

changes to deployed dApp, lowers manual errors 

in artefact management, and forces synchronization 

across layers. 

 
Fig. i. Blockchain Development Process 

 

VI. VOTING PROCESS 

 

Voters first visit the dApp's Voting page, where 

the getWeb3.js module initialises Web3 by 

spotting MetaMask or declining back to a local 

Ganache node, then requests account access via 

eth_requestAccounts [4]. Once linked, the user's 

Ethereum address is kept in the application state, 

allowing customised interactions and  guarantees 

that  all  later  transactions— including vote 

casting—are signed by the voter's private key. 

The front end loads the candidate list then 

by running getTotalCandidates() and iteratively 

calling candidateDetails(uint256) on the 

Election.sol contract using each index [1]. React 

component of App.js dynamically shows together 

with a " Vote" button each candidate's header, 

slogan, and current vote count [5]. This real-time 

access allows voters to always view the most 

recent tallies and candidate data straight from the 

blockchain. 

 

Once a voter chooses a candidate and clicks " 

Vote," the dApp calls vote(candidateId).Send from 

account starting an on-chain transaction that logs 

the ballot immutally and subtracts gas [1]. 

Following confirmation of the voter's hasVoted flag 

to prevent double-voting, the smart contract raises 

the matching candidate's vote count so establishing 

hasVoted = true for that address. Any effort at 

voting once more flips, so preserving election 

integrity. 

 
Fig. ii. Data Flow Diagram. 

 

Following a good transaction, the dApp looks for 

the VoteCast event released by the contract to offer 

immediate feedback [1]. Without a full page reload, 

upon spotting this occurrence the UI automatically 

refreshes the candidate list and changes the 

shown vote counts. This  event-driven design 

guarantees a responsive user experience and a clear 

confirmation of the vote was recorded. 

 

At last, the voting page changes to show results 

after endElection() is invoked by administrator 

invocation of deactivating all ballot buttons. The 

dApp creates final tallies and participation metrics 

by calling getTotalCandidate() and getTotalVoter(); 

hence, it creates a sorted leaderboard of candidates 

by voteCount [1][5]. From account connection 

through vote casting to result display—this end-to- 

end system presents a safe, open, and user-friendly 

blockchain voting system.Voters first visit the 

dApp's Voting page, where the getWeb3.js module 

initialises Web3 by spotting MetaMask or declining 

back to a local Ganache node, then requests account 

http://127.0.0.1:8545/
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access via eth_requestAccounts [4]. Once linked, 

the user's Ethereum address is kept in the 

application state, allowing customised interactions 

and guarantees that all later transactions—

including vote casting—are signed by the voter's 

private key. 

 

The front end loads the candidate list then by 

running getTotalCandidates() and iteratively calling 

candidateDetails(uint256) on the Election.sol 

contract using each index [1]. React component of 

App.js dynamically shows together with a " Vote" 

button each candidate's header, slogan, and current 

vote count [5]. This real-time access allows 

voters to always view the most recent tallies and 

candidate data straight from the blockchain. 

 

Once a voter chooses a candidate and clicks " 

Vote," the dApp calls vote(candidateId). Send from 

account starting an on-chain transaction that logs 

the ballot immutally and subtracts gas [1]. 

Following confirmation of the voter's hasVoted flag 

to prevent double-voting, the smart contract raises 

the matching candidate's vote count so establishing 

hasVoted = true for that address. Any effort at 

voting once more flips, so preserving election 

integrity. 

 

Following a good transaction, the dApp looks for 

the VoteCast event released by the contract to offer 

immediate feedback [1]. Without a full page reload, 

upon spotting this occurrence the UI automatically 

refreshes the candidate list and changes the 

shown vote counts. This event-driven design 

guarantees a responsive user experience and a clear 

confirmation of the vote was recorded. 

 

At last, the voting page changes to show results 

after endElection() is invoked by administrator 

invocation of deactivating all ballot buttons. The 

dApp creates final tallies and participation metrics 

by calling getTotalCandidate() and getTotalVoter(); 

hence, it creates a sorted leaderboard of candidates 

by voteCount [1][5]. From account connection 

through vote casting to result displaying—this 

end-to- end system displays a safe, open, and 

user-friendly blockchain voting system. 

 

VI. IMPLEMENTATION PROCESS 

 

Node.js and Npm forms the basis of the 

development tool. First we scaffold the React 

front end using create-react-app following Truffle 

(npm install -g truffle) and Ganache CLI (npm 

install -g ganache-cli). Project root, package.json 

among other dependencies specifies web3, react-

router-dom, and testing libraries. Whereas the 

React application resides in client/src/ [1], the 

directory structure organises Solidity sources in 

contracts/and migration scripts in migrations/. 

 

Compilation and smart-contracts' application 

benefits Appropriately setting 

contracts_build_directory allows the truffle-

config.js file to generate build artefacts (ABI and 

bytecode) into client/src/contracts [3]. After running 

truffle compile generates Election.json and 

Migrations.json against Ganache's local network 

[6] running truffle migration -- network 

development executes 1_initial_migration.js 

(deploying Migrations) and 2_deploy_contracts.js 

[6]. 

 

Once MetaMask is discovered on the front end via 

window.ethereum or falls back to Ganache at 

http://127.0.0.1:8545, GetWeb3.js requests 

account access using eth_requestAccounts. [ [ 4] 

imported and merged with the deployed contract 

address in App.js, the assembled ABI from 

Election.json creates a Web3 contract object. 

React Router uses contract methods 

(registerAsVoter, vote, etc.), and listening for 

emitted events to smoothly update UI state [5]. It 

specifies paths for Home, Registration, Voting, 

Results, and Verification pages each using 

contract methods. 

 

Finally, by including the eth-gas-reporter plugin, 

Truffle records gas consumption for every contract 

method, so producing performance measures. 

Ganache's timestamping block records transaction 

delay. These figures guide decisions on 

optimisation, including event grouping and state 

variable write reduction, so improving user 

experience and running costs reduction. 

 

VII. RESULT AND DISCUSSION 

 

Under Ganache's development network, we first 

tracked gas consumption for every core smart-

contract function using the eth-gas-reporter plugin 

(gasPrice = 20,wei, max gas = 6,721,975). [6]). 

For addCandidate, average petrol use was 210,000; 

for registerAsVoter, it was 125,000; for 

http://127.0.0.1:8545/
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verifyVoter, it was 65,000; for vote, it was 78,000; 

and for endElection, it was 42,000. These numbers 

show that vote recording is still economically 

feasible for small to medium-scale elections 

[1][6] in line with expected costs for state-

modifying operations in Solidity 0.8.21. 

 

On Ganache, transaction latency—recorded as time 

from submission to block confirmation—average 

1.8 s; on public testnet or mainnet, this would 

realistically rise to 15–30 s. We investigated 

scalability by running voter counts ranging from 10 

to 1,000; block times stayed constant under 

controlled network conditions while petrol costs 

scaled linearly with transactions. This suggests that 

although public network congestion could affect 

user experience [3], the contract design does not 

create any appreciable computational bottleneck. 

 

When comparing our gas measurements to past 

performance, our ideal storage configuration and 

low event emissions produced 10–15% less gas 

consumption than standard voting contracts 

examined in the literature [9]. Further 

lowering on-chain overhead was batch candidate 

retrieval off-chain and concise VoteCast events. 

These improvements confirm how well front-end 

event handling combined with on-chain logic 

minimizes costs [5][9]. 

 

Security analysis consisted in static analysis via 

MythX and unit tests for all contract approaches—

using Mocha/Chai. Not one critical vulnerability—

reentrancy, integer overflows, or illegal access—

was found. Double-voting attempts consistently 

reversed; only the administrative account could 

access privileged features. Matching expected state 

transitions in all 200+ test cases, event logs verify 

both tamper resistance and functional accuracy [7]. 

 

All things considered, our approach finds a 

reasonable mix between security, openness, and 

performance. From automated artefact placement in 

client/src/contracts to React-driven UI updates on 

emitted events—the flawless integration offers a 

user-friendly dApp workflow without 

compromising on-chain auditability. We intend to 

handle remaining constraints including possible 

public network latency and gas fee volatility by 

layer-2 scaling and dynamic gas fee prediction in 

next projects 

 

VIII. FUTURE DIRECTIONS 

 

Looking ahead, including Layer 2 scaling 

solutions—such as Optimistic Rollups or 

zkRollups—can greatly reduce petrol costs and 

increase throughput, so making large-scale elections 

financially feasible [3]. Even more so would voter 

privacy be improved by letting ballot validity be 

checked on-chain without revealing choices—

including zero-knowledge proofs—into the voting 

contract [7]. Anchored by on‑ chain hashes to 

preserve integrity using IPFS or similar, we also 

hope to investigate safe off‑ chain storage for vast 

volume election metadata (candidate manifests, 

voter registries). Integration of distributed identity 

(DID) systems helps to reduce dependency on 

centralised KYC and preserve anonymity by 

means of voter authentication [4]. 

 

Dynamic gas-fee estimate, and transaction batching 

will reduce prompts and simplify voting for 

nontechnical users, so improving the front-end user 

experience of the dApp [8]. Changing the mobile 

device interface and adding multilingual support 

will enable many voters to have simpler access. At 

last, we hope to extend our architecture to support 

cross-chain interoperability, so enabling elections 

spanning many Ethereum-compatible networks 

and guaranteeing resilience against a single-chain 

outage. 
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