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Abstract: Manually crafting math word problems is a 

labour-intensive process that teachers do, and one can 

sense a growing need for automated systems. However, 

many of the present models will generate problems 

that are grammatically correct but semantically 

incoherent, not solvable, or not aligned with the 

educational objectives. Addressing these issues is the 

motivation behind our work that enhances an MWP 

generation model using transformer architecture and 

reinforcement learning. Having integrated the topic-

expression transformer mechanism, our approach will 

be to align the problem context with appropriate 

mathematical operations: MWPs are generated that 

are linguistically sound and mathematically proper. 

Towards the future, we would focus on the increase of 

diversity and complexity of the generated problems 

and evaluation of model adaptability across different 

datasets. Finally, we shall end up with an application 

that is user-friendly to enable real-time generation and 

interaction with MWPs with improved relevance, 

solvability and effectiveness in the educational setting. 
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1. INTRODUCTION 

 

Generating math word problems is the task of 

expressing mathematical ideas in realistic and 

contextually meaningful problems that are 

meaningful and educational. Early template-based 

systems have created part of this framework and 

coherence, but these have often been inflexible 

because they lead to repetitive problems with 

little variation in structure or grammar. 

Maintaining and expanding these templates also 

required huge amounts of manual effort and were 

therefore not scalable. The focus has moved, over 

the past few years, toward more data-driven 

approaches, specifically deep learning models, to 

improve the linguistic and mathematical accuracy 

of problems that are generated. In fact, some of 

the limitations of template-based methods, which 

deep learning could potentially overcome, have 

now recently been faced by deep learning models 

in that the solutions produced by these deep 

learning models do not appropriately ensure that 

problems generated are consistently solvable and 

targeted toward specific learning objectives. 

 

The intrinsic complexity of MWPs also creates 

difficulties in generation and automatic solving. 

Actually, such problems demand models to read 

natural language, then apply mathematical 

reasoning on it and to translate the under- 

standing into correct mathematical expressions. 

Early MWP solvers would typically use rule-

based systems or statistical learning methods, but 

they functioned poorly in flexibility and 

generalization across different kinds of problems. 

Deep learning truly got the models close to 

becoming accurate and robust, but they can’t cope 

with long-range dependencies in problem texts. 

The lack of really good, high-quality, annotated 

datasets for training is another insurmountable 

barrier. It is within these considerations that data 

augmentation techniques can help alleviate the 

challenges these researchers are facing. They also 

considered using the transformer architecture and 

reinforcement learning, with the ability to help to 

capture long-range relationships in text while at 

the same time ensuring that problems generated 

meet both linguistic and educational standards. 

 

The recent promise for solving MWP is the 

emergence of new developments, including using 

large language models trained on source code, 

known as Large Code Models (LCMs). This model 

can transform a problem statement in natural 

language to a form of solution in code that can 

be integrated with Intelligent Tutoring Systems 

(ITS) in order to solve a new MWP. This 

approach allows for the possibility of 

increasing the number of problems students 

could study, while providing a personalized 
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mode of learning. Accuracy, however, is still a 

stumbling block for LCMs, especially as the 

complexity of the problem statement increased the 

chances that they translated it into a correct solution. 

Despite these problems, the emergence of LCMs 

and other advanced algorithms in machine 

learning, like transformers and reinforcement 

learning, will mark a bright future for MWP 

generation and solving-a task which will 

probably revolutionize ways we teach and 

practice mathematics. 

 

2. LITERATURE SURVEY 

 

[1] Wu et al. introduce MWPGen that generates 

MWPs by topics and mathematical 

expressions. The clever co-attention 

mechanism ensures that the model actually 

uses the specified topics and math 

expressions in a meaningful way. That is, 

they use even reinforcement learning, where 

the math problem solver provides feedback to 

improve the quality of generation, such that 

generated problems are both relevant and 

solvable. This directly addresses the common 

problem of generated MWPs that were 

lacking in coherence with their topic or 

equation. 

[2] Qwen2.5-Math is a series of math special-

purpose language models in- tended to 

augment mathematical reasoning. It includes 

constructing the highest- quality, math-

specialized datasets that combine data from 

many sources: web content, code, 

encyclopedias, exam questions, and more-

synthetic data generated by earlier Qwen 

models. These models also undergo iterative 

data synthesis and refinement due to the use 

of language models to evaluate and enhance 

the quality of the data: this process underlines 

the bi-directional nature in which LLMs can 

create training data and curate it. Qwen2.5-

Math models also undergo continuous pre-

training on such rich, math-centric datasets, 

which significantly enhances their capability 

to perform mathematical tasks, thereby 

possibly giving rise to high-quality MWPs. 

Table 1. Comparison outlining each study’s authors, techniques, advantages, and dis- advantages in 

Math Word Problem (MWP) generation and solving. 

Authors Methodology Used Strengths Limitations 

Q. Wu, Q. Zhang, and 

X. 

Huang (2022)[1] 

MWPGen,  with  a  

topic-expression co-attention 

mechanism and 

reinforcement learning to 

capture structural and 

semantic in- 

formation from expressions 

Effectively links topic 

words to expressions, 

ensuring solvable and 

relevant problems 

Dependent  on  the 

solver’s quality; 

struggles with 

complex reasoning 

A. Yang et al. (2024) Qwen2.5-Math,  a  

series 

of math-specific large 

language models using self- 

improvement techniques 

Demonstrates   

advanced   reasoning 

with Chain-of- 

Thought and Tool- 

Integrated Reasoning;  

supports  both 

English and Chinese 

High  computational 

cost; may struggle 

with unseen problem 

types 

A.  Mitra, H.  Khan- 

pour, C. Rosset, and A. 

Awadallah (2024) 

Supervised Language 

Mod- 

els (SLMs) for grade 

school math, methodology 

not fully 

detailed 

Aims to enhance 

grade school math tools;

 effective for 

early education 

Specific details on the 

methodology not pro- 

vided; limitations un- 

clear 

Q. Zhou and D. Huang 

(2019) 

MAGNET, a neural 

network 

model for generating 

MWPs using fusion of 

equations and topics, with 

Ensures   relevance 

and high-quality 

problem generation; 

outperforms baselines 

May  struggle  with 

more complex 

reasoning or multi-step 

problems 
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entity-enforced 

loss 

Z. Wang, A. S. Lan, 

and 

R. G. Baraniuk (2021) 

Pre-trained language 

mod- 

els with equation 

consistency constraint and 

context key- word selection 

for MWP generation 

High    mathematical 

consistency and language 

quality; model-agnostic 

Focus on consistency 

may limit creativity; 

keyword selection 

could miss important 

context 

P. Arnau-

Gonza´lez, 

A.   Serrano-Mamolar, 

S. Katsigiannis, T. 

Althobaiti, and M. 

Arevalillo-Herra´ez 

(2023) 

LLM-based Python

 code 

generation for ITS, 

enabling automatic 

problem-solving 

Automates MWP en- 

coding for ITS; enables 

easy problem addition 

Limited   accuracy 

in solving problems 

(39%) suggests the 

need for refinement 

J. Qin, Z. Yang, J. 

Chen, 

X. Liang, and L. 

Lin (2024) 

Template-Based 

Contrastive 

Distillation Pretraining 

(TCDP) combining 

mathematical logic and 

real-world knowledge 

Incorporates   both 

math logic and real- world 

knowledge; superior 

performance compared to 

state-of- 

the-art methods 

Relies on quality of 

symbolic templates; 

may struggle with 

unseen problem types 

Y. Wu and H. 

Nakayama 

(2024) 

MILE, a neuro-

symbolic 

solution for mathematical 

problems with new 

formula- 

representing techniques 

Outperforms existing 

methods in accuracy, 

robustness, and 

generalization 

Further investigation 

required to assess any 

potential limitations 

S. Mandal and S. K. 

Naskar (2021) 

AMWPS,  combining  

machine learning and rule- 

based approaches for 

solving simple arithmetic 

MWPs 

High  accuracy  on 

standard datasets 

(94.22%); effective for 

educational use 

Limited  to  solving 

simple arithmetic 

problems; cannot 

handle complex 

scenarios 

Y. Zhang, G. Zhou, 

Z. 

Xie, and J. X. Huang 

(2022) 

HGEN, a hierarchical 

heterogeneous graph 

encoding method for MWP 

solving 

Captures   complex 

relationships and 

dependencies; out- 

performs Graph2Tree 

models 

Computationally 

intensive; may 

struggle with large 

datasets or complex 

problems 

[3] Mitra et al. explore how small language 

models (SLMs) might handle elementary 

math word problems, especially using 

GSM8K as a benchmark. The researchers 

create the Orca-Math-200K dataset, 

containing synthetic problems crafted by 

GPT-4 Turbo. Their experiments show that 

these smaller models, trained on high-

quality synthetic data, can reach 87 percent 

accuracy on GSM8K, rivaling results 

usually expected from larger models. 

Instead of relying on resource-heavy 

ensemble methods, Mitra’s team 

demonstrates the value of iterative learning 

with synthetic data as a practical way to 

enhance smaller models’ reasoning. 

[4] Zhou and Huang present MAGNET, 

designed to create math word problems from 

a given equation and set of keywords. The 

key innovation here is the equation-topic 

fusion mechanism, which combines 

information from both the math equation and 

relevant keywords, ensuring the generated 

problem is solvable and logically aligned 

with the input. This setup includes an entity-

enforced loss, which keeps the model 

grounded to the entities from the equation, 

leading to consistent and contextually 

accurate MWPs. 

[5] Wang and team focus on making sure the 



© April 2025 | IJIRT | Volume 11 Issue 11 | ISSN: 2349-6002 

IJIRT 176812   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      7596 

math in generated MWPs actually matches 

the given equations. Their model uses a 

constraint-based approach that keeps the 

generated problem text consistent with the 

input equation, even employing a keyword-

selection model to choose contextually 

relevant words automatically. By blending 

pre-trained language model capabilities with 

mathematical constraints, this approach helps 

generate meaningful and coherent MWPs that 

align well with the specified context. 

[6] Arnau-Gonz ález and colleagues focus on 

making it easier to include MWPs in 

intelligent tutoring systems (ITS). Instead of 

generating new problems, their approach 

translates problem statements into Python 

code that the ITS can use. This method 

simplifies adding new problems to ITS 

platforms but does not directly address the 

MWP generation challenge itself, instead 

focusing on the efficient integration of 

existing ones. 

[7] Qin and colleagues take a slightly different 

angle, focusing on pre-training an MWP 

solver’s comprehension abilities. They 

introduce a technique called template-based 

contrastive distillation pretraining (TCDP) 

to infuse a model with mathematical logic 

knowledge. By using formula templates and 

contrastive learning, the resulting model, 

Math Encoder, gains a deeper 

understanding of both the math and 

language in problems, ultimately boosting 

the solver’s performance in downstream 

MWP tasks. 

[8] Wu and Nakayama introduce MILE, a 

model that combines neural and symbolic 

methods for problem-solving. Using 

memory networks, MILE dynamically 

updates problem information throughout the 

solution process. They even add a formula 

mutation technique to expand the training 

data, a helpful addition for complex models 

like MILE. This combination of memory 

and symbolic reasoning makes MILE stand 

out, as it tackles math problems more 

effectively than previous methods. 

[9] Mandal and Naskar explore a math solver 

named AMWPS designed to classify and 

solve single-operation arithmetic MWPs. The 

system categorizes problems based on 

keywords and verb analysis, ensuring it 

correctly interprets the problem type before 

solving it. While this system is effective for 

simple arithmetic problems, its focus is on 

solving rather than generating MWPs. 

[10] Zhang and co-authors introduce HGEN, a 

model that uses a hierarchical graph to 

capture relationships within math problem 

texts. They argue that traditional text 

encoders miss the mark on complex 

relationships, so HGEN maps these 

relationships with a graph featuring word and 

quantity nodes. This approach uses multi-hop 

attention to capture long-range dependencies, 

making it particularly adept at handling 

problems with intricate mathematical 

relation- ships. 

[11] Christ and colleagues present 

MATHWELL, a model fine-tuned to 

generate math word problems (MWPs) that 

are actually useful for K-8 students. It’s 

built on LLaMa-2 with a massive 70-billion 

parameter model, but the real game-

changer here is the EGSM dataset, which 

pairs MWPs with teacher- provided 

annotations. Teachers have flagged these 

examples for solvability, age- appropriateness, 

and accuracy, aiming to address issues of 

nonsensical or overly complex problems. 

This teacher-driven approach helps 

MATHWELL generate problems on par 

with GPT-4, while keeping the language 

clear and suitable for young learners. The 

authors argue that using a model without 

references to specific examples, as done here, is 

a viable way to keep generating fresh and 

suitable MWPs. 

 

3. CHALLENGES AND EVOLUTION 

 

Generating the Math Word Problems can be 

advanced from a simple rule-based system to a 

complex deep learning technique and currently 

advanced models such as the sequence-to-sequence 

and graph-to-tree architectures that have proceeded 

with such complex structures like trees, graphs, or 

attention mechanisms that more closely 

understand the relationship of a math problem. 

Tools such as reverse operation-based data 

augmentation (RODA) help create a broader 

variety of training data which makes the models 

more robust. 

However, it still poses some challenges in passing 
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over these barriers. With such developments in 

place, there is still difficulty in coming up with 

mathematically computable MWPs that are 

linguistically natural and clear. The models tend 

to do poorly if there is a need to make problems 

that demand a certain level of reasoning 

sophistication, and the metrics we apply to 

measure the quality of the generated problems 

remain in an embryonic stage. 

 

Future research focuses more on how to improve 

reasoning using such models, the application of 

external knowledge to refine problem context, and 

making the models more explainable. It’s very 

critical for educational tools, and generally it’s 

very important, where teachers need to be able to 

trust that problems that the model generates are 

accurate and proper. If we can resolve these 

problems, MWP generators will prove 

worthwhile to include in intelligent tutoring 

systems as tools to help students learn much 

better as they would be subjected to personalized, 

well-crafted problems. 

 

4. FUTURE DIRECTIONS 

 

Integrating Qwen with advanced techniques, like 

heterogeneous graph encoding models, such as 

HGEN, appears to give the power to improve 

MWP generation. By appropriating the 

knowledge of Qwen in both natural language and 

mathematical concepts, there may be potential 

enhancement towards better representing 

relationships between different elements of a 

problem, such as quantities, operations, or 

contextual clues. This deeper understanding may 

well lead to more coherent, meaningful, and 

realistic MWPs that better approximate problem- 

solving at real-world levels. Qwen can also filter 

noisy or inaccurate augmented data out of her 

repertoire to improve higher-quality training 

examples. This would lead to even greater 

reliability and effectiveness in generating an 

MWP, one that is likely to be accurate and 

solvable. 

Secondly, Qwen coupled with TCDP would 

enable the model to solve logic; hence, it would 

highly likely choose and use the mathematical 

templates the correct way. In tandem with this 

mathematical reasoning capability provided by 

Qwen, ideas of assured MWP correctness, 

linguistically as well as mathematically, would 

be established in line with specific learning 

objectives. Ultimately, these integrations will 

produce better and more pedagogically balanced 

MWPs that meet the needs of educators and learners 

in a more effective, personalized classroom 

learning experience. 

 

5. CONCLUSIONS 

 

This evolution in MWP solving has seen 

tremendous development from the rules and 

statistics to deeper neural network architectures 

such as sequence-to- sequence and graph-to-tree 

formats used for solving MWPs. Models 

employing tree structures, graph encoders and 

mechanisms of attention are better abstractions of 

relationships within the context of MWPs, while 

data augmentation techniques-based reverse 

operation RODA are known to help generate 

diverse, consistent training data. However, the 

challenges that arise in actually generating 

linguistically fluent and mathematically solvable 

MWPs are the following: current models struggle 

with complex reasoning chains, lack evaluative 

metrics on model quality, and require explicit 

information about the states. The future of 

research will be focused on more refined reasoning 

capabilities, inclusion of external knowledge 

sources, and better explanation power-a really 

prime requirement for educational applications. 

Other systems where MWP solvers can be added 

include intelligent tutoring platforms. This would 

therefore significantly improve educational 

experiences, but to fully realize the potential of 

MWP solving techniques, these challenges which 

remain must be addressed. 
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