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Abstract—Solar energy is a cornerstone of the global 

transition toward sustainable power generation, yet the 

efficiency of solar panels in established installations often 

declines due to environmental and operational factors. 

This study presents a machine learning-driven approach 

to enhance the performance of existing solar 

infrastructure by predicting optimal maintenance 

schedules, particularly for panel cleaning. Utilizing real-

time environmental data collected through IoT sensors—

measuring temperature, humidity, dew point, and 

precipitation—several machine learning models were 

implemented to forecast efficiency drops and identify 

ideal cleaning windows. Models such as Recurrent 

Neural Networks (RNN), Random Forest, K-Nearest 

Neighbors (KNN), and Linear Regression were trained 

and evaluated using historical performance data and 

weather conditions. The results demonstrate that 

predictive modeling can significantly improve 

operational efficiency, reduce resource usage, and extend 

panel longevity. This approach enables a scalable and 

intelligent maintenance framework for solar farms, 

contributing to more sustainable and cost-effective 

energy generation. 

 

I. INTRODUCTION 

 

The increasing demand for renewable energy sources 

has positioned solar power as a vital component of the 

global energy transition. With the rapid deployment of 

photovoltaic (PV) systems, especially in urban and 

semi-urban environments, the focus is now shifting 

from merely installing solar panels to optimizing their 

long-term performance. While new technologies 

continue to improve the efficiency of PV cells, many 

existing solar installations face the challenge of 

declining performance due to environmental and 

operational factors such as temperature fluctuations, 

humidity, dust accumulation, and precipitation. 

Traditionally, enhancing solar panel efficiency 

involved hardware upgrades or manual maintenance 

routines. However, such solutions are often 

impractical or cost-prohibitive for already-installed 

systems. As a result, there is a growing need for 

intelligent, data-driven strategies that ensure sustained 

panel performance without altering existing 

infrastructure. 

In this paper, we propose a predictive maintenance 

framework leveraging machine learning (ML) 

techniques and real-time environmental monitoring 

through Internet of Things (IoT) devices. Our system 

collects localized weather and performance data to 

train ML models capable of forecasting efficiency 

drops and triggering timely maintenance actions, 

especially panel cleaning. We explore and compare 

the effectiveness of four different ML models—

Recurrent Neural Networks (RNN), Random Forest, 

K-Nearest Neighbors (KNN), and Linear 

Regression—in predicting the ideal time for cleaning 

based on multiple environmental parameters. 

Additionally, solar panel owners will receive proactive 

alerts via a connected mobile application whenever 

panels are underperforming or require repairs—often 

even before the scheduled maintenance—enabling 

quicker response times and preventing further 

efficiency loss. 

 

By shifting from reactive to predictive maintenance, 

this approach aims to improve energy yield, reduce 

unnecessary water and labor usage, and enable 

smarter, more sustainable management of solar panel 

installations. 

 

II. ENVIRONMENTAL FACTORS AND HOW 

THEY AFFECT GENERATION 

 

The performance of solar panels is closely tied to a 

variety of environmental factors that influence energy 

generation. In our previous study, real-time sensor 

data was collected to analyze the impact of four key 

environmental parameters: temperature, humidity, 

dew point, and precipitation. These factors 
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significantly contribute to the fluctuation in solar 

energy output and, if not properly accounted for, can 

lead to decreased efficiency and operational reliability. 

2.1 Temperature: 

Temperature is a critical determinant of solar panel 

performance. While PV cells require sunlight to 

generate electricity, excessive heat can cause 

efficiency to decline beyond the standard test 

conditions (STC). Our analysis showed a consistent 

inverse relationship between panel temperature and 

power output, with energy generation dropping as 

temperature rose above 25°C. This phenomenon, 

known as the "hotspot effect," limits the conversion 

efficiency of PV cells during high-heat periods. 

 
Graph showing how rising temperature leads to 

decreased solar generation due to hotspot effects. 
2.2 Humidity: 

High humidity levels were found to contribute to 

condensation on the surface of the solar panels. This 

not only reduces the amount of sunlight reaching the 

PV cells but also promotes the growth of mold and 

algae, which can create long-term performance issues. 

Though the impact of humidity is not as immediate or 

drastic as temperature, it remains a relevant factor over 

time. 

 
Graph showing the effect of humidity on solar 

generation—high humidity slightly reduces output 

but has less impact than extreme temperatures. 

2.3 Dew Point: 

The dew point provides insight into the likelihood of 

condensation forming on panel surfaces. When the 

dew point nears the actual air temperature, conditions 

are ideal for dew formation, which can obscure 

sunlight and reduce efficiency. This metric, derived 

from temperature and humidity readings, was crucial 

in identifying periods where preemptive cleaning or 

monitoring was needed. 

 
Graph showing how higher dew point levels lead to 

dew formation, which lowers solar generation 

efficiency. 

2.4 Precipitation: 

Rainfall has a dual impact on solar panel efficiency. 

During precipitation, generation decreases due to 

reduced sunlight penetration from cloud cover. 

However, rain also serves as a natural cleaning agent, 

removing accumulated dust and debris from the 

panels. Our data revealed improved panel performance 

in the days following rainfall, validating its cleaning 

effect. 

 
Graph showing rain’s short-term drop, long-term 

gain. 

 
III. DATA COLLECTION AND 

IMPLEMENTATION CHALLENGES 

 

To build a predictive model capable of improving 

solar panel efficiency, a robust data infrastructure was 

essential. Our setup combined hardware for 

environmental sensing, cloud-based data storage, and 

real-time monitoring, forming the backbone of the 

machine learning pipeline. However, this process was 

not without its technical and operational hurdles. 

 

The data collection framework was implemented on a 

rooftop solar installation at our institute. To monitor 

environmental conditions, we used an ESP32 

microcontroller integrated with a DHT11/22 sensor to 

collect real-time data on temperature and humidity. 

The microcontroller continuously transmitted this data 

to Firebase, a cloud-based platform chosen for its 
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scalability and ease of integration with real-time 

analytics. 

 

To enrich our dataset, we incorporated external 

weather data from APIs such as Weather 

Underground, which provided additional variables 

like dew point and precipitation forecasts. 

Concurrently, the energy generation data—including 

voltage, current, and power output—was obtained 

directly from the solar charge controller and matched 

with environmental data over time. 

These graphs depict how environmental variables 

varied during a sampling window: 

 
Humidity fluctuations across time, with a general 

downward trend.(Humidity over Time) 

 
Illustrates a sharp and likely erroneous drop in 

temperature, indicating either faulty sensor readings 

or connectivity issues. (Temperature over Time) 

 
 

the dew point variation, showing short-term 

fluctuations that impact condensation on panel 

surfaces. (Dew Point over TIme) 

These graphs formed the basis for identifying 

environmental impacts on solar generation and guided 

feature engineering for the machine learning models. 

Additionally, to ensure model accuracy, data cleaning 

was a critical step in our preprocessing pipeline. We 

applied outlier detection and removal techniques using 

statistical visualizations such as box plots and KDE 

(Kernel Density Estimation) graphs. Below graph 

shows the distribution and outlier ranges of humidity 

data before modeling. 

 
Humidity Distribution and Outlier Detection 

This blend of sensor data, forecasts, and filtering 

ensured a clean, reliable dataset for model training. 

 

IV. MACHINE LEARNING ALGORITHMS 

 

To build a predictive system capable of identifying 

underperformance in solar panel generation, four 

machine learning algorithms were implemented: K-

Nearest Neighbors (KNN), Random Forest (RF), 

Linear Regression (LR), and Recurrent Neural 

Networks (RNN). Each model was trained on a dataset 

combining environmental parameters—temperature, 

humidity, dew point, and precipitation—with solar 

energy generation values. The effectiveness of each 

model was evaluated using Mean Squared Error 

(MSE). 

4.1 Random Forest: 

The Random Forest model emerged as the top 

performer among the four. Its ensemble-based 

architecture allowed it to handle complex, non-linear 

relationships between input features and solar power 

output. One of its key advantages was the ability to 

resist overfitting while still capturing detailed 

interactions across variables. Additionally, it provided 

insights into feature importance, helping us identify 

which environmental factors had the greatest impact 

on energy generation. Due to its balance of 

performance, stability, and interpretability, this model 
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was ultimately chosen for integration into the mobile 

alert system. 

4.2 Linear Regression: 

Linear Regression, though simple, demonstrated 

surprisingly strong results. It performed close to the 

Random Forest model and offered the added benefit of 

complete transparency in how input features 

influenced predictions. Its mathematical simplicity 

made it a reliable baseline model and an excellent tool 

for validating insights obtained from more complex 

algorithms. Despite its assumption of linear 

relationships, it effectively captured the core trends in 

the data. 

4.3 K-Nearest Neighbors: 

KNN offered reasonable performance, especially in 

stable environmental conditions. By predicting values 

based on the closest historical observations, it worked 

well when patterns repeated. However, its 

performance suffered in the presence of outliers or 

rapid fluctuations in weather, making it less 

dependable for edge-case predictions. Its sensitivity to 

the density and distribution of data limited its overall 

robustness. 

4.4 Recurrent Neural Network: 

The Recurrent Neural Network (RNN) was designed 

to leverage time-series relationships within the data. 

While theoretically well-suited for this type of task, 

the model underperformed compared to others. This 

was largely due to the limited size and temporal range 

of our dataset, which constrained the RNN’s ability to 

learn long-term dependencies effectively. Despite this, 

RNN remains promising for future versions of the 

system, especially with access to larger, more diverse 

datasets over extended periods. 

 

V. RESULTS AND OUTCOMES 

 

The integration of machine learning into our solar 

monitoring framework produced impactful results, 

both in predictive performance and practical 

application. Our goal—to forecast underperformance 

in solar panels and issue timely maintenance alerts—

was successfully realized through a combination of 

sensor-based data collection and model-driven 

decision making. 

 

 
 

All four machine learning models contributed to the 

system's development and were evaluated using Mean 

Squared Error (MSE) as the primary metric. The 

Recurrent Neural Network (RNN) resulted in an MSE 

of 0.6223, indicating challenges in capturing accurate 

temporal trends due to the limited size of our dataset. 

The K-Nearest Neighbors (KNN) model performed 

slightly better with an MSE of 0.5963, while Linear 

Regression (LR) improved upon that with an MSE of 

0.5485. However, the best performance was achieved 

by the Random Forest (RF) model, which yielded the 

lowest MSE of 0.5424, highlighting its strength in 

handling non-linear interactions between 

environmental variables and power output. 

Owing to its superior accuracy and stability, the 

Random Forest model was selected for integration into 

the live system. Once deployed, it was used to 

continuously analyze real-time sensor data and 

forecast drops in panel efficiency. When predicted 

output fell below optimal thresholds, the system 

generated maintenance alerts—typically sent via the 

connected mobile application—prompting users to 

take preventive action such as panel cleaning or 

inspection. These alerts were often triggered one to 

two days before a noticeable drop in generation, giving 

users valuable lead time and preventing energy losses. 

Overall, the results validated the feasibility of using 

ML for predictive maintenance in solar infrastructure. 

The system not only improved energy efficiency but 

also minimized unnecessary maintenance efforts, 

conserved resources like water, and allowed for better 
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planning of servicing routines. Its low-cost design 

using IoT hardware and open-source platforms makes 

it highly scalable for broader adoption in both 

residential and commercial solar installations. 
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