
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177195   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY        1073 

Feature Analysis and Random Forest Classification for 

Network Intrusion Detection 
 

 

Devika G, Manasa S P, Sudeep K, Shariya Habiba K S, Shivanand Mirji 

Department of Computer Science and Engineering, Government Engineering College, Kushalnagar 

Karnataka, India 

 

Abstract: The increasing frequency and sophistication 

of cyberattacks have highlighted the critical need for 

intelligent and adaptive Intrusion Detection Systems 

(IDS). This project presents the design and 

implementation of a machine learning-based IDS 

utilizing the Random Forest algorithm to detect 

various types of network intrusions with high accuracy 

and efficiency. The system is trained and tested using 

benchmark datasets such as NSL-KDD, enabling it to 

learn and classify patterns of normal and malicious 

activities. Data preprocessing steps, including feature 

selection, normalization, and data balancing, were 

applied to improve model performance. The Random 

Forest classifier was chosen for its robustness, 

interpretability, and ability to handle complex and 

high-dimensional data. Experimental results 

demonstrate that the proposed system achieves high 

detection rates and low false positive rates, 

outperforming several traditional and contemporary 

machine learning approaches. This project contributes 

to the development of scalable and effective intrusion 

detection solutions suitable for modern network 

environments. 
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I. INTRODUCTION 

 

Intrusions in computer systems are a serious and 

ongoing threat. From the beginning of computing to 

today's connected digital world, cyberattacks have 

continued to grow in number and complexity. Even 

though many security measures have been 

developed over the years, attackers keep finding 

new and smarter ways to break into systems. 

Today, computers are a key part of almost every 

area of life and business. That’s why protecting 

them from malicious activities is more important 

than ever. One of the key tools used for this purpose 

is the Intrusion Detection System (IDS). An IDS 

helps monitor network activity and alerts users if it 

finds something suspicious or harmful. 

Our project focuses on improving how accurately 

these systems can detect threats. To do this, we need 

to analyze large amounts of data, which is not easy 

to handle manually. So, we use machine learning, 

specifically the Random Forest algorithm, to process 

this data and improve detection. 

The Random Forest algorithm is good at 

recognizing patterns in complex data. In our system, 

it is trained using network data that shows both 

normal and attack behaviors. After training, the 

system can detect different types of intrusions when 

new data is given to it. 

 

II. LITERATURE REVIEW 

 

[1] Amrith Bhatnang introduced a federated 

learning-based IDS model, emphasizing privacy 

preservation by training local models on 

decentralized data and aggregating them into a 

global model. This approach showed effective 

anomaly detection capabilities while maintaining 

data confidentiality, highlighting federated learning 

as a secure and scalable alternative to centralized 

systems. 

 

[2] Yoheswari S developed an optimized IDS using 

Support Vector Machine (SVM) algorithms. The 

model incorporated feature selection, dimensionality 

reduction, and hyperparameter tuning through Grid 

Search and Particle Swarm Optimization (PSO). 

This resulted in improved accuracy, reduced false 

positives, and enhanced computational efficiency, 

making it suitable for dynamic cybersecurity 

environments. 

 

[3] Naga Durga Srinivas Nidamanuri proposed an 

IDS using genetic algorithms and a modified J48 

decision tree, leveraging protocol standardization 

techniques. This method reduced search space and 

improved detection speed and consistency, 

particularly useful in environments requiring fast 

response times and IPv6 support. 
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[4] Vincent Zibi Mohale and Ibidun Christiana 

Obagbuwu presented a systematic review of 

Explainable Artificial Intelligence (XAI) in IDS. 

Their analysis revealed that techniques like SHAP 

and LIME improve model transparency and 

interpretability but can compromise detection 

accuracy. They stressed the need for hybrid models 

and standard evaluation metrics to balance 

explainability with performance. 

 

[5] Basheer Ullah et al. (2025) applied Deep Neural 

Networks (DNN) to the NSL-KDD dataset and 

reported a 92% accuracy rate. They also noted that 

combining DNN with algorithms like Random 

Forest and Decision Trees could further enhance 

detection rates, suggesting a promising direction in 

hybrid modeling. 

 

[6] Arun Kumar Silivery and Ram Mohan Rao 

Kovvur (2023) investigated Long Short-Term 

Memory Recurrent Neural Networks (LSTM-RNN) 

with various optimizers, finding that the Adamax 

optimizer yielded the best results. Their model 

showed high accuracy, strong detection rates, and 

low false alarms, proving the effectiveness of deep 

learning in multi-attack classification. 

 

[7] Sai Srinivas Vellela et al. (2024) developed an 

ensemble learning-based IDS using the DARPA 

dataset. Their approach involved extracting features 

from FTP traffic and using multiple learning models 

to boost detection accuracy. Among the models 

tested, the Multi-Layer Perceptron (MLP) with 30 

neurons showed notable performance 

improvements. 

 

III. METHODOLOGY 

 

1. System Architecture      

 
Fig3.1:  System architecture 

 

The proposed Intrusion Detection System (IDS) is 

designed to efficiently detect and classify network 

intrusions using machine learning techniques, 

specifically the Random Forest algorithm. This 

system architecture integrates a trained classification 

model with a robust web-based user interface, 

ensuring both accuracy in detection and usability for 

end-users. 

1. Dataset Used: 

o Utilizes the KDD CUP 99 dataset, a 

standard benchmark in IDS research, for 

training the machine learning model on 

different types of network attacks. 

2. Core Components of the System: 

o The system is composed of three major 

modules: 

 Frontend Interface 

 Backend Application 

 Machine Learning Module 

3. Frontend Interface: 

Frontend development involves the part of a website 

or web application that users directly interact with. 

This is also known as the client-side of web 

development. It focuses on the visual layout, 

structure, design, and user experience. 

A frontend developer's goal is to ensure the interface 

is visually appealing, functional, and responsive 

across all devices. The key technologies used in 

frontend development are: 

 Core Technologies in Frontend Development 

1. HTML (HyperText Markup Language): 

 Provides the basic structure of web pages. 

 Acts as the skeleton for all web content. 

2. CSS (Cascading Style Sheets): 

 Responsible for styling the HTML content. 

 Includes layout, colors, fonts, and    overall 

visual aesthetics. 

 Extended by: 

 CSS Libraries: E.g., Pure CSS 

 CSS Frameworks: Bootstrap, Bulma, 

Foundation, Materialize CSS, Semantic UI, 

Tailwind CSS 

 CSS Preprocessors: SASS, LESS – These 

provide advanced features like variables, 

nesting, and functions. 

3. JavaScript: 

 Adds interactivity and dynamic   behavior 

to web applications. 

 Enables features such as animations, form 

validations, and content updates without 

refreshing the page. 

 Includes: 

 ES6 (ECMAScript 6): The modern version 

of JavaScript that introduces new features 

like arrow functions, classes, and modules. 
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 TypeScript: A superset of JavaScript that 

adds static typing for better code 

management and error checking. 

 JavaScript Libraries: jQuery, D3.js, 

Lodash, Underscore.js, Fabric.js, p5.js, etc. 

 JavaScript Frameworks: AngularJS,    

ReactJS, Vue.js – These frameworks help 

in building complex, component-based 

applications. 

 Supporting Tools 

 Tools like npm (Node Package Manager) 

and yarn are used to manage project 

dependencies and libraries, making 

development more efficient and scalable. 

4. Backend Application (Django Framework): 

Backend development, also known as server-side 

development, plays a crucial role in modern web 

applications by handling the logic, database 

operations, and performance-related functionality 

that underpins the user experience. 

Backend development is powered by a wide array of 

programming languages and frameworks. Each 

ecosystem offers tools and best practices tailored for 

different needs. 

 

1.   PHP 

PHP is one of the oldest and most widely adopted 

server-side scripting languages. It powers many 

content management systems (CMS) and 

frameworks. 

 Package Manager: Composer 

 Testing Tool: PHPUnit 

 Framework: Laravel 

 Popular CMS: WordPress, Joomla, Drupal, 

Magento 

 

2.    Node.js 

Node.js is a JavaScript runtime built on Chrome’s 

V8 engine, allowing developers to use JavaScript 

for both frontend and backend development. 

 Package Managers: npm, yarn 

 Framework: Express.js 

 

3. Python 

Python is recognized for its clean syntax and robust 

libraries, making it suitable for both simple 

applications and complex, data-driven systems. 

 Frameworks: Django (full-featured), Flask 

(lightweight) 

 Package Manager: pip 

 

4. Ruby 

Ruby offers elegant syntax and is most famously 

paired with Ruby on Rails, a full-stack framework. 

 Framework: Ruby on Rails 

 

5.    Java 

Java is widely used in enterprise environments due 

to its robustness, scalability, and extensive 

ecosystem. 

 Framework: Spring 

 

6.   Golang (Go) 

Go is known for its simplicity, speed, and efficiency, 

making it ideal for microservices and high-

performance applications. 

 

7.   C# 

C# is a language developed by Microsoft, 

commonly used in desktop and web applications on 

Windows platforms. 

 Framework: .NET 

 Data Storage and Databases 

Data persistence is a cornerstone of backend 

systems. Storage can be categorized into: 

1. Relational Databases (SQL) 

Relational databases store structured data and use 

structured query language (SQL) for data 

manipulation. 

 Examples: PostgreSQL, MariaDB, MySQL 

2. NoSQL Databases 

NoSQL databases are designed for flexible, scalable 

storage of unstructured or semi-structured data. 

 Example: MongoDB 

5. Machine Learning Module: 

o Contains a pre-trained Random Forest 

model, loaded via joblib. 

o Uses pandas and numpy for: 

 Data preprocessing (cleaning, formatting). 

 Ensuring compatibility with the model’s input 

requirements. 

o Outputs a classification label indicating the type 

of traffic (e.g., Normal, DOS, Probe, R2L, 

U2R). 

6. System Workflow (Data Flow): 

o User logs in through the web interface. 

o Submits network traffic features through 

structured forms. 

o Data is sent to the Django backend for 

processing. 

o Backend passes the data to the Random 

Forest model. 

o Model returns a prediction, which is 

displayed on the frontend. 
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2. Entity relationship model                                                                                

 
Fig 3.2: Entity Relationship model 

 

The entity relationship model in the image shows 

the relationships between different components of 

the Intrusion Detection System (IDS).  

 Detection Model: This entity stores information 

about the detection models used by the system, 

including the model ID, algorithm, accuracy, dataset 

used, and training data.  

 Attack Record: This entity records details of 

detected attacks, such as attack ID, timestamp, 

attack type, security, source IP, destination IP, and 

status.  

 User: This entity stores user information, 

including user ID, password, email, and role. 

  DataSet: This entity contains information about 

the datasets used for training the models, such as 

dataset ID, name, description, and source.  

 SystemLogs: This entity logs system activities, 

including log ID, user ID, action, timestamp, and 

status. 

 

IV. IMPLEMENTATION 

 
Fig 4.1 System Implementation Flowchart 

 

The proposed IDS features a role-based, web-based 

interface that enables real-time intrusion detection 

through a streamlined and interactive user 

experience. The process begins with secure user 

authentication, after which users input network 

parameters required for attack detection. The system 

guides users through multi-step data entry forms, 

and upon submission, a pre-trained machine 

learning model (Random Forest) analyzes the input. 

Detection results are immediately shown in a popup 

alert, identifying the type of attack. 

 

1. UI Design 

The interface consists of five main HTML 

templates: 

 index.html: Login page 

 dashboard.html: Displays dataset insights and 

starts detection 

 home.html, home_2.html, home_3.html: Collect 

user inputs in stages 

The workflow allows users to explore the KDD 

dataset, fill in detection-related inputs across 

multiple screens, and trigger the model to generate a 

detection output, displayed as an alert. 

 

2. Django Framework 

The system is built using Django, a high-level 

Python web framework following the Model-View-

Template (MVT) architecture. Django handles 

authentication, form validation, and integration with 

the ML model, while allowing each module (login, 

detection, logging) to function independently, 

ensuring scalability and modularity. logging) to 

function independently, ensuring scalability and 

modularity. 

 

3. Technologies Incorporated 

Frontend Development: Uses HTML, CSS, 

Bootstrap, and Jinja2 to build a responsive, user-

friendly interface. 

Backend Development: Powered by Django, it 

handles data processing, authentication, and 

interaction with the machine learning model. 

This full-stack design offers a robust, scalable, and 

intuitive IDS platform, suitable for real-time 

network threat detection. 

 

4. Machine Learning Technique & Algorithm                                                                        

 Machine learning is a type of artificial 

intelligence. 

 It helps computers learn from data and make 

decisions or predictions on their own. 

 These computer programs get better the more 

data they use. 

 Machine learning finds patterns in big sets of 

data to help make smart guesses. 
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Random Forest: 

 Random Forest is a machine learning method 

that uses many decision trees. 

 A decision tree is like a flowchart that helps 

make decisions. 

5. Classification of Cyber-Attacks Detected by 

IDS 

 Denial of Service (DoS) 

A Denial of Service attack is aimed at disrupting the 

normal functionality of a network, service, or 

system by overwhelming it with excessive traffic or 

resource requests. 

 Objective: To render a service or system 

unavailable to legitimate users. 

 Example: Sending thousands of requests per 

second to a server, causing it to crash or slow 

down. 

 Analogy: Similar to a scenario where too many 

students try to enter a small classroom at once, 

resulting in chaos and inaccessibility. 

 Probe Attacks 

Probe attacks are reconnaissance attempts where 

attackers scan networks to identify vulnerabilities or 

open ports that can later be exploited. 

 Objective: To gather information about the 

target system for future exploitation. 

 Example: Port scanning tools like Nmap are 

used to detect active devices and services. 

 Analogy: Comparable to a burglar walking 

through a neighborhood and checking which 

doors are unlocked. 

 Remote to Local (R2L) 

In R2L attacks, the attacker gains unauthorized 

access to a system over a network, typically by 

exploiting weak credentials or application 

vulnerabilities. 

 Objective: To gain user-level access on a target 

machine from a remote location. 

 Example: A hacker guessing or stealing login 

credentials via phishing. 

 Analogy: Like someone trying to guess your 

email password from afar to log in as you. 

 User to Root (U2R) 

User to Root attacks involve an intruder who 

already has limited access to a system (as a regular 

user) escalating their privileges to gain full control, 

or root-level access. 

 Objective: To exploit system vulnerabilities and 

gain administrative control. 

 Example: Buffer overflow exploits or privilege 

escalation bugs. 

 Analogy: Similar to a student gaining access to 

the school’s administrative system and 

assigning themselves as principal. 

 

V. RESULT AND DISCUSSION 

 

 
Fig 5.1 Index Page 

 

The index page of an Intrusion Detection System 

(IDS) is the first screen users see when they open 

the system. It asks users to enter a username and 

password to log in. This helps make sure that only 

authorized people can use the system. The page is 

easy to use, with clearly marked boxes for entering 

the login details and a "Login" button to continue. 

This process helps protect the system from 

unauthorized access and keeps track of who is using 

it. 

 
Fig 5.2 Dashboard Page 

 

After logging in, users are taken to the Intrusion 

Detection System's dashboard, which gives a quick 

and clear overview of network activity. In the center, 

a "Data Insights" section highlights important 

information. On the left side, a bar chart shows the 

types of communication protocols being used in the 

network. On the right, another chart displays 

different types of attacks the system has detected. 

These visuals help users easily understand what is 

happening on the network and identify any 

suspicious activity that may need attention. 
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Fig 5.3 Dashboard Page with Start Detection Button 

 

This dashboard gives a detailed look at how well the 

Intrusion Detection System is working. A table 

called "Attack Type Count" shows how many times 

different types of threats—like DoS, probe, and 

others—have been detected. Next to it, the "Model 

Training & Testing Score" section displays how 

accurately the system's machine learning model 

performs. The high scores (almost 100%) show that 

the model can detect threats reliably. The "Start 

Detection" button lets users begin real-time 

monitoring of network traffic using the trained 

model. system's performance data with the start of 

live attack detection. 

 
Fig 5.4 Details Page for detection 

 

This section of the system asks users to enter details 

about a network connection to check for possible 

threats. Some fields describe how the connection 

works, while others focus on data from the network 

packets or user activity. These inputs help the 

system better understand the traffic and look for 

signs of an attack. After entering the details, the user 

clicks "Next" to continue with the detection process. 

 
Fig 5.5 Details page for detection with start button 

In this step, users enter more specific network 

details to help the system check for threats. These 

include how often different hosts are contacted and 

how consistent the traffic is. After filling in the 

information, clicking the "Detect Attack" button 

starts the process. This helps the system find 

suspicious activity more accurately. 

 
Fig 5.6 Result of Detection 

 

After clicking "Detect Attack," a pop-up message 

appears showing "Detected Attack: normal." This 

means the system checked the network details and 

found no signs of an attack. The user can click "Ok" 

to close the pop-up and continue using the system. 

This message confirms that the network activity is 

safe based on the system's analysis. 

    

VI. CONCLUSION 

 

This paper introduces a user-friendly and accurate 

Intrusion Detection System (IDS) capable of 

detecting various types of network attacks. The 

system features a responsive interface, making it 

easy to use for individuals with different levels of 

technical expertise. It employs the Random Forest 

algorithm, which is well-known for its effectiveness 

in handling complex datasets and delivering high 

accuracy. By training the model on the KDD CUP 

99 dataset—a widely recognized benchmark in the 

field—the IDS is able to recognize and respond to a 

broad range of attack types, including DoS, Probe, 

R2L, and U2R. 

 

The high accuracy of the system ensures that 

network administrators receive timely and reliable 

alerts, improving their ability to respond to threats 

efficiently. The tool not only boosts security but also 

provides valuable insights in an easy-to-understand 

format. These improvements would strengthen the 

IDS's capabilities and adaptability, making it an 

even more effective cybersecurity solution in a 

constantly evolving digital environment. 
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