
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177195 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1073

Feature Analysis and Random Forest Classification for

Network Intrusion Detection

Devika G, Manasa S P, Sudeep K, Shariya Habiba K S, Shivanand Mirji

Department of Computer Science and Engineering, Government Engineering College, Kushalnagar

Karnataka, India

Abstract: The increasing frequency and sophistication

of cyberattacks have highlighted the critical need for

intelligent and adaptive Intrusion Detection Systems

(IDS). This project presents the design and

implementation of a machine learning-based IDS

utilizing the Random Forest algorithm to detect

various types of network intrusions with high accuracy

and efficiency. The system is trained and tested using

benchmark datasets such as NSL-KDD, enabling it to

learn and classify patterns of normal and malicious

activities. Data preprocessing steps, including feature

selection, normalization, and data balancing, were

applied to improve model performance. The Random

Forest classifier was chosen for its robustness,

interpretability, and ability to handle complex and

high-dimensional data. Experimental results

demonstrate that the proposed system achieves high

detection rates and low false positive rates,

outperforming several traditional and contemporary

machine learning approaches. This project contributes

to the development of scalable and effective intrusion

detection solutions suitable for modern network

environments.

Keywords: Intrusion Detection System (IDS), Machine

Learning, Random Forest Algorithm, Cybersecurity,

Network Security, KDD Cup 99 Dataset

I. INTRODUCTION

Intrusions in computer systems are a serious and

ongoing threat. From the beginning of computing to

today's connected digital world, cyberattacks have

continued to grow in number and complexity. Even

though many security measures have been

developed over the years, attackers keep finding

new and smarter ways to break into systems.

Today, computers are a key part of almost every

area of life and business. That’s why protecting

them from malicious activities is more important

than ever. One of the key tools used for this purpose

is the Intrusion Detection System (IDS). An IDS

helps monitor network activity and alerts users if it

finds something suspicious or harmful.

Our project focuses on improving how accurately

these systems can detect threats. To do this, we need

to analyze large amounts of data, which is not easy

to handle manually. So, we use machine learning,

specifically the Random Forest algorithm, to process

this data and improve detection.

The Random Forest algorithm is good at

recognizing patterns in complex data. In our system,

it is trained using network data that shows both

normal and attack behaviors. After training, the

system can detect different types of intrusions when

new data is given to it.

II. LITERATURE REVIEW

[1] Amrith Bhatnang introduced a federated

learning-based IDS model, emphasizing privacy

preservation by training local models on

decentralized data and aggregating them into a

global model. This approach showed effective

anomaly detection capabilities while maintaining

data confidentiality, highlighting federated learning

as a secure and scalable alternative to centralized

systems.

[2] Yoheswari S developed an optimized IDS using

Support Vector Machine (SVM) algorithms. The

model incorporated feature selection, dimensionality

reduction, and hyperparameter tuning through Grid

Search and Particle Swarm Optimization (PSO).

This resulted in improved accuracy, reduced false

positives, and enhanced computational efficiency,

making it suitable for dynamic cybersecurity

environments.

[3] Naga Durga Srinivas Nidamanuri proposed an

IDS using genetic algorithms and a modified J48

decision tree, leveraging protocol standardization

techniques. This method reduced search space and

improved detection speed and consistency,

particularly useful in environments requiring fast

response times and IPv6 support.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177195 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1074

[4] Vincent Zibi Mohale and Ibidun Christiana

Obagbuwu presented a systematic review of

Explainable Artificial Intelligence (XAI) in IDS.

Their analysis revealed that techniques like SHAP

and LIME improve model transparency and

interpretability but can compromise detection

accuracy. They stressed the need for hybrid models

and standard evaluation metrics to balance

explainability with performance.

[5] Basheer Ullah et al. (2025) applied Deep Neural

Networks (DNN) to the NSL-KDD dataset and

reported a 92% accuracy rate. They also noted that

combining DNN with algorithms like Random

Forest and Decision Trees could further enhance

detection rates, suggesting a promising direction in

hybrid modeling.

[6] Arun Kumar Silivery and Ram Mohan Rao

Kovvur (2023) investigated Long Short-Term

Memory Recurrent Neural Networks (LSTM-RNN)

with various optimizers, finding that the Adamax

optimizer yielded the best results. Their model

showed high accuracy, strong detection rates, and

low false alarms, proving the effectiveness of deep

learning in multi-attack classification.

[7] Sai Srinivas Vellela et al. (2024) developed an

ensemble learning-based IDS using the DARPA

dataset. Their approach involved extracting features

from FTP traffic and using multiple learning models

to boost detection accuracy. Among the models

tested, the Multi-Layer Perceptron (MLP) with 30

neurons showed notable performance

improvements.

III. METHODOLOGY

1. System Architecture

Fig3.1: System architecture

The proposed Intrusion Detection System (IDS) is

designed to efficiently detect and classify network

intrusions using machine learning techniques,

specifically the Random Forest algorithm. This

system architecture integrates a trained classification

model with a robust web-based user interface,

ensuring both accuracy in detection and usability for

end-users.

1. Dataset Used:

o Utilizes the KDD CUP 99 dataset, a

standard benchmark in IDS research, for

training the machine learning model on

different types of network attacks.

2. Core Components of the System:

o The system is composed of three major

modules:

 Frontend Interface

 Backend Application

 Machine Learning Module

3. Frontend Interface:

Frontend development involves the part of a website

or web application that users directly interact with.

This is also known as the client-side of web

development. It focuses on the visual layout,

structure, design, and user experience.

A frontend developer's goal is to ensure the interface

is visually appealing, functional, and responsive

across all devices. The key technologies used in

frontend development are:

 Core Technologies in Frontend Development

1. HTML (HyperText Markup Language):

 Provides the basic structure of web pages.

 Acts as the skeleton for all web content.

2. CSS (Cascading Style Sheets):

 Responsible for styling the HTML content.

 Includes layout, colors, fonts, and overall

visual aesthetics.

 Extended by:

 CSS Libraries: E.g., Pure CSS

 CSS Frameworks: Bootstrap, Bulma,

Foundation, Materialize CSS, Semantic UI,

Tailwind CSS

 CSS Preprocessors: SASS, LESS – These

provide advanced features like variables,

nesting, and functions.

3. JavaScript:

 Adds interactivity and dynamic behavior

to web applications.

 Enables features such as animations, form

validations, and content updates without

refreshing the page.

 Includes:

 ES6 (ECMAScript 6): The modern version

of JavaScript that introduces new features

like arrow functions, classes, and modules.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177195 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1075

 TypeScript: A superset of JavaScript that

adds static typing for better code

management and error checking.

 JavaScript Libraries: jQuery, D3.js,

Lodash, Underscore.js, Fabric.js, p5.js, etc.

 JavaScript Frameworks: AngularJS,

ReactJS, Vue.js – These frameworks help

in building complex, component-based

applications.

 Supporting Tools

 Tools like npm (Node Package Manager)

and yarn are used to manage project

dependencies and libraries, making

development more efficient and scalable.

4. Backend Application (Django Framework):

Backend development, also known as server-side

development, plays a crucial role in modern web

applications by handling the logic, database

operations, and performance-related functionality

that underpins the user experience.

Backend development is powered by a wide array of

programming languages and frameworks. Each

ecosystem offers tools and best practices tailored for

different needs.

1. PHP

PHP is one of the oldest and most widely adopted

server-side scripting languages. It powers many

content management systems (CMS) and

frameworks.

 Package Manager: Composer

 Testing Tool: PHPUnit

 Framework: Laravel

 Popular CMS: WordPress, Joomla, Drupal,

Magento

2. Node.js

Node.js is a JavaScript runtime built on Chrome’s

V8 engine, allowing developers to use JavaScript

for both frontend and backend development.

 Package Managers: npm, yarn

 Framework: Express.js

3. Python

Python is recognized for its clean syntax and robust

libraries, making it suitable for both simple

applications and complex, data-driven systems.

 Frameworks: Django (full-featured), Flask

(lightweight)

 Package Manager: pip

4. Ruby

Ruby offers elegant syntax and is most famously

paired with Ruby on Rails, a full-stack framework.

 Framework: Ruby on Rails

5. Java

Java is widely used in enterprise environments due

to its robustness, scalability, and extensive

ecosystem.

 Framework: Spring

6. Golang (Go)

Go is known for its simplicity, speed, and efficiency,

making it ideal for microservices and high-

performance applications.

7. C#

C# is a language developed by Microsoft,

commonly used in desktop and web applications on

Windows platforms.

 Framework: .NET

 Data Storage and Databases

Data persistence is a cornerstone of backend

systems. Storage can be categorized into:

1. Relational Databases (SQL)

Relational databases store structured data and use

structured query language (SQL) for data

manipulation.

 Examples: PostgreSQL, MariaDB, MySQL

2. NoSQL Databases

NoSQL databases are designed for flexible, scalable

storage of unstructured or semi-structured data.

 Example: MongoDB

5. Machine Learning Module:

o Contains a pre-trained Random Forest

model, loaded via joblib.

o Uses pandas and numpy for:

 Data preprocessing (cleaning, formatting).

 Ensuring compatibility with the model’s input

requirements.

o Outputs a classification label indicating the type

of traffic (e.g., Normal, DOS, Probe, R2L,

U2R).

6. System Workflow (Data Flow):

o User logs in through the web interface.

o Submits network traffic features through

structured forms.

o Data is sent to the Django backend for

processing.

o Backend passes the data to the Random

Forest model.

o Model returns a prediction, which is

displayed on the frontend.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177195 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1076

2. Entity relationship model

Fig 3.2: Entity Relationship model

The entity relationship model in the image shows

the relationships between different components of

the Intrusion Detection System (IDS).

 Detection Model: This entity stores information

about the detection models used by the system,

including the model ID, algorithm, accuracy, dataset

used, and training data.

 Attack Record: This entity records details of

detected attacks, such as attack ID, timestamp,

attack type, security, source IP, destination IP, and

status.

 User: This entity stores user information,

including user ID, password, email, and role.

  DataSet: This entity contains information about

the datasets used for training the models, such as

dataset ID, name, description, and source.

 SystemLogs: This entity logs system activities,

including log ID, user ID, action, timestamp, and

status.

IV. IMPLEMENTATION

Fig 4.1 System Implementation Flowchart

The proposed IDS features a role-based, web-based

interface that enables real-time intrusion detection

through a streamlined and interactive user

experience. The process begins with secure user

authentication, after which users input network

parameters required for attack detection. The system

guides users through multi-step data entry forms,

and upon submission, a pre-trained machine

learning model (Random Forest) analyzes the input.

Detection results are immediately shown in a popup

alert, identifying the type of attack.

1. UI Design

The interface consists of five main HTML

templates:

 index.html: Login page

 dashboard.html: Displays dataset insights and

starts detection

 home.html, home_2.html, home_3.html: Collect

user inputs in stages

The workflow allows users to explore the KDD

dataset, fill in detection-related inputs across

multiple screens, and trigger the model to generate a

detection output, displayed as an alert.

2. Django Framework

The system is built using Django, a high-level

Python web framework following the Model-View-

Template (MVT) architecture. Django handles

authentication, form validation, and integration with

the ML model, while allowing each module (login,

detection, logging) to function independently,

ensuring scalability and modularity. logging) to

function independently, ensuring scalability and

modularity.

3. Technologies Incorporated

Frontend Development: Uses HTML, CSS,

Bootstrap, and Jinja2 to build a responsive, user-

friendly interface.

Backend Development: Powered by Django, it

handles data processing, authentication, and

interaction with the machine learning model.

This full-stack design offers a robust, scalable, and

intuitive IDS platform, suitable for real-time

network threat detection.

4. Machine Learning Technique & Algorithm

 Machine learning is a type of artificial

intelligence.

 It helps computers learn from data and make

decisions or predictions on their own.

 These computer programs get better the more

data they use.

 Machine learning finds patterns in big sets of

data to help make smart guesses.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177195 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1077

Random Forest:

 Random Forest is a machine learning method

that uses many decision trees.

 A decision tree is like a flowchart that helps

make decisions.

5. Classification of Cyber-Attacks Detected by

IDS

 Denial of Service (DoS)

A Denial of Service attack is aimed at disrupting the

normal functionality of a network, service, or

system by overwhelming it with excessive traffic or

resource requests.

 Objective: To render a service or system

unavailable to legitimate users.

 Example: Sending thousands of requests per

second to a server, causing it to crash or slow

down.

 Analogy: Similar to a scenario where too many

students try to enter a small classroom at once,

resulting in chaos and inaccessibility.

 Probe Attacks

Probe attacks are reconnaissance attempts where

attackers scan networks to identify vulnerabilities or

open ports that can later be exploited.

 Objective: To gather information about the

target system for future exploitation.

 Example: Port scanning tools like Nmap are

used to detect active devices and services.

 Analogy: Comparable to a burglar walking

through a neighborhood and checking which

doors are unlocked.

 Remote to Local (R2L)

In R2L attacks, the attacker gains unauthorized

access to a system over a network, typically by

exploiting weak credentials or application

vulnerabilities.

 Objective: To gain user-level access on a target

machine from a remote location.

 Example: A hacker guessing or stealing login

credentials via phishing.

 Analogy: Like someone trying to guess your

email password from afar to log in as you.

 User to Root (U2R)

User to Root attacks involve an intruder who

already has limited access to a system (as a regular

user) escalating their privileges to gain full control,

or root-level access.

 Objective: To exploit system vulnerabilities and

gain administrative control.

 Example: Buffer overflow exploits or privilege

escalation bugs.

 Analogy: Similar to a student gaining access to

the school’s administrative system and

assigning themselves as principal.

V. RESULT AND DISCUSSION

Fig 5.1 Index Page

The index page of an Intrusion Detection System

(IDS) is the first screen users see when they open

the system. It asks users to enter a username and

password to log in. This helps make sure that only

authorized people can use the system. The page is

easy to use, with clearly marked boxes for entering

the login details and a "Login" button to continue.

This process helps protect the system from

unauthorized access and keeps track of who is using

it.

Fig 5.2 Dashboard Page

After logging in, users are taken to the Intrusion

Detection System's dashboard, which gives a quick

and clear overview of network activity. In the center,

a "Data Insights" section highlights important

information. On the left side, a bar chart shows the

types of communication protocols being used in the

network. On the right, another chart displays

different types of attacks the system has detected.

These visuals help users easily understand what is

happening on the network and identify any

suspicious activity that may need attention.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177195 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1078

Fig 5.3 Dashboard Page with Start Detection Button

This dashboard gives a detailed look at how well the

Intrusion Detection System is working. A table

called "Attack Type Count" shows how many times

different types of threats—like DoS, probe, and

others—have been detected. Next to it, the "Model

Training & Testing Score" section displays how

accurately the system's machine learning model

performs. The high scores (almost 100%) show that

the model can detect threats reliably. The "Start

Detection" button lets users begin real-time

monitoring of network traffic using the trained

model. system's performance data with the start of

live attack detection.

Fig 5.4 Details Page for detection

This section of the system asks users to enter details

about a network connection to check for possible

threats. Some fields describe how the connection

works, while others focus on data from the network

packets or user activity. These inputs help the

system better understand the traffic and look for

signs of an attack. After entering the details, the user

clicks "Next" to continue with the detection process.

Fig 5.5 Details page for detection with start button

In this step, users enter more specific network

details to help the system check for threats. These

include how often different hosts are contacted and

how consistent the traffic is. After filling in the

information, clicking the "Detect Attack" button

starts the process. This helps the system find

suspicious activity more accurately.

Fig 5.6 Result of Detection

After clicking "Detect Attack," a pop-up message

appears showing "Detected Attack: normal." This

means the system checked the network details and

found no signs of an attack. The user can click "Ok"

to close the pop-up and continue using the system.

This message confirms that the network activity is

safe based on the system's analysis.

VI. CONCLUSION

This paper introduces a user-friendly and accurate

Intrusion Detection System (IDS) capable of

detecting various types of network attacks. The

system features a responsive interface, making it

easy to use for individuals with different levels of

technical expertise. It employs the Random Forest

algorithm, which is well-known for its effectiveness

in handling complex datasets and delivering high

accuracy. By training the model on the KDD CUP

99 dataset—a widely recognized benchmark in the

field—the IDS is able to recognize and respond to a

broad range of attack types, including DoS, Probe,

R2L, and U2R.

The high accuracy of the system ensures that

network administrators receive timely and reliable

alerts, improving their ability to respond to threats

efficiently. The tool not only boosts security but also

provides valuable insights in an easy-to-understand

format. These improvements would strengthen the

IDS's capabilities and adaptability, making it an

even more effective cybersecurity solution in a

constantly evolving digital environment.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177195 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1079

VII. REFERENCE

[1] Bhatnang, A. (2025). Federated learning-based

intrusion detection system for the Internet of

Things using unsupervised and supervised deep

learning models. Cyber Security and

Applications, 3, 100068.

[2] Yoheswari, S. (2024). Optimized intrusion

detection model for identifying known and

innovative cyber attacks using support vector

machine (SVM) algorithms. Journal of Science

Technology and Research (JSTAR), 5(1), 398–

404.

[3] Nidamanuri, N. D. S. (2024). Intrusion

detection using genetic algorithms and

protocol-aware decision trees. Journal of

Network and Computer Applications, 110, 98–

110.

[4] Mohale, V. Z., & Obagbuwu, I. C. (2024). A

review of explainable AI techniques in intrusion

detection systems. ACM Computing Surveys,

56(4), Article 78.

[5] Ullah, B., Ahmed, S., & Khan, M. A. (2025).

Hybrid deep learning models for intrusion

detection: A case study on NSL-KDD. IEEE

Access, 13, 23015–23028.

[6] Silivery, A. K., & Kovvur, R. M. R. (2023).

Enhancing intrusion detection using LSTM-

RNN with optimized training. Journal of

Information Security and Applications, 72,

103404.

[7] Vellela, S. S., Reddy, K. R., & Patnaik, S.

(2024). Ensemble learning-based IDS for FTP

traffic analysis using DARPA dataset.

Computers & Security, 134, 103219.

