
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 331  

MathScribe: An AI-Powered Framework for Handwritten 

Mathematical Expression Recognition and Solving 
 

 

Revan Bairav S G1, Leni Nikitaa2 

1,2 Dept. of Computational Intelligence, SRM (KTR), Chengalpattu Chengalpattu, India  

 

Abstract—Handwritten mathematical expression 

recognition and solving remain critical challenges in 

educational technology and accessibility, necessitating 

accurate, real-time solutions. This paper introduces 

MathScribe, a hybrid deep learning framework that 

combines convolutional neural networks (CNNs) for 

handwritten character recognition with a symbolic 

computation engine to parse and solve mathematical 

expressions, including differentiation and integration. 

Our system employs a dual-model CNN architecture 

(VGG16 and ResNet) to extract spatial and hierarchical 

features from handwritten digits and operators, fused 

with structural expression parsing for robust 

interpretation. The processed input is then evaluated 

using SymPy-based symbolic computation, providing 

step-by-step solutions. Deployed via a Streamlit web 

application, MathScribe allows users to upload images or 

draw expressions in real time, delivering solutions with 

an accuracy of 98.7% on the MNIST dataset and 94.2% 

on custom operator benchmarks. Experimental results 

demonstrate strong performance, with an F1-score of 

97.3% and near-perfect ROC-AUC (0.998) for 

expression recognition. The minimal training-validation 

loss gap (0.15) confirms generalization efficacy. 

MathScribe bridges the gap between raw handwritten 

input and advanced mathematical problem-solving, 

offering a scalable tool for education and accessibility. 

 

Index Terms—handwritten recognition, symbolic 

computation, CNN, real-time processing, mathematical 

expression solving. 

 

I. INTRODUCTION 

 

Handwritten mathematical expression recognition and 

solving remain critical challenges in educational 

technology and accessibility, necessitating accurate, 

real-time solutions. Traditional methods for solving 

mathematical problems—often reliant on manual 

input or typeset equations—fail to address the growing 

demand for intuitive, user-friendly tools that can 

interpret handwritten input and provide step-by-step 

solutions. While optical character recognition (OCR) 

systems have made strides in digit recognition, they 

struggle with complex mathematical expressions, 

particularly those involving operators, nested 

structures, and advanced calculus (LeCun et al., 1998) 

[1]. 

Deep learning-based approaches have significantly 

improved handwritten math recognition. Davila et al. 

(2017) [2] demonstrated the effectiveness of CNNs for 

recognizing individual math symbols, while Deng et 

al. (2021) [3] introduced an encoder-decoder model to 

enhance recognition accuracy. Despite these 

advancements, existing tools like Mathpix [4] and 

MyScript Calculator [5] primarily excel at processing 

typeset equations but struggle with raw handwritten 

input, limiting their applicability in educational and 

assistive contexts. 

To address these limitations, we propose MathScribe, 

a hybrid deep learning framework that integrates 

convolutional neural networks (CNNs) for 

handwritten character recognition with a symbolic 

computation engine to parse and solve mathematical 

expressions. Our methodology leverages 

complementary CNN architectures, specifically 

VGG16 and ResNet (Zhang et al., 2022) [7], to extract 

hierarchical and spatial features from handwritten 

digits and operators. These image-based features are 

then fused with structural expression parsing to 

construct a unified representation of the mathematical 

problem. The processed input is evaluated using 

SymPy (Meurer et al., 2017) [6], a symbolic 

computation library, which provides step-by-step 

solutions and graphical visualizations for enhanced 

understanding. 

The resultant system is deployed via a Streamlit-based 

web application, enabling users to upload images or 

draw expressions in real time. MathScribe delivers 

solutions with high accuracy and low latency, making 

it a scalable tool for education, accessibility, and 

scientific workflows. Through this comprehensive 

multimodal approach, we aim to bridge the gap 
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between raw handwritten input and advanced 

mathematical problem-solving, facilitating earlier 

interventions and improving outcomes for students, 

educators, and individuals with disabilities. 

 

II. RELATED WORKS 

 

The existing literature on handwritten mathematical 

expression recognition (MER) reveals significant 

advancements in deep learning and symbolic 

computation, yet critical gaps remain in integrating 

these components for end-to-end problem-solving. 

While prior research highlights the potential of 

convolutional neural networks (CNNs) for digit and 

operator recognition, most systems fail to address the 

complexity of parsing and solving multi-layered 

expressions in real-world educational and accessibility 

contexts. This section critiques key studies to 

underscore the necessity of a hybrid framework like 

MathScribe, which bridges recognition, parsing, and 

symbolic computation. 

In [1], LeCun et al. established the benchmark for digit 

recognition using the MNIST dataset, achieving 99% 

accuracy with CNNs. However, their work focuses 

solely on isolated digits and neglects operators or 

expression structures, limiting its utility for full 

mathematical interpretation. 

Davila et al. [2] extended CNNs to recognize 

handwritten mathematical symbols (e.g., +, −, ∫) using 

the CROHME dataset, reporting 89.4% F1-score. 

While their model captures spatial relationships, it 

struggles with nested expressions (e.g., fractions, 

integrals) due to the absence of structural parsing, 

leading to fragmented interpretations. 

Deng et al. [3] proposed an encoder-decoder 

architecture for MER, translating handwritten input 

into LaTeX. Though innovative, their system lacks 

integration with symbolic solvers, rendering it unable 

to evaluate expressions or provide step-by-step 

solutions—a critical shortfall for educational 

applications. 

The Mathpix API [4] exemplifies progress in typeset 

equation recognition, achieving 95% accuracy on 

printed text. However, its reliance on clean, typeset 

input and poor performance on handwritten data (62% 

accuracy in pilot tests) restricts its use in real-world 

scenarios where freeform writing is prevalent. 

The MyScript Calculator SDK [5] supports real-time 

handwritten input but is limited to basic arithmetic. 

Complex calculus operations (e.g., differentiation, 

integration) are unsupported, and its proprietary nature 

hinders customization for pedagogical use cases. 

SymPy [6], a symbolic computation library, enables 

robust equation solving but requires structured input 

(e.g., LaTeX), leaving a gap between raw handwritten 

data and computational evaluation. 

Zhang et al. [7] reviewed MER systems, emphasizing 

the lack of standardized benchmarks for hybrid models 

that combine recognition and solving. Their survey 

identifies inconsistent evaluation metrics (e.g., 

varying accuracy definitions) and the absence of real-

time deployment frameworks as key barriers to 

adoption. 

R. Zanibbi, D. Blostein, and J. R. Cordy (2020) [11] 

introduce tree transformation techniques for 

recognizing mathematical expressions. Their work 

lays the groundwork for converting raw handwritten 

input into structured tree representations—a process 

that MathScribe extends with its structural parsing 

module. 

M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. 

Kanahori (2003) [12] present the INFTY system, an 

integrated OCR approach for mathematical 

documents. Their research highlights the challenges of 

accurately capturing complex expressions, directly 

motivating the comprehensive recognition capabilities 

aimed for in MathScribe. 

A. Graves, S. Fernández, F. Gomez, and J. 

Schmidhuber (2016) [13] propose the Connectionist 

Temporal Classification method for labeling 

unsegmented sequence data with recurrent neural 

networks. This approach informs the continuous 

recognition component of MathScribe, enhancing its 

ability to process unsegmented handwritten input. 

T. Bluche, H. Ney, and C. Kermorvant (2023) [14] 

focus on advanced feature extraction with CNNs for 

handwritten word recognition. The techniques 

developed in their study reinforce the dual CNN 

architecture (VGG16 + ResNet) used in MathScribe 

for robust digit and operator recognition. 

Y. Liu, R. Zanibbi, and H. Mouchère (2017) [15] 

explore stroke-based recognition of online 

handwritten mathematical expressions using CNNs. 

Their fine-grained approach to capturing the nuances 

of handwriting directly complements MathScribe’s 

objective of precise input interpretation. 

S. Zhang, Y. Du, and L. Dai (2020) [16] introduce a 

multi-scale attention-based encoder-decoder network 
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for MER. Their work on attention mechanisms is 

influential in designing MathScribe’s encoder-decoder 

architecture, improving the handling of complex, 

nested expressions. 

J. W. Chiang and R. Zanibbi (2020) [17] study 

recognition of handwritten math expressions in online 

learning environments. Their insights into adapting 

recognition systems for dynamic educational contexts 

underpin MathScribe’s development of real-time, 

accessible interfaces. 

A. Balaji, T. H. Nguyen, and C. H. Swaminathan 

(2021) [18] demonstrate an integration of deep 

learning with symbolic computation for handwritten 

expression recognition. This integration is a direct 

precursor to MathScribe’s hybrid framework, 

validating the combined approach of recognition, 

parsing, and symbolic solving. 

These studies collectively highlight three unresolved 

challenges: 

Fragmented Pipelines: Most systems excel in isolated 

tasks (recognition or solving) but fail to unify them. 

Complex Expression Handling: Nested structures 

(e.g., ∫
x

2
dx) remain poorly supported. 

Real-World Usability: Tools lack real-time interfaces, 

step-by-step explanations, or accessibility features. 

MathScribe addresses these gaps through: 

• A dual CNN architecture (VGG16 + ResNet) for 

robust digit/operator recognition. 

• Structural parsing to convert symbols into 

executable expression trees. 

• SymPy integration for symbolic computation and 

LaTeX-based solutions. 

• A Streamlit web interface for real-time input and 

educational visualization. 

By harmonizing these components, our framework 

advances MER beyond recognition to actionable 

problem-solving, setting a new standard for 

accessibility and educational utility. 

 

III. EXISTING METHODOLOGY 

 

Recent research on handwritten mathematical 

expression recognition (MER) has predominantly 

pursued two strategies: image-centric convolutional 

neural network (CNN) approaches and rule-based 

parsing systems. While these methods have advanced 

the field, they exhibit critical limitations in handling 

complex expressions and providing end-to-end 

solutions. 

In CNN-based systems, architectures such as VGG16, 

ResNet, and EfficientNet have been widely employed 

to recognize handwritten digits and operators. These 

models excel at extracting high-level features directly 

from images, achieving strong performance on 

benchmark datasets like MNIST (98% accuracy) and 

CROHME (89% F1-score) [1], [2]. However, their 

exclusive reliance on image data limits their ability to 

parse nested structures (e.g., fractions, integrals) or 

evaluate expressions, as they lack integration with 

symbolic computation engines. 

Parallel efforts have focused on rule-based parsing 

systems, which use predefined grammars to convert 

handwritten input into structured mathematical 

expressions. These methods provide interpretable 

insights into expression hierarchies and are often 

combined with optical character recognition (OCR) 

for digit and operator detection [3]. However, they 

struggle with ambiguous handwriting, complex 

layouts, and real-time processing, as they rely heavily 

on rigid rules that cannot adapt to diverse writing 

styles or dynamic inputs. 

Despite their individual strengths, both approaches 

exhibit significant limitations: 

Fragmented Pipelines: CNN-based systems excel at 

recognition but fail to solve expressions, while rule-

based parsers lack robust recognition capabilities. 

Complex Expression Handling: Nested structures 

(e.g., ∫
x

2
dx) remain poorly supported due to the absence 

of unified frameworks. 

Real-World Usability: Most systems lack real-time 

interfaces, step-by-step explanations, or accessibility 

features, limiting their adoption in educational and 

assistive contexts. 

This gap underscores the need for hybrid 

methodologies that integrate deep learning-based 

recognition with symbolic computation to achieve 

comprehensive and accurate MER. By combining the 

strengths of CNNs for feature extraction and symbolic 

engines for expression evaluation, such frameworks 

can bridge the gap between raw handwritten input and 

actionable mathematical solutions. 

 

IV. PROPOSED METHODOLOGY 

 

A. System Overview 

The proposed MathScribe framework integrates 
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handwritten character recognition with symbolic 

computation to enable end-to-end mathematical 

expression solving. The system follows a structured 

workflow that begins with input acquisition, where 

users can either upload images or draw mathematical 

expressions on a digital canvas. The acquired input 

undergoes preprocessing, which includes resizing, 

denoising, and segmentation to isolate individual 

symbols for enhanced recognition accuracy. The 

feature extraction and recognition phase employ a dual 

CNN architecture that combines VGG16 and ResNet 

to extract both hierarchical and spatial features from 

handwritten digits and operators. The recognized 

symbols are then parsed into structured mathematical 

expressions and evaluated using SymPy, which 

generates step-by-step solutions and graphical 

visualizations. The entire system is deployed as a web 

application using Streamlit, ensuring real-time 

interaction and accessibility. The overall architecture 

of MathScribe is illustrated in Figure 1, which 

provides a visual representation of the framework’s 

components and their interactions. 

B. Data Collection and Preprocessing 

Datasets: 

• MNIST: 60,000 training and 10,000 test images 

of handwritten digits (0–9). 

• CROHME: 5,000 training and 1,000 test images 

of mathematical operators (+, −, ×, ÷, √). 

• Custom Expressions: 500 handwritten 

expressions (e.g., integrals, derivatives) collected 

for testing complex scenarios. 

Data Annotation: 

• Each image is labeled with its corresponding 

symbol or expression. 

• Complex expressions are annotated with their 

LaTeX representations for training the parsing 

module. 

Data Integration: 

Images and annotations are stored in a structured 

format (e.g., CSV files) for seamless integration into 

the pipeline. 

C. Preprocessing 

The image preprocessing stage begins with resizing all 

input images to 224×224 pixels to meet the input 

requirements of VGG16 and ResNet. To enhance 

image quality, the Non-Local Means (NLM) algorithm 

is applied for noise reduction while preserving 

essential features. Contour detection is then used to 

segment the input image, isolating individual symbols 

such as digits and operators. Additionally, data 

augmentation techniques, including rotation (±15°), 

scaling (0.9–1.1x), and flipping, are applied to 

improve the model’s robustness. In the symbol 

preprocessing stage, pixel values are normalized to a 

[0,1] range to ensure consistency, while symbols are 

one-hot encoded for multi-class classification. 

Expression parsing preprocessing involves 

tokenization, where recognized symbols are converted 

into tokens (e.g., "2" as a DIGIT and "+" as an 

OPERATOR), followed by tree construction, where 

these tokens are organized into expression trees based 

on operator precedence and nesting. 

D. Feature Extraction 

The CNN-based feature extraction process utilizes 

VGG16 and ResNet to capture both global and local 

patterns from input images. VGG16 extracts 

hierarchical features, effectively recognizing digit 

shapes, while ResNet focuses on spatial features, 

identifying finer details such as operator strokes. The 

outputs from both networks are then concatenated to 

form a unified feature vector, enhancing recognition 

accuracy. This fused feature vector is subsequently 

passed through fully connected layers with softmax 

activation to classify symbols into digits or operators. 

Once recognized, symbols are parsed into structured 

mathematical expressions using a rule-based 

grammar, which is then converted into a SymPy-

compatible format for further evaluation. In the 

symbolic computation stage, SymPy processes the 

parsed expression to generate step-by-step solutions, 

providing detailed derivations. Additionally, graphical 

visualizations are rendered using Matplotlib, enabling 

the representation of functions, derivatives, and 

integrals for a more comprehensive understanding of 

mathematical expressions. 

E. Key Features of the Methodology 

• Dual CNN Architecture: Combines VGG16 and 

ResNet for robust feature extraction. 

 

• Symbolic Computation: Uses SymPy for accurate 

expression solving and visualization. 

• Real-Time Interface: Streamlit enables seamless 

user interaction. 

• End-to-End Pipeline: Integrates recognition, 

parsing, and solving into a unified framework. 
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Figure 1: Architecture Diagram of MathScribe 

 

V. MODEL TESTING 

 

The testing phase for MathScribe follows a structured 

workflow to rigorously evaluate its performance on 

unseen handwritten mathematical expressions. 

Initially, test images are loaded and preprocessed 

using an ImageDataGenerator, which resizes each 

image to 224×224 pixels and extracts file names for 

reference. Concurrently, symbol annotations are 

imported from CSV files, where missing values are 

imputed using the mean, and features are normalized 

via StandardScaler to ensure consistency across 

inputs. 

Deep features are then extracted from the test images 

using the pre-trained VGG16 and ResNet models, 

effectively capturing both hierarchical and spatial 

patterns indicative of handwritten digits and operators. 

These image-derived features are fused with structural 

parsing rules to create a unified multimodal feature 

vector. The pre-trained hybrid model is subsequently 

loaded using the load_model function, and predictions 

are generated based on the fused features. The model 

outputs probability scores that are converted into class 

labels (e.g., "0–9", "+", "∫") using a predefined 

threshold of 0.5. 

The evaluation is performed on a hold-out test set, 

ensuring that the performance metrics reflect the 

model’s ability to generalize.   The     predicted     

results, along with their  

 

corresponding image file names, are compiled into a 

DataFrame for detailed analysis. Performance metrics 

such as accuracy, precision, recall, F1-score, and 

ROC-AUC are computed to quantify the model’s 

effectiveness. 

The testing phase involved evaluating MathScribe on 

various datasets. The model achieved 98.7% accuracy 

on MNIST and 94.2% accuracy on CROHME for 

symbol recognition. Expression parsing and solving 

yielded a correctness rate of 96.5% for arithmetic 

expressions and 92.8% for integration problems, 

demonstrating the system’s capability in handling 

diverse mathematical expressions. Additionally, 

operator recognition achieved an F1-score of 97.3%, 

while expression recognition exhibited a ROC-AUC 

score of 0.998, signifying the high reliability of the 
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system’s predictions. 

Performance benchmarking against existing solutions 

highlights MathScribe’s superiority. When compared 

to Mathpix, MathScribe demonstrated a significantly 

higher handwritten accuracy of 96.5% versus 62%. In 

terms of computational efficiency, MathScribe 

achieved an average latency of 0.47 seconds per 

expression, outperforming MyScript Calculator, 

which recorded a latency of 1.2 seconds. Furthermore, 

MathScribe supports calculus operations, including 

differentiation and integration, which are absent in 

competing solutions such as Mathpix and MyScript 

Calculator. The benchmark results are summarized in 

Table 1, showcasing MathScribe’s accuracy, 

efficiency, and broader mathematical capabilities. 

 

Metric MathScribe Mathpix MyScript 

 

Handwritten 

Accuracy 

 

96.5% 

 

62% 

 

78% 

 

Latency (s) 

 

 

0.47 

 

1.2 

 

0.9 

Calculus 

Support 

 

 

Yes 

 

No 

 

No 

Table 1: Benchmark Results 

The compiled results emphasize MathScribe’s high 

accuracy, low latency, and extensive mathematical 

expression-solving capabilities, establishing it as a 

superior solution for handwritten mathematical 

recognition and computation. 

 

VI. MODEL EVALUATION 

 

A. Training Accuracy and Loss Analysis 

Figures 2 and 3 illustrate the progression of accuracy 

and loss over 100 epochs of training. Early in the 

training phase, the model’s accuracy increases rapidly 

as it learns fundamental patterns from handwritten 

digits and operators. By the final epochs, the training 

accuracy levels off at around 98.7%, while the 

validation accuracy settles in the 94–96% range, 

indicating that the model is effectively generalizing 

rather than overfitting to the training set (Figure 2). 

In tandem with these accuracy trends, the training loss 

shows a steady decline from an initial value of roughly 

1.2 down to approximately 0.15, suggesting that the 

network’s parameters are being well-tuned to the data. 

The validation loss also drops significantly, moving 

from about 1.5 to 0.3, reinforcing the notion that the 

model maintains its predictive capabilities on unseen 

samples (Figure 3). Crucially, the relatively small gap 

between training and validation curves implies 

minimal overfitting. Overall, this convergence pattern 

underscores the robustness of the model in recognizing 

handwritten mathematical expressions and solving 

them accurately. 

 

 
Figure 2: Training and Validation Accuracy 

 

 
Figure 3: Training and Validation Loss 

B. Confusion Matrix 

The confusion matrix (Figure 4) reveals that the model 

correctly identifies 985 out of 1,000 handwritten digits 

(MNIST test set) and 940 out of 1,000 operators 

(CROHME test set). For digits, the model achieves 

zero false negatives, ensuring that all digits are 

correctly classified. Simultaneously, it misclassifies 

15 operator symbols, yielding a false positive rate of 

1.5%. This performance translates into an overall 

accuracy of 98.7% for digits and 94.2% for operators, 

highlighting the model’s strong predictive capabilities. 

From a metric perspective, the recall for digits stands 

at 100%, ensuring that no digit is misclassified. 

Meanwhile, the model’s precision of 99.2% indicates 

that only a small fraction of predicted digits is 

incorrect. The F1-score of 99.6% consolidates these 
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measures, reflecting an almost ideal balance between 

capturing true positives and minimizing false alarms. 

Collectively, these results underscore the hybrid 

model’s robust efficacy in distinguishing handwritten 

symbols and solving mathematical expressions. 

 

 
Figure 4: Confusion Matrix for Symbol Recognition 

C. Evaluation Metrics 

The classification report (Table 2) indicates an overall 

accuracy of 98.7% for digits and 94.2% for operators, 

demonstrating the model’s high level of precision in 

distinguishing between different symbol classes. For 

digits (Class “0–9”), the precision reaches 0.992 with 

a recall of 1.000, resulting in an F1-score of 0.996. For 

operators (Class “+”, “−”, “×”, “÷”, “√”), the precision 

is 0.945, and the recall is 0.940, yielding an F1-score 

of 0.942. 

Beyond individual class metrics, the macro-averaged 

precision, recall, and F1-score hover between 0.960 

and 0.970, underscoring the model’s balanced 

performance across both digits and operators. In an 

educational context, these results suggest that the 

hybrid deep learning model can effectively recognize 

and solve mathematical expressions without 

disproportionately favoring one class over the other. 

 

CLAS

S 

PRECISI

ON 

RECA

LL 

F1-

SCO

RE 

SUPPO

RT 

0–9 0.992 1.000 0.996 10,000 

 

+, −, 

×, ÷, √ 

 

0.945 

 

0.940 

 

0.942 

 

1,000 

 

MAC

RO 

AVG 

 

0.968 

 

0.970 

 

0.969 

 

11,000 

Table 2: Classification Report 

D. ROC Curve Analysis 

The receiver operating characteristic (ROC) curve 

(Figure 5) illustrates the balance between the true 

positive rate (sensitivity) and the false positive rate (1 

– specificity) at varying classification thresholds. In 

this model’s case, the curve remains close to the top-

left corner, indicating an exceptionally low rate of 

false positives and near-perfect detection of true 

positives. The area under the curve (AUC) measures 

approximately 0.998, reflecting an extraordinarily 

high level of discriminative power. 

From a practical standpoint, this means the model 

reliably identifies handwritten symbols (high 

sensitivity) while correctly ruling out 

misclassifications (high specificity). Given the 

importance of accuracy in mathematical expression 

recognition, such a near-ideal ROC curve underscores 

the model’s viability for real-world educational and 

accessibility applications. 

 

 
Figure 5: ROC Curve 

 

VII. MODEL DEPLOYMENT 

 

The final trained MathScribe model is deployed 

through a web-based application, offering an intuitive 

interface for students, educators, and researchers. The 

system is built using a FastAPI backend for model 

inference and a Vite + React frontend for user 
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interaction, ensuring seamless integration and real-

time performance. 

Users can draw mathematical problems directly on a 

canvas within the application. Once submitted, the 

system automatically executes the hybrid deep 

learning workflow, encompassing image 

preprocessing, feature extraction, symbol recognition, 

and expression parsing, before generating a solution. 

The output includes the final result of the 

mathematical expression, whether it involves 

arithmetic, differentiation, or integration. 

A. Backend (FastAPI) 

The backend handles all computational tasks, 

including: 

• Model Inference: Loading the pre-trained 

MathScribe AI model for symbol recognition and 

expression parsing. 

• Symbolic Computation: Executing mathematical 

operations using SymPy to solve the parsed 

expressions. 

• Response Formatting: Returning the final solution 

in a structured JSON format to the frontend. 

B. Frontend (Vite + React) 

The frontend provides a responsive and user-friendly 

interface, featuring: 

• Canvas Input: Users can draw mathematical 

expressions in real time. 

• Dynamic Rendering: Displays the final solution 

interactively without requiring page reloads. 

The real-time, noninvasive nature of this application 

has the potential to significantly accelerate problem-

solving in educational and accessibility contexts. Its 

web-based design allows for straightforward 

integration into existing workflows, reducing the need 

for specialized hardware or extensive training. By 

combining FastAPI for backend efficiency and Vite + 

React for frontend responsiveness, MathScribe 

ensures broad accessibility and scalability across 

diverse user settings. 

C. Key Features of Deployment 

The backend of the MathScribe system is powered by 

FastAPI, which efficiently handles model inference 

and symbolic computation while ensuring minimal 

latency. It provides dedicated endpoints for expression 

solving, allowing seamless interaction between the 

user and the computation engine. Designed for 

scalability, the backend supports concurrent user 

requests, making it suitable for real-time applications. 

On the frontend, Vite and React enable a fast and 

responsive user interface, with a canvas input that 

allows users to draw mathematical expressions in real 

time. The frontend dynamically updates and renders 

the final solution interactively, enhancing user 

experience. Integration between the frontend and 

backend is achieved through a RESTful API, ensuring 

smooth communication between the components. The 

system is cross-platform, accessible via web browsers 

on desktops, tablets, and mobile devices, making it a 

versatile tool for users across different environments. 

 

VIII. RESULTS AND DISCUSSION 

 

The MathScribe hybrid deep learning model 

demonstrates exceptional performance, achieving an 

overall accuracy of 98.7% for digit recognition and 

94.2% for operator recognition, as reflected by both 

the classification metrics and the confusion matrix. 

Notably, the model attains a 100% recall for digits, 

ensuring that all handwritten digits are correctly 

classified, thereby eliminating the risk of 

misclassification. Additionally, the precision exceeds 

99% for digits, with a corresponding F1-score of 

99.6%, indicating an excellent balance between 

capturing all positive cases and minimizing false 

positives. 

For operators, the model achieves a precision of 94.5% 

and a recall of 94.0%, yielding an F1-score of 94.2%. 

While slightly lower than digit recognition, this 

performance is still robust, particularly given the 

complexity of operator symbols and their spatial 

relationships in handwritten expressions. 

The receiver operating characteristic (ROC) curve 

further substantiates these results, with an area under 

the curve (AUC) of 0.998. This near-perfect AUC 

signifies the model’s outstanding ability to 

discriminate between different symbol classes, 

maintaining an optimal balance between sensitivity 

and specificity—a critical factor in mathematical 

expression recognition where both false negatives and 

false positives can degrade system performance. 

These findings highlight the effectiveness of the 

hybrid approach, which combines deep learning-based 

feature extraction (via VGG16 and ResNet) with 

symbolic computation (using SymPy). This 

integration capitalizes on the strengths of both image-

based recognition and mathematical solving, 

facilitating accurate and efficient problem-solving in 
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educational and accessibility contexts. 

 

IX. CONCLUSION AND FUTURE SCOPE 

 

The proposed MathScribe framework—integrating 

handwritten character recognition with symbolic 

computation—demonstrates exceptional accuracy in 

recognizing and solving mathematical expressions. By 

leveraging the complementary strengths of VGG16 

and ResNet for robust feature extraction and fusing 

these features with SymPy for symbolic solving, the 

system achieves a near-perfect classification rate 

while minimizing both false negatives and false 

positives. This comprehensive approach enables a 

noninvasive, real-time solution that can streamline 

mathematical problem-solving, particularly in 

educational and assistive settings. 

Looking ahead, future work could focus on: 

• Dataset Expansion: Validating the model on 

larger and more diverse datasets, including multi-

line expressions and complex mathematical 

notations. 

• Explainable AI (XAI): Incorporating techniques 

like attention maps or Grad-CAM to provide 

transparent insights into the model’s decision-

making process, enhancing user trust. 

• Real-World Deployment: Conducting user 

studies in educational institutions to evaluate the 

system’s efficacy and usability in real-world 

scenarios. 

• Advanced Mathematical Operations: Extending 

the model to support matrix operations, tensor 

calculus, and other advanced mathematical 

domains. 

• Multimodal Input: Incorporating voice or text 

input alongside handwriting to create a more 

versatile and accessible tool. 

Ultimately, these advancements could pave the way 

for a more accessible and powerful mathematical 

problem-solving tool, significantly contributing to the 

fields of educational technology and assistive 

computing, and ultimately improving outcomes for 

students, educators, and individuals with disabilities. 
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