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Abstract — Lung cancer is one of the leading causes of 

death globally [1], making early and accurate detection 

critical for improving patient outcomes. This study 

presents a deep learning-based approach for the 

automatic classification of lung cancer using the 

Inception V3 convolutional neural network (CNN) 

architecture [3]. The model employs transfer learning 

to adapt a pretrained Inception V3 network for lung 

cancer classification, fine-tuned on a custom dataset of 

15,000 CT scan images distributed equally among three 

diagnostic categories: adenocarcinoma, benign, and 

squamous cell carcinoma. 

The dataset was divided into training and validation 

sets in an 80:20 ratio. Extensive data augmentation 

techniques were applied to improve generalization and 

minimize overfitting [8], [11]. The model was trained 

for 20 epochs, and its performance was evaluated using 

standard metrics such as accuracy, loss, precision, 

recall, and F1-score. The proposed system achieved a 

validation accuracy of 95.97% and a validation loss of 

0.0986, demonstrating high effectiveness in classifying 

lung cancer types from CT scans. The results align with 

recent advancements in CNN-based medical image 

classification [2], [9], [14], [15], reinforcing the 

suitability of Inception V3 for clinical decision support 

systems in oncology. 
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I. INTRODUCTION 

 

Lung cancer remains one of the most prevalent 

causes of cancer-related mortality worldwide, 

accounting for nearly 18 % of all cancer deaths 

according to WHO estimates [1]. Early detection 

significantly improves treatment outcomes, yet 

conventional imaging modalities—such as 

radiography and computed tomography (CT)—

depend heavily on expert radiologists for 

interpretation. This reliance can introduce variability 

and delay, underscoring the need for automated tools 

that enhance diagnostic precision and expedite 

clinical decision-making. 

 

Recent advances in artificial intelligence, particularly 

deep learning, have shown great promise for medical 

image analysis. Convolutional Neural Networks 

(CNNs) automatically learn hierarchical feature 

representations directly from pixel data, reducing the 

need for manual feature engineering and expert 

domain knowledge [2]. By leveraging large-scale 

pretraining on datasets such as ImageNet, CNN-

based models can be fine-tuned to specialized tasks 

in healthcare, including the classification of complex 

modalities like CT scans and histopathological 

images [8], [11]. 

 

Among modern CNN architectures, Inception V3 is 

distinguished by its inception modules—parallel 

convolutional filters of varying sizes that capture 

multi-scale features while keeping computational 

cost manageable [3]. Prior studies have demonstrated 

the effectiveness of Inception V3 for transfer learning 

in medical imaging tasks, achieving high accuracy in 

detecting diseases such as diabetic retinopathy and 

breast cancer metastases [9], [14], [15]. Its ability to 

integrate fine-grained textures and patterns makes it 

especially suitable for distinguishing subtle 

histopathological differences in lung tissue. 

 

In this work, we apply transfer learning with 

Inception V3 to a curated subset of the “Lung and 

Colon Cancer Histopathological Images” dataset 

(Kaggle) using 15,000 lung image patches evenly 

divided into three classes—adenocarcinoma, 

squamous cell carcinoma, and benign cases. The 

dataset was split in an 80:20 ratio (12,000 training, 

3,000 validation), with extensive data augmentation 

employed to improve generalization. We evaluate the 

model’s performance using accuracy, loss, precision, 

recall, F1-score, confusion matrices, ROC and 

precision-recall curves, and feature-space 

visualizations. Our goal is to demonstrate that a fine-

tuned Inception V3 can provide robust, reproducible 

support for early lung cancer diagnosis, potentially 

alleviating workload on radiologists and pathologists 

while improving patient outcomes. 
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II. METHODOLOGY 

 

This section outlines the complete methodology, 

including data collection, preprocessing, model 

selection, training, and evaluation, used in 

implementing the Inception V3 convolutional neural 

network (CNN) for the detection of lung cancer. Each 

step is briefly discussed to provide clarity on the 

methodology applied 

 

A. Data Collection 

This study utilizes a custom lung cancer dataset 

consisting of 15,000 CT scan images sourced from 

publicly available medical imaging repositories. The 

dataset is categorized into three diagnostic classes: 

 Adenocarcinoma 

 Squamous Cell Carcinoma 

 Benign Tumors 

The dataset is split as follows: 

 Training set: 12,000 images (4,000 per 

class) 

 Validation set: 3,000 images (1,000 per 

class) 

The dataset is balanced, with an equal representation 

of each class, allowing the model to learn effectively 

without bias towards any class. 

 

B. Data Preprocessing 

Data preprocessing plays a critical role in ensuring 

the model performs optimally. The preprocessing 

steps for this study include: 

1. Image Resizing: All images were resized to 

224×224 pixels to match the input size 

requirements of the Inception V3 model [3]. 

2. Image Normalization: Pixel values were 

normalized to the range of 0 to 1 by dividing by 

255. This speeds up training and helps the 

model converge more effectively. 

3. Data Augmentation: Several augmentation 

techniques were applied to increase the 

variability of the training data and reduce 

overfitting: 

o Rotation: Random rotation of images 

within a specified degree range. 

o Width and Height Shifts: Random 

horizontal and vertical shifts. 

o Zooming: Random zooming in or out to 

simulate size changes. 

o Shearing: Applying shear transformations 

to adjust the shape of images. 

o Flipping: Random horizontal flips to 

introduce mirrored versions of images. 

4. Train-Test Split: The dataset was split into 80% 

training and 20% validation. This allows the 

model to train on a large subset of the data and 

evaluate its performance on the unseen 

validation set. 

 

C. Model Selection 

For this study, Inception V3 [3] is selected as the 

model of choice, with a focus on its capability to 

capture intricate features in medical images through 

its sophisticated architecture. 

 Inception V3: This model employs multiple 

convolutional layers with varying filter sizes at each 

layer, enabling the network to capture multi-scale 

features and improve classification performance. The 

model was pre-trained on the ImageNet dataset, and 

we fine-tuned it on our lung cancer dataset using 

transfer learning. Inception V3's architectural 

advantages include its global average pooling and 

efficient handling of large datasets. 

 

D. Model Architecture 

The Inception V3 model was adapted to our 

classification task by adding custom layers on top of 

the pre-trained base: 

1. Flatten Layer: Converts the multi-dimensional 

output of the convolutional base into a one-

dimensional vector to feed into the fully 

connected layer. 

2. Fully Connected Layer: A dense layer with 512 

neurons and ReLU activation. This layer learns 

non-linear combinations of features extracted 

from the convolutional base. 

3. Dropout Layer: A dropout rate of 0.5 is applied 

during training to prevent overfitting by 

randomly disabling some percentage of input 

units. 

4. Output Layer: The final dense layer contains 3 

units corresponding to the three classes 

(adenocarcinoma, squamous cell carcinoma, and 

benign tumors), and uses the softmax activation 

function to output class probabilities. 

 
2.1 Typical CNN Architecture[16] 

 

E. Model Training 
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The model was compiled using the Adam optimizer 

with a learning rate of 0.001, and categorical cross-

entropy was used as the loss function to address the 

multi-class classification problem. Below are the key 

details of the training process: 

 Epochs: The model underwent training for 20 

epochs, allowing iterative learning from the 

dataset and gradual refinement of model 

weights. 

 Batch Size: A batch size of 32 was selected to 

balance memory utilization and computational 

efficiency, allowing for effective model updates. 

 Training Process: The training was executed 

using Keras' fit method, tracking the training 

history, including accuracy and loss, for each 

epoch to analyze model performance over time. 

The model's best weights were saved during the 

process using ModelCheckpoint to ensure the 

best performance based on validation accuracy. 

 

F. Model Evaluation 

After the training phase, the model's performance 

was evaluated on the validation set, which consisted 

of 3,000 images from the test classes: 

adenocarcinoma, squamous cell carcinoma, and 

benign tumors. The following evaluation metrics 

were used to measure the effectiveness of the model: 

 Accuracy: The proportion of correctly classified 

images relative to the total number of images in 

the validation set. This provides an overall 

measure of the model's classification ability. 

 Loss: Categorical cross-entropy loss was 

computed to measure the model's ability to 

predict the correct class for each image. A lower 

loss indicates better performance. 

Additionally, confusion matrices were generated to 

provide detailed insights into misclassifications 

among the three classes. These matrices are 

particularly useful for identifying which classes the 

model struggles to differentiate and where further 

improvements may be needed. 
 

G. Hyperparameter Tuning 

To further optimize model performance, the 

following hyperparameter tuning techniques were 

applied: 

 Learning Rate Adjustment: A learning rate 

scheduler was employed through 

ReduceLROnPlateau, which reduces the 

learning rate when the validation loss plateaus. 

This helps the model avoid overshooting and 

allows it to converge more smoothly during later 

training stages. 

 Early Stopping: The EarlyStopping callback was 

used to monitor the validation loss. Training was 

stopped early if the validation loss did not 

improve for 7 consecutive epochs, preventing 

overfitting and saving computational resources. 

 

These techniques helped improve the model's 

stability and generalization. 

 

H. Framework and Tools 

The models were developed using TensorFlow and 

Keras, which provide a flexible and efficient 

framework for designing, training, and evaluating 

deep learning architectures. TensorFlow’s 

capabilities allowed for seamless integration of 

Inception V3 for transfer learning and the handling of 

large image datasets. 

Training was executed in Google Colab, utilizing the 

T4 GPU provided by the platform to accelerate 

computations. The T4 GPU significantly reduced 

training times, especially for large datasets such as 

the 15,000 lung CT images used in this study. This 

GPU enabled faster convergence and efficient fine-

tuning, making the training process more 

computationally feasible. 

 

III. CASE STUDIES AND IMPLEMENTATION 

 

This section describes how the Inception V3 model 

was applied to our lung histopathology dataset and 

details the evaluation metrics used to assess its 

performance. 

 

A. Dataset Description 

We utilized the lung subset of the “Lung and Colon 

Cancer Histopathological Images” dataset (Kaggle, 

andrewmvd). This subset comprises 15,000 RGB 

image patches, equally divided into three classes—

adenocarcinoma, squamous cell carcinoma, and 

benign tumors. Images were organized into class-

specific directories and split on an 80:20 basis, 

yielding 12,000 training images (4,000 per class) and 

3,000 validation images (1,000 per class). 

 

B. Data Preprocessing 

Prior Images were preprocessed as follows to 

improve model robustness: 

1. Resizing: All patches were resized to 224×224 

pixels to match Inception V3’s input 

requirements [3]. 

2. Normalization: Pixel values were scaled to the 

0,10,10,1 range by dividing by 255. 
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3. Augmentation: On-the-fly augmentations were 

applied to the training set using 

ImageDataGenerator [6], [11]: 

o Random rotations (±20°) 

o Width/height shifts (±20 %) 

o Shear transformations (±20 %) 

o Zoom (±20 %) 

o Horizontal flips 

Validation images were only resized and normalized. 

 

C. Implementation of CNN Models 

The In this study, we focus exclusively on the 

Inception V3 architecture [3] to classify lung 

histopathology images. The implementation 

proceeds through four main stages: 

1. Base Architecture Adaptation 

We begin by loading the pretrained Inception V3 

network, omitting its original top (classification) 

layers. The convolutional base remains initially 

frozen to preserve the rich, general-purpose features 

learned from ImageNet. 

2. Custom Classification Head 

On top of the frozen base, we append: 

o A global average pooling layer to reduce 

each feature map into a single representative 

value. 

o A fully connected layer of 512 units with 

ReLU activation to learn task-specific 

feature combinations. 

o A dropout layer with a rate of 0.5 to mitigate 

overfitting by randomly disabling half of the 

neurons during training. 

o A softmax output layer with three units, 

corresponding to our classes: 

adenocarcinoma, squamous cell carcinoma, 

and benign tumors. 

3. Models Compilation 

The combined network is compiled using the Adam 

optimizer with a learning rate of 1 × 10⁻ ³ and 

categorical cross-entropy as the loss function, 

measuring how well the predicted probability 

distribution matches the true labels. Accuracy is 

tracked as the primary performance metric. 

4. Training Regimen  

Training is conducted in two phases to balance 

stability and specialization: 

o Phase 1: With the base frozen, the model is 

trained for 20 epochs using a batch size of 32. 

During this stage, the learning rate is reduced 

when validation loss plateaus, and early stopping 

is applied if no improvement occurs over seven 

epochs. The best weights are saved at each epoch 

if validation accuracy improves. 

o Phase 2: We unfreeze the top 50 layers of the 

Inception base to allow higher-level feature 

refinement. The model is recompiled with a 

reduced learning rate of 1 × 10⁻ ⁴  and trained 

for an additional 10 epochs under the same 

monitoring and check pointing regime. 

This two-stage strategy leverages the pretrained 

Inception V3 features for stable initial convergence, 

then fine-tunes the network’s higher layers for 

optimal performance on our lung cancer dataset. 

 

D. Evaluation Metrics 

To assess the performance of the models, several key 

metrics were used: 

 Accuracy: The proportion of correctly classified 

instances among the total number of instances 

evaluated. It provides an overall measure of the 

model's performance in classifying lung cancer 

images. [5], [13] 

 Precision: The proportion of actual positive 

cases (correctly identified) among the total 

positive predictions made by the model. This 

metric is crucial for evaluating the model’s 

reliability in predicting malignant cases. 

 Recall: The ratio of correctly identified positive 

cases to the total number of actual positive cases. 

It is important for understanding how well the 

model identifies true positives, especially in a 

medical context where missing a positive case is 

critical. 

 F1-Score: The harmonic mean of precision and 

recall, offering a balanced measure that accounts 

for both false positives and false negatives. 

These metrics were calculated based on the validation 

dataset, allowing for a comprehensive evaluation of 

model performance in detecting lung cancer across 

three categories: adenocarcinoma, squamous cell 

carcinoma, and benign tumors. 

 

E. Results and Discussion 

The Inception V3 model achieved strong 

performance, with the following key results from the 

validation set: 

 Validation Accuracy: 95.97% 

 Validation Loss: 0.0986 

 

The model was evaluated on the following three 

classes: 

 Adenocarcinoma 

 Benign Tumors 

 Squamous Cell Carcinoma 
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1. Classification Report: The classification report 

provides a detailed breakdown of the model's 

precision, recall, and F1-score for each class: 

Class Precisi

on 

Reca

ll 

Scor

e 

Suppo

rt 

Adenocarcino

ma 
0.93 0.94 0.94 1000 

Benign 1.00 1.00 1.00 1000 

Squamous 

Cell 

Carcinoma 

0.94 0.94 0.94 1000 

Overall Accuracy: 96% 

Macro Average: 0.96 (Precision, Recall, F1-Score) 

Weighted Average: 0.96 (Precision, Recall, F1-

Score) 

 

These metrics indicate that Inception V3 achieved 

high precision, recall, and F1-scores across all three 

classes.Benign tumors were perfectly classified, 

while the other classes—adenocarcinoma and 

squamous cell carcinoma—showed similarly strong 

results. 

2. Confusion Matrix: The confusion matrix further 

supports these results, revealing the correct 

classifications (true positives) and the model's 

performance across different categories. The 

high accuracy in distinguishing benign tumors 

from malignant tumors (both adenocarcinoma 

and squamous cell carcinoma) suggests that 

Inception V3 can be very effective in lung cancer 

detection. 

3. Comparison with Previous Studies: The 

Inception V3 model’s 96% accuracy is 

competitive with state-of-the-art results in lung 

cancer detection using deep learning. This result 

positions Inception V3 as a promising tool for 

medical image classification, matching or 

exceeding the performance seen in similar works 

[5], [13]. 

4. Clinical Implications: The excellent 

performance of Inception V3 suggests that CNN-

based models can significantly enhance the 

diagnostic workflow for lung cancer. With 

95.97% accuracy, the model can assist 

radiologists in making faster and more accurate 

diagnoses, potentially improving early detection 

and outcomes for patients. The model's 

capability to differentiate between 

adenocarcinoma, squamous cell carcinoma, and 

benign tumors with high precision makes it a 

reliable tool for supporting clinical decision-

making. 

F. Future Work 

While the initial results are promising, several 

avenues for future work could further enhance the 

effectiveness of Inception V3 in lung cancer 

detection: 

 Expanding the Dataset: Incorporating additional, 

more diverse datasets, especially from different 

demographic and geographical populations, 

could improve the model’s robustness and its 

ability to generalize across a wider variety of 

lung cancer cases. Datasets with higher class 

imbalance or rare cancer subtypes could also be 

useful to address potential model weaknesses. 

 Fine-Tuning: Further enhancement of the 

model's hyperparameters, architectures, and 

training strategies could yield better 

performance. Exploring alternative 

architectures, such as ResNet or DenseNet, 

might provide more robust feature extraction 

capabilities, improving classification accuracy 

and model resilience to overfitting. 

 Integration with Clinical Workflows: Future 

research could explore how Inception V3 or 

similar models can be integrated into clinical 

workflows for real-time diagnosis. By 

embedding these deep learning models into 

radiology systems, they could assist healthcare 

professionals in making faster, more accurate 

decisions, facilitating earlier diagnosis and 

intervention, and ultimately improving patient 

outcomes. 

 

IV. CHALLENGES 

 

Several critical challenges were encountered during 

the implementation and training of the Inception V3 

model: 

 Dataset Size: The dataset consists of 4,000 

training images and 1,000 validation images per 

class, which is a moderate-sized dataset. 

Although this dataset is large enough for training 

many deep learning models, the Inception V3 

model’s complexity posed challenges in learning 

generalizable features. Despite the dataset's size, 

the model faced difficulties in generalizing to 

unseen data, which led to some suboptimal 

validation performance. These challenges were 

addressed by employing data augmentation 

techniques and dropout layers to reduce 

overfitting and increase the robustness of the 

model. 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177359   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      1818 

 Overfitting: As a deep and complex model, 

Inception V3 exhibited signs of overfitting. 

While training accuracy improved significantly, 

the validation accuracy often plateaued or 

decreased, indicating the model was overfitting 

to the training data. To combat this, 

regularization methods such as dropout layers 

were introduced, and the model’s training 

process was closely monitored using early 

stopping and model checkpointing to ensure it 

did not overfit. 

 Computational Resources and Training Time: 

Inception V3 is a computationally intensive 

model, requiring significant resources to train 

effectively. Despite utilizing the T4 GPU 

available on Google Colab, the model took 

considerable time to converge. Training logs 

revealed variability in convergence rates, with 

occasional drops in accuracy across epochs. This 

necessitated careful hyperparameter tuning, 

particularly adjusting the learning rate and other 

training parameters to stabilize the model’s 

performance and improve convergence. 

 Data Pipeline and Preprocessing: Effective data 

management and preprocessing were critical to 

ensuring smooth model training. The images 

were resized, normalized, and augmented as part 

of the data pipeline. Additionally, maintaining 

consistent image formats and avoiding data 

bottlenecks during training were key to ensuring 

the model had a continuous flow of data. The 

preprocessing also helped ensure that the model 

was not hindered by issues such as running out 

of data or receiving inconsistent input. 

 

V. RESULT 

 

The maximum value of validation accuracy was 

achieved with Inception V3 [3] at 89.6% with 

training loss 0.2669 and a validation loss of 0.3030. 

It is known for its very complicated architecture and 

great capability in extracting features, hence it 

outperforms all the above models. [5], [13] 

Class Precisi

on 

Reca

ll 

Scor

e 

Suppo

rt 

Adenocarcino

ma 
0.93 0.94 0.94 1000 

Benign 1.00 1.00 1.00 1000 

Squamous 

Cell 

Carcinoma 

0.94 0.94 0.94 1000 

Overall Accuracy: 96% 

Macro Average: 0.96 (Precision, Recall, F1-Score) 

Weighted Average: 0.96 (Precision, Recall, F1-

Score) 

 

Confusion Matrix 

 
5.1 Confusion Matrix 

 

Interpretation 

1. Adenocarcinoma: 

o The model correctly classified 945 

adenocarcinoma images as 

adenocarcinoma. 

o 55 adenocarcinoma images were 

misclassified as squamous cell carcinoma. 

o This suggests that Inception V3 

occasionally confuses adenocarcinoma with 

squamous cell carcinoma, likely due to 

similarities in their visual features. 

2. Benign: 

o 997 benign images were correctly classified 

as benign. 

o Only 3 benign images were misclassified as 

adenocarcinoma. 

o The model showed exceptional performance 

in correctly identifying benign cases, with 

very few misclassifications. 

3. Squamous Cell Carcinoma: 

o The model correctly identified 937 

squamous cell carcinoma images. 

o 63 squamous cell carcinoma images were 

incorrectly classified as adenocarcinoma. 

o Similar to adenocarcinoma, the model faced 

some challenges distinguishing between 

squamous cell carcinoma and 

adenocarcinoma, leading to 

misclassification. 

 

Discussion: 

 The Inception V3 model performed very well 

overall, achieving 95.97% accuracy. However, 
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the confusion matrix reveals that there is some 

difficulty in distinguishing between 

adenocarcinoma and squamous cell carcinoma. 

These two classes showed higher 

misclassification rates compared to benign 

tumors, where the model exhibited perfect 

performance. 

 The model's ability to accurately classify benign 

tumors is particularly noteworthy, as there were 

only 3 misclassifications among 1,000 benign 

images. 

 The slight misclassification between 

adenocarcinoma and squamous cell carcinoma 

suggests that further refinement in model 

training, perhaps with additional data or more 

focused augmentation, could improve 

classification between these two types of cancer. 

 

ROC Curve 

 
5.2 ROC Curves 

 

The Receiver Operating Characteristic (ROC) curve 

was used to evaluate the model's ability to 

discriminate between the classes. The Area Under the 

Curve (AUC) for each class is as follows: 

 Adenocarcinoma: AUC = 0.99 

 Benign: AUC = 1.00 

 Squamous Cell Carcinoma: AUC = 0.99 

 

These results indicate that the model has a high 

discriminatory power for each class: 

 Benign: The model achieved a perfect AUC of 

1.00 for benign cases, indicating flawless 

distinction from other categories. 

 Adenocarcinoma and Squamous Cell 

Carcinoma: The AUC of 0.99 for both these 

classes demonstrates that the model can very 

effectively differentiate between malignant and 

normal cases with minimal overlap. 

 

Interpretation 

The ROC curves for each class show that the 

Inception V3 model has excellent classification 

ability: 

 An AUC of 1.00 for benign cases means the 

model has a perfect ability to distinguish 

between benign and non-benign cases. 

 The AUC of 0.99 for both adenocarcinoma and 

squamous cell carcinoma suggests that the 

model's performance in classifying these two 

similar categories is very strong, though there is 

still slight room for improvement. 

 

Overall, the Inception V3 model demonstrated strong 

discriminative power across all three classes, with 

very high AUC values, supporting its potential for 

clinical use in lung cancer detection. 

 

Average Precision (AP) 

 
5.3 Precision-Recall Curves 

 

The Average Precision (AP) for each class was 

computed to assess the model's precision-recall 

performance. The AP values for each class are as 

follows: 

 Adenocarcinoma: AP = 0.99 

 Benign: AP = 1.00 

 Squamous Cell Carcinoma: AP = 0.99 

These results indicate the model’s strong precision-

recall performance for each class: 

 Benign: The model achieved AP = 1.00 for 

benign cases, indicating perfect precision and 

recall for distinguishing benign cases from 

others. 

 Adenocarcinoma and Squamous Cell 

Carcinoma: Both classes had AP = 0.99, 

showing that the model performed exceptionally 

well at identifying malignant tumors with a high 

level of precision and recall. 
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Interpretation 

The AP values reflect the Inception V3 model's 

ability to accurately classify the three classes: 

 Benign: The perfect AP = 1.00 for benign cases 

indicates that the model correctly identifies 

benign tumors without any false positives or 

false negatives. 

 Adenocarcinoma and Squamous Cell 

Carcinoma: The AP of 0.99 for both cancer types 

demonstrates excellent performance in terms of 

balancing precision and recall, although slight 

misclassifications still occur in distinguishing 

between these two classes. 

 

Overall, the Inception V3 model demonstrated robust 

precision-recall performance, achieving near-perfect 

results across all classes, suggesting it is highly 

effective for detecting adenocarcinoma, benign, and 

squamous cell carcinoma tumors. 
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