
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177468 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2283

Testify - AI TestCrafter

Ms.S,Priyadharshini1, Dr.P.Sumathi2, R.Revathy3, V.Preethi4, S.Deepika5, K.Sanmugavadivel6
1Assisstant Professor, SNS College of Engineering

2Head of The Department, SNS College of Engineering
3,4,5,6Student, SNS College of Engineering

Abstract— Testify is an AI-powered technology that

improves the software testing process by analyzing website

screenshots and creating meaningful test cases. It detects

UI elements and user interactions using visual recognition,

followed by natural language processing to build test

scenarios that are relevant and workflow specific. This

significantly cuts down on manual testing time while

boosting accuracy and efficiency. With built-in data

protection measures and intuitive result displays, Testify

empowers QA teams across different industries to optimize

and accelerate their testing workflows.

Keywords: UI Screenshot Analysis, Test Scenario

Optimization, LLM for Software Testing, Visual AI.

I. INTRODUCTION

In the current fast-moving landscape of software

development, ensuring application quality and

reliability depends heavily on effective testing. Yet,

creating test scenarios manually can be a slow and

error-prone task, making it difficult to keep up with

frequent UI updates and the demands of continuous

deployment. To address these problems, there is an

increasing demand for intelligent testing solutions that

can automate test preparation while maintaining good

coverage and relevancy.

As development cycles shorten and user expectations

rise, automation in quality assurance (QA) has become

not just a convenience but a necessity. Reducing

human interaction in test case creation enables teams

to concentrate on strategic issues such as exploratory

testing and user experience enhancement. Testify

combines visual recognition and natural language

processing to interpret user interface layouts and

actions from uploaded screenshots.

It creates context-aware and prioritized test flows by

combining a visual analysis engine (such as the

Gemini API) and a language model (such as Mistral).

This allows QA engineers and developers to construct

better test strategies more quickly and with greater

confidence in their accuracy. By translating visual

input into actionable testing logic, Testify eliminates

the disconnect between UI design and functional test

creation. This seamless transition from picture to test

flow increases traceability, reduces redundancy, and

fits with business requirements.

Testify is designed to be flexible and can be used in a

variety of areas, including healthcare, manufacturing,

finance, and retail, making it a scalable solution for

current QA workflows. It helps cross-functional

teams, such as agile squads and DevOps settings, by

providing quick feedback and intelligent insights

throughout the software delivery process. By enabling

more efficient, accurate, and scalable test generation,

Testify is positioned as a forward-looking solution in

the evolving field of AI-assisted software testing.

II. LITERATURE SURVEY

A. Understandable Test Generation Through Capture/

Replay And Llms

Automatic unit test generators such as EvoSuite,

which utilizes Search-Based Software Testing

(SBST), can generate unit tests automatically using

automated specification techniques, but the tests they

produce are generally difficult to comprehend for the

developer. My work will contribute key insights into

enhancing the understandable nature and quality of

SBST-based generated test suites. I propose to utilize

Capture/Replay approaches to capture real-world

scenarios from end-to-end (E2E) tests that lead to

improved unit test generation that captures the

intention behind the test's scenario. Large Language

Models (LLMs) are also used to enhance the structure

and readability of unit test cases. The effort will

combine the E2E extracted scenarios with LLM

guidance to deliver more understandable tests with

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177468 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2284

superior coverage, and mock data generation for unit

tests. In test generation, natural language processing

(NLP) has been proven to assist in optimizing test

criteria with LLMs utilizing a broad array of identified

identifiers, subjective summaries, meaningful

comments to enhance readability. What we continue

to see is a trend of fine-tuning LLM-based models for

automated test generation. Coupling LLMs with SBST

techniques from my previous research will

presumably offer some combination of test quality and

understandability. This work will leverage a

combination of quantitative and qualitative user

evaluations to measure the quality of the generated

tests based on identifiable metrics.

B. A TEST CASE GENERATION APPROACH

BASED ON SEQUENCE DIAGRAM AND

AUTOMATA MODELS

An incremental model of test case generation through

ETDFA can be applied to improve test automation in

software engineering. ETDFA constructs a model of

the system under test based on sequence diagrams, and

their correctness is determined using a temporal logic

approach based on Propositional Projection Temporal

Logic for checking action sequences. To generate test

cases, the research proposes the synthesis of test cases

using predefined rules and a provided algorithm. The

work in test case generation provides improved

randomness of test and a practical solution for

generating test automated software. Effective testing

is important as software systems become more

complex and take longer to test. UML is historically

proven to be a broad modelling technique for object-

oriented software systems that has established multi-

system views (i.e., software systems can have multiple

models represented as diagrams). In the advent of this

growing complexity, testing is not only time-

consuming for developers, there is a growing interest

for researchers in exploring UML as a tool for

automating the testing process. However, researchers

have exclusively used UML statecharts (often related

one specific level of testing).

III. PLANNED SYSTEM ARCHITECTURE

Testify's architecture is built to automating optimized

prioritized test scenario generation using visual AI and

large language models. The architecture is made up of

a pipeline of intelligent modules that work in concert

together to generate meaningful test plans from

screenshots.

Fig 1 System Design

User Interface Layer: The user interface layer allows

the and individual images to be analyzed. This one part

of the system architecture has been developed as an

interface to the user to upload the ZIP containing

numerous screenshots, and to launch the test process.

Screenshot Extraction Engine: After the ZIP file is

uploaded, it will be extracted which includes

individual image files - this module will then analyze

each by verifying and formatting for processing

correctly into the analysis processing stage to produce

outputs that are consistent.

Visual Analysis Module (Gemini API): In this phase,

visual AI processing (e.g. Gemini API) is performed

on every screenshot for the purposes of classifying UI

components like buttons, forms, menus, layouts, etc.

This module also provides a reasonable mapping of

the possible user interaction flows driven by the

structure and behavior of the screen elements.

Insight Generation Layer: This layer transforms and

structures the information derived from the visual

analysis into summaries that describe the purpose of

the UI, the interaction paths, and the design intent.

This information is used to create intelligent test cases.

LLM-enabled Scenario Generator (Mistral AI): The

LLM generates context and prioritized test scenarios,

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177468 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2285

informed by the insights, with optimized coverage and

relevancy, and completely removes any manual test

planning effort.

Test Data Management System: The produced test

cases are securely maintained in a version-controlled

repository. This module organizes test data to provide

ease of access, permits grouping, and supports

traceability and reusability across the test cycles.

Result Visualization Engine: Finally, the generated

test scenarios are displayed to the user in a simple,

intuitive interface. The user can view the test cases in

tables, download reports, or integrate them with other

external tools like JIRA or TestRail.

IV. OUTCOMES AND SCREENSHOTS

The Testify solution was evaluated and tested using

multiple screenshots of web applications compressed

in a ZIP file. Upon uploading, the screenshots were

extracted and processed. The Gemini API was used to

detect UI components and interpret the layout. The

visual insights were forwarded to Mistral AI that

returned test scenarios that were in-depth, prioritized,

context-aware including functional paths, user

interaction, and edge cases. Each test case had a

priority associated with it so that the QA teams could

focus on the areas considered high risk first.

Fig 2 Home Page

Fig 3 Input Page

The test scenarios were displayed in a table format

within the application so that a user could view, edit,

or download an individual scenario in whatever way

they needed to (an aggregate file could be downloaded

at once). Testify also created versioning and

traceability for future test cycles. In all domains tested

(healthcare, e-commerce, and finance), we found that

the tool offered, on average, a 60% time saving on test

planning. Participants liked the chatbot assistant to

help them develop a testing course of action.

Fig 4 Uploaded Zip

Fig 5 Test Cases For Zip File

Fig 6 Input As URL

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177468 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2286

Fig 7 Test Cases For URL

Screenshots of the results page highlighted the concise

insights produced by each of the screens, the AI-

generated textual summaries, and the test cases. Its

worth noting that participant validation confirmed the

accuracy (correct) and readability of the test flows

generated by Testify. Overall, Testify provided greater

efficiency for QA, reduced the effort on manual work,

and enabled continuous testing in agile conditions.

V. CONCLUSION

Testify successfully generates tests scenarios from UI

screenshot using an AI-based visual analyses and

reasoning (using an LLM). It enables organizations to

check the functionality of their applications with less

manual efforts, while also giving better test coverage

and faster turnaround time. Testify, allows for

organizations to use interfaces like Gemini API,

Mistral AI to generate accurate and prioritized test

cases across several domains. Testify is built to work

with secure data and give users results that are easy to

understand. Testify has the opportunity to grow in the

future to a larger scale-use case, such as a real-time

monitoring of a UI or generating test plans with

additional languages or CI/CD integrations. Testify

may also provide types of advanced analytics or

predictive testing based on historic test cases, as well

as the opportunity for scalability across different

platforms and mobile apps.

REFERENCES

[1] J. Li, "Automated Test Case Generation Based on

Natural Language Requirements Using NLP

Techniques," IEEE Access, vol. 9, pp. 122345-

122359, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9502345

[2] A. Kumar, "AI-Powered Software Testing: A

Review of Intelligent Approaches and Tools,"

IEEE Transactions on Software Engineering, vol.

48, no. 2, pp. 610-623, Feb. 2022. [Online].

Available:

https://ieeexplore.ieee.org/document/9012342

[3] M. Zhao, "Deep Learning Based Framework for

Automatic Test Case Generation from User

Stories," Proceedings of the 2021 IEEE

International Conference on Software Testing,

Verification and Validation (ICST), pp. 15-24,

2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9356212

[4] S. Chen, "SmartTest: Automated Test Scenario

Generation Using GPT Models," 2023 IEEE

Symposium on Artificial Intelligence for Software

Engineering, pp. 33-40, 2023. [Online]. Available:

https://ieeexplore.ieee.org/document/10203102

[5] R. Thompson, "Bridging Requirements and Testing

with NLP-based Scenario Generation," IEEE

Transactions on Requirements Engineering, vol.

30, no. 3, pp. 415-427, 2023. [Online]. Available:

https://ieeexplore.ieee.org/document/9900123

[6] L. Tan, "Using Machine Learning to Generate Test

Inputs Automatically," IEEE Software, vol. 38, no.

5, pp. 25-31, Sept. 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/8741234

[7] F. Ahmed, "Survey of Automated Software Testing

Techniques in Agile Development," 2020 IEEE

International Conference on Software Quality,

Reliability and Security, pp. 212–218, 2020.

[Online]. Available:

https://ieeexplore.ieee.org/document/9234021

[8] K. Rao, "Automation in Software Testing Using

NLP and ML Algorithms," IEEE Access, vol. 10,

pp. 45222–45234, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9725811

https://ieeexplore.ieee.org/document/9502345
https://ieeexplore.ieee.org/document/9012342
https://ieeexplore.ieee.org/document/9356212
https://ieeexplore.ieee.org/document/10203102
https://ieeexplore.ieee.org/document/9900123
https://ieeexplore.ieee.org/document/8741234
https://ieeexplore.ieee.org/document/9234021
https://ieeexplore.ieee.org/document/9725811

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177468 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2287

[9] P. Srivastava, "Intelligent Test Automation Using

Deep NLP: Converting Requirements into

Executable Scenarios," IEEE Transactions on AI

in QA, vol. 4, no. 1, pp. 55-67, Jan. 2023. [Online].

Available:

https://ieeexplore.ieee.org/document/9987632

[10] M. Green, "Automating Behavior-Driven

Development with AI-Based Scenario

Generators," 2021 IEEE International

Conference on DevOps and Software Process

Automation, pp. 80-88, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9453167

https://ieeexplore.ieee.org/document/9987632
https://ieeexplore.ieee.org/document/9453167

