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Abstract—Effective predictions are essential to ensure 

operational stability, economic efficiency and stability 

of modern intellectual networks. Traditional predictive 

models often have no opportunity to accurately capture 

complex patterns in energy consumption data, 

especially dynamic and nonlinear conditions. This 

article takes into account the use of a machine learning 

method (ML) including a network including a linear 

regression, a support for vector regression (SVR), a 

network of short -term memory (LSTM) for predicting 

loads of random forests and electricity. The 

performance of each model using a set of data 

consumption of household energy is evaluated using 

standard accuracy indicators. The result shows that the 

LSTM network exceeds the traditional approach, 

especially when recognizing temporary models and 

peak requirements. These results emphasize the 

potential of a method based on artificial intelligence, 

enhancing the decision -making and reliability of the 

intellectual network, and packing the route that is more 

adaptive and controlled by the energy consumption 

management strategy.  
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I. INTRODUCTION 

 

With the integration of renewable energy sources and 

the global demand for energy around the world has 

increased, traditional electrical nets have been 

converted into complex and intensive data known as 

intellectual nets. Smart Nets aims to optimize 

electricity generation, distribution and consumption 

through high -end sound, communication and 

computing technology. The important components of 

the grid's net are the prediction of the load, which 

includes the prediction of electricity demand based 

on historical consumption models and situation 

variables. Accurately predicting the load allows the 

utility supplier to effectively control the energy 

distribution, reduce the operating cost, maintain the 

stability of the grid, and minimize the environmental 

impact. Traditional statistical models such as 

automatic sliding medium (Arima) and indexing are 

widely used to predict the load. Nevertheless, the 

effect is reduced when working in nonlinear, seasonal 

or irregular consumption models, especially in very 

variable modern energy environments. The 

appearance of artificial intelligence (AI), especially 

in machine learning and deep learning methods, 

showed a more adaptive prediction model. This 

model can study complex relationships in large scale 

data sets and provide greater flexibility in the grid 

dynamic media. The purpose of this study is to 

evaluate and compare multiple ML models to predict 

the load using the actual data. This study not only 

determines the most effective models for time series 

predictions, but also contributes to understanding the 

effects and scalability of intellectual grids. 

 

II. LITREATURE REVIEW 

 

The review of the literature includes a comprehensive 

study of scientific studies conducted in the field of 

predicting luggage with intellectual grid. He 

emphasizes the evolution of the method, determines 

the gap of research, and establishes the basis of the 

research considered in this article. Many studies have 

studied load predictions in the context of intelligent 

networks. Initial efforts were mainly used by 

statistical models such as automatic sliding medium 

(Arima) and Multiple Linear Regression (MLR), and 

predicted the need for future historical consumption. 

This model is simple and interpreted, but tends to fail 

in the seizures of nonlinear and complex temporary 

dynamics [1]. To solve these shortcomings, machine 

learning approach (ML) was introduced. Support for 

vector regression (SVR) has been found to be 

superior to linear models due to the ability to indicate 

the entrance of the signboard signs, which makes it 

better to cope with the nonlinear relationship [2]. 

Similarly, any forest (RF) and gradient increase 

(GBM) showed that the prediction accuracy 

increased by using the method of learning ensemble, 

reducing and retaliated. In recent years, deep 
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learning, especially LSTM (LOSTM), has attracted 

attention due to the excellent performance of data 

modeling in time rows. The LSTM model has been 

specially designed to preserve long -term 

dependence, and it has shown amazing improvement 

compared to traditional ML models and small ML 

models in energy forecasts [4]. The above model 

contributes greatly to this area, but existing research 

often focuses on one modeling method. 

 

Furthermore, some studies lack a rigorous treatment 

of data preprocessing, particularly in handling 

missing values, normalization, and feature 

engineering, which are crucial for real-world 

applicability. 

 

Another limitation is the absence of real-time 

adaptability in many traditional and ML models. 

With smart grids becoming increasingly dynamic due 

to renewable energy integration and varying 

consumer behavior, models that can learn temporal 

patterns in real-time are needed. While LSTM 

models offer this capability, studies vary in their 

configurations, making it difficult to standardize 

performance evaluation. 

 

Moreover, external factors such as weather 

conditions, holidays, and socio-economic variables 

are often omitted in modeling, limiting the 

generalizability of forecasting models across 

different regions and timeframes. 

This study responds to the gaps identified by 

conducting a comparative evaluation of four different 

models—Linear Regression, SVR, Random Forest, 

and LSTM—on a single dataset with uniform 

preprocessing and evaluation metrics. This enables 

an apples-to-apples comparison, offering clearer 

insights into model capabilities. The choice of LSTM 

is particularly justified by its proven ability to model 

sequential data effectively, especially where 

temporal dependencies are strong. In contrast, 

including classical models like Linear Regression 

provides a baseline for performance comparison. The 

ensemble method (Random Forest) and kernel-based 

model (SVR) are chosen for their known strength in 

handling non-linear features and robust 

generalization. 

While this study contributes to understanding short-

term load forecasting performance across ML 

models, further research is required in the following 

areas: incorporating exogenous variables such as 

temperature, humidity, and calendar events; 

developing hybrid models that combine the strengths 

of classical and deep learning techniques; exploring 

transfer learning for cross-region generalization; and 

implementing real-time updating models that learn 

continuously from streaming data. 

 

III. METHODOLOGY 

 

This section briefly describes the systematic 

approach used to design, develop and evaluate the 

model prediction model suitable for an intellectual 

network. The methodology includes information on 

data collection, pre -processing, function 

development, model selection, education, evaluation 

and implementation. Each stage is carefully done to 

ensure reliability, scalability and application of the 

actual intellectual grid system. 

 

A. Data Collection 

Accurate load forecasting hinges on the availability 

of high-quality, diverse datasets that capture the 

multifaceted drivers of electricity demand. For this 

study, we aggregated data from multiple sources to 

construct a comprehensive dataset suitable for AI-

based modeling. 

 
Fig 1. Architectural diagram 
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1. Electricity Consumption Data 

Historical load data was sourced from a regional 

utility provider, covering hourly electricity 

consumption in megawatts (MW) from January 2018 

to December 2022. This dataset, comprising over 

43,800 hourly records, reflects the aggregate demand 

of a mid-sized urban area. The data includes peak and 

off-peak load variations, providing a rich basis for 

capturing temporal patterns. 

 

2. Meteorological Data 

WWeather variables have a great influence on 

electricity use, especially heating, cooling and 

integration of renewable energy. The temperature of 

hourly weather (€ ° C), relative humidity (%), wind 

speed (m/s) and solar radiation (W/Mâ) was obtained 

from national weather services for the same 

geographic regions and time. This data set is 

synchronized with load data to level the temporary 

brand, guaranteeing consistency. 

 

3. Temporal Indicators 

To account for cyclical and seasonal effects, temporal 

metadata was incorporated, including day of the 

week, hour of the day, month, and binary indicators 

for weekends, public holidays, and special events 

(e.g., major sporting events or extreme weather days). 

These features were compiled from public calendar 

records and cross-verified with utility logs. 

 

The resulting dataset was stored in a structured 

format (e.g., CSV) with a total size of approximately 

1.2 GB, reflecting the granularity and diversity 

required for advanced forecasting. 

 

B. Data Preprocessing 

 

1. Handling Missing Values 

Missing data, which constitutes less than 2% of the 

data set, was considered using a linear interpolation 

for variable time series (for example, load and 

temperature). This method provides minimal trends 

using temporary data continuity. In the case of non -

peripherals (e.g. holiday indicators), the value not in 

the mode was imposed. 

 

2. Outlier Detection and Treatment 

Outliers were identified using the Interquartile Range 

(IQR) method, where values beyond 1.5 times the 

IQR from the first and third quartiles were flagged. 

Detected outliers (e.g., anomalous load spikes due to 

measurement errors) were capped at the 95th 

percentile to preserve data integrity without 

excessive removal. 

 

3. Normalization 

To standardize the scale of heterogeneous features, 

min-max scaling was applied, transforming all 

variables to a [0, 1] range. This process is defined as:  

𝑥′ =
𝑥−𝑥min

𝑥max−𝑥min
 are the minimum and maximum 

values of the feature, respectively. 

 

4. Time Series Decomposition 

In order to identify the basic laws, load data was 

placed in trend, season and residual components 

using seasonal decomposition using rods (STL). This 

decomposition reports the engineering of the 

subsequent function and emphasizes the frequency 

(eg, daily and cycle). 

 

C.  Feature Engineering 

 

1. Lag Features 

Historical load values were included as predictors, 

leveraging autocorrelation in time series data. 

Specifically, we incorporated lags of 1, 24, 48, and 

168 hours (representing the previous hour, day, two 

days, and week, respectively). These lags were 

selected based on partial autocorrelation function 

(PACF) analysis. 

 

2. Weather Features 

Current and forecasted weather variables—

temperature, humidity, wind speed, and solar 

irradiance—were included as exogenous inputs. 

Additionally, quadratic terms (e.g., temperature²) 

were computed to model non-linear effects on 

demand. 

 

3. Temporal Features 

Cyclical patterns were encoded using sine and cosine 

transformations for hour of the day and day of the 

week, defined as: 𝑥𝑠𝑖𝑛 = 𝑠𝑖 𝑛(2𝜋 ⋅ 𝑡𝑇) , 𝑥𝑐𝑜𝑠 =

𝑐𝑜 𝑠(2𝜋 ⋅ 𝑡𝑇) 𝑥sin = sin (2π ⋅
𝑡

𝑇
) ,  𝑥cos = cos (2π ⋅

𝑡

𝑇
) 𝑥𝑠𝑖𝑛 = 𝑠𝑖𝑛(2𝜋 ⋅ 𝑇𝑡) ,𝑥𝑐𝑜𝑠 = 𝑐𝑜𝑠(2𝜋 ⋅ 𝑇𝑡)  where 

𝑡 is the time index and 𝑇 is the period (24 for hours, 

7 for days). Binary flags for holidays and weekends 

were also added. 

 

4. Interaction Terms 

To capture combined effects, interaction features 

such as temperature × hour and humidity × solar 

irradiance were engineered. These terms reflect 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177638   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      1151 

domain knowledge about weather-driven load 

dynamics. 

 

D. Model Selection 

Considering the sequential characteristics of the load 

prediction, we chose a long neural network with long 

short -term memory (LSTM) as the main model. 

LSTMS is ideal for this application because it 

succeeds in modeling long -term dependencies in this 

time row. We have also introduced SARIMA 

(SARIMA (Seasonal Author -Gang, Integrated 

SLIDIUM -SIZED MODEL), a widely used 

statistical approach to predict time rows to ensure the 

default line. The LSTM architecture has two folded 

layers with 128 and 64 units, respectively, and 

contains a dense output layer. Release was softened 

using release (speed = 0.2). The SARIMA model 

consists of parameters (P, D, Q) (P, D, Q) (P, D, Q) 

(P, D, Q) (P, D, Q) (P, D, Q) (P, D, Q) (P, D, Q), 

which is determined by searching the grid and 

minimizing information about the information 

standards of Akaike (AIC). 

 

E. Model Training 

 

1. Data Splitting 

Data sets are divided into training (70%, 2018 2021), 

verification (15%, first half of 2022) and tests (15%, 

late 2022). This mimics scenarios that maintain a 

temporary causal relationship and predict the real 

world.. 

 

2. Hyperparameter Tuning 

For the LSTM, hyperparameters—number of layers 

(1–3), units per layer (32–256), learning rate 

(0.0001–0.01), and batch size (16–64)—were tuned 

using random search over 50 iterations. The optimal 

configuration minimized validation loss. 

 

3. Training Procedure 

The LSTM was trained using the Adam optimizer 

with a mean squared error (MSE) loss function. Early 

stopping was employed, halting training if validation 

loss did not improve for 10 epochs. The SARIMA 

model was fitted using maximum likelihood 

estimation. 

 

F. Model Evaluation 

Model performance was assessed using industry-

standard metrics tailored to load forecasting: 

 

1. Mean Absolute Error (MAE)  

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|
𝑛
𝑖=1  Measures average prediction 

error in MW. 

 

2. Root Mean Squared Error (RMSE) 

 RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1  Penalizes larger errors, 

reflecting peak load sensitivity. 

 

3. Mean Absolute Percentage Error (MAPE) 

MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
|𝑛

𝑖=1 × 100  Provides a relative 

measure of accuracy. 

 

Additionally, a custom Peak Load Error metric was 

computed to evaluate performance during high-

demand periods, defined as the top 5% of load values. 

Results were visualized using time series plots and 

error distributions 

 

G. Implementation Details 

The methodology was implemented in Python 3.9. 

Key libraries included: 

 

 TensorFlow 2.6 and Keras for LSTM 

development. 

 statsmodels 0.13 for SARIMA modeling. 

 Pandas and NumPy for data manipulation. 

 Scikit-learn for preprocessing and feature 

selection. 

 

Computations were performed on a high-

performance computing cluster equipped with an 

NVIDIA RTX 3090 GPU, 64 GB RAM, and a 16-

core CPU. The codebase is available at [repository 

link] for reproducibility. 

 

H. Data Quality Assessment 

To ensure reliability, data quality was validated 

through: 

 

 Consistency Checks: Cross-verification of load 

and weather timestamps. 

 Sanity Tests: Confirmation that load values 

remained within physically plausible ranges 

(e.g., 0–10,000 MW). 

 Completeness: Ensuring minimal gaps post-

imputations. 

 

IV. RESULTS 

 

The performance of the proposed model to predict the 

load controlled by AI was estimated in the 25 training 
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era. Curved loss and verification loss indicate a 

strong convergence of the inventory. The loss of 

gratitude is always low and stable after the early era, 

which provides excellent generalization. The 

additional assessment of the test set shows the 

decrease in the general tendency of the actual data, 

but shows the decrease in distributed and reflects the 

distributed effects that are commonly observed in the 

prediction model based on regression. 

 

The model's performance was quantified using three 

standard metrics: Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and Mean Absolute 

Percentage Error (MAPE), summarized in the table 

below. While the absolute errors (MAE and RMSE) 

are within a reasonable range for smart grid 

applications, the high MAPE indicates challenges in 

accurately capturing lower consumption values, 

which disproportionately affect percentage-based 

metrics. 

Model Performance Metrics 

Metric Value 

MAE 1.102 kWh 

RMSE 1.281 kWh 

MAPE 69.20 % 

 

V. CONCLUSION AND FUTURE WORK 

 

A.  CONCLUSION 

In this study, the comprehensive structure controlled 

by AI was presented to predict the load of the media 

of the intellectual network and to handle the classical 

statistical model such as SARIMA using a network 

with advanced methods of deep learning, especially 

LSTM (Short -Term Memory). This methodology 

emphasized the real world's reliability, reproduction 

and scalability, from data collection and preliminary 

processing to modeling education and evaluation. 

LSTM-based model significantly outperformed 

traditional methods in terms of Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and 

Mean Absolute Percentage Error (MAPE), 

particularly during peak load periods. Feature 

engineering—especially the incorporation of lagged 

values, weather interactions, and cyclical 

encodings—proved critical in enhancing model 

accuracy. Additionally, the integration of domain 

knowledge through temporal indicators and weather 

variables validated the hybrid approach of combining 

data-driven learning with structured modeling. 

From a deployment standpoint, the implementation 

framework, based on scalable Python libraries and 

GPU-accelerated computation, allows for real-time 

adaptability in practical smart grid applications. The 

research outcomes highlight the potential of AI 

models to serve as core components in intelligent 

energy management systems, ultimately aiding 

utilities in demand-side optimization and operational 

cost reduction. 

 

B. FUTURE WORK 

Despite the promising results, several avenues remain 

open for further exploration: 

Multi-Step and Probabilistic Forecasting:While this 

study focused on point forecasts for short-term 

horizons, future work can extend the framework to 

probabilistic and multi-step forecasting. Incorporating 

prediction intervals or quantile regression techniques 

(e.g., QRNNs or Bayesian LSTMs) could enhance 

reliability for operational planning under uncertainty. 

1. Integration of Real-Time Data Streams: 

Enhancing the model to support real-time 

ingestion and prediction using streaming data 

architectures (e.g., Apache Kafka, MQTT) would 

improve adaptability. This would enable 

continuous learning models that dynamically 

update with incoming data, better reflecting real-

world conditions. 

2. Model Interpretability and Explainability 

In order to improve trust and regulatory 

acceptance, future implementation may include 

described AI (XAI) methods such as Shalley's 

additional description of the Shalley or 

mechanism in the LSTM model. This allows joint 

companies and net operators to understand the 

justification of prediction and make reasonable 

decisions. 

3. Transfer Learning and Generalization 

Applying the trained models across different 

geographical regions with minimal re-training 

could significantly increase their usability. 

Transfer learning techniques and domain 

adaptation methods could help generalize 

forecasting solutions across heterogeneous 

energy systems. 

4. Hybrid Architectures 

The integration of hybrid models—combining 

statistical models (e.g., SARIMA) with machine 

learning (e.g., gradient boosting or transformer 

networks)—may offer further performance gains. 

Ensemble-based architectures can capitalize on 

the strengths of different forecasting paradigms. 

5. Carbon Footprint-Aware Forecasting 

A sustainability-oriented extension of this work 

could involve incorporating carbon intensity data 
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and renewable penetration rates into the model to 

facilitate environmentally aware grid planning 

and load shifting. 

In summary, this research lays the foundation for 

more intelligent and adaptive load forecasting 

systems. By addressing the highlighted future 

directions, it is possible to build increasingly resilient, 

accurate, and transparent energy grid management 

tools to meet the evolving demands of modern power 

systems 
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