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Abstract—Early detection and classification of skin 

cancer are important for effective treatment and 

improved patient outcomes. This paper presents a 

novel approach to automated skin cancer classification 

using a Swin Transformer architecture enhanced with 

supervised contrastive learning. We address the 

challenges of class imbalance in skin lesion datasets 

through weighted random sampling and implement a 

multi-component loss function combining focal loss, 

label smoothing, and super- vised contrastive learning. 

Using the ISIC (International Skin Imaging 

Collaboration) dataset containing nine classes of skin 

lesions, our model achieves robust generalization with 

significant improvement in classification accuracy. 

The implementation of exponential moving average 

(EMA) and advanced augmentation techniques 

further enhances model stability. Our experimental 

results demonstrate the effectiveness of the proposed 

approach compared to conventional convolutional 

neural network methods, offering promising potential 

for clinical application in dermatological diagnosis. 

 

Index Terms—Skin Cancer, Image Processing, 

Transformer, Contrastive Learning 

 

I. INTRODUCTION 

 

Skin cancer is one of the most common forms 

of cancer worldwide, with increasing incidence 

rates over recent decades. Timely and precise 

diagnosis greatly enhances   treatment results and 

increases survival rates. However, visual diagnosis 

of skin lesions remains challenging due to the subtle 

morphological differences between benign and 

malignant lesions, as well as the wide variety of 

presentation across different skin types and lesion 

stages. Deep learning methods have demonstrated 

significant advancements in the analysis of medical 

images, particularly in dermatology-related visuals. 

Convolutional Neural Networks (CNNs) have 

traditionally been the architecture of choice for such 

tasks. However, recent advancements in vision 

transformers have demonstrated superior 

performance in capturing long-range dependencies 

and hierarchical representations in images, making 

them promising candidates for fine-grained 

classification tasks like skin lesion identification. 

Despite these advances, several challenges persist in 

automated skin cancer classification: 1. Significant 

class imbalance in available datasets, with common 

conditions over represented and rarer malignancies 

underrepresented 2. High intraclass variation and 

inter-class similarity 3. Limited availability of high-

quality labeled data 4. Need for interpretable 

models to gain clinical trust This research addresses 

these challenges by introducing a novel approach 

that combines the hierarchical representation 

capabilities of the Swin Transformer architecture 

with supervised contrastive learning to improve 

feature discrimination between similar-looking skin 

conditions. Our approach specifically targets the 

class imbalance problem through weighted sampling 

techniques and employs a combination of loss 

functions to enhance model robustness. The main 

contributions of this work are: 

1) A modified Swin Transformer architecture with 

a dedicated projection head optimized for skin 

lesion classification 

2) A multi-component training objective that 

combines classification and contrastive 

learning 

3) A successful approach to tackle class 

imbalance in dermatology datasets. 

Comprehensive evaluation on the ISIC dataset 

demonstrating competitive performance The 

remainder of this paper is organized as follows: 

Section 2 reviews related work in skin cancer 

classification and recent advances in vision 

transformers and contrastive learning. Section 3 

details our methodology, including dataset 

preprocessing, model architecture, and training 

strategy. Section 4 presents our experimental 

setup and results. Section 5 discusses the 

implications and limitations of our approach, 
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and Section 6 concludes with potential 

directions for future work. 

 

II. RELATED WORK 

 

A. Automated Skin Lesion Classification 

Computer-aided diagnosis systems for skin cancer 

have evolved significantly over the past decade. 

Traditional         approaches relied on handcrafted 

features based on the ABCDE criteria (Asymmetry, 

Border irregularity, Color variegation, Diameter, 

and Evolution) used by dermatologists. These 

methods, while interpretable, often failed to 

capture the complex patterns present in skin 

lesions. The advent of deep learning techniques 

revolutionized this field. Esteva et al. 

[1]demonstrated for the first time that CNNs could 

achieve dermatologist-level performance in 

classifying skin cancers using a GoogleNet 

Inception v3 architecture pretrained on  ImageNet. 

Subsequently, various architectures including 

ResNet 

[2] DenseNet [3], and EfficientNet [4] have been 

applied to this task with increasing levels of 

accuracy. Recent work has focused on addressing 

the challenges specific to     dermatological image 

analysis. Gessert et al. [5] proposed ensemble 

methods to improve robustness, while 

Combaliaetal. [6] explored the use of metadata and 

clinical information in conjunction with image data. 

Attention mechanisms have also been incorporated 

to focus on relevant regions of lesions, as 

demonstrated by Liu et al. [7]. 

 

B. Vision Transformers in Medical Imaging 

Transformer architectures, initially developed for 

natural language processing tasks, have recently 

been adapted for computer vision applications. The 

Vision Transformer (ViT) 

[8] demonstrated that a pure transformer 

architecture could achieve competitive results on 

image classification tasks. This was followed by 

numerous variants designed to address the 

limitations of the original ViT, including the Swin 

Trans- former [9], which introduces hierarchical 

feature      representations through shifted windows, 

making it more suitable for dense prediction tasks 

and fine-grained classification. In the field of 

medical imaging, transformers have demonstrated 

encouraging outcomes across different modalities. 

Hatamizadeh et al. [10] proposed UNETR, a 

transformer-based architecture for 3D medical 

image segmentation. For skin lesion analysis, 

Matsoukas et al. [11] demonstrated that ViT models 

can outperform CNNs when properly adapted to 

dermatological images. The hierarchical nature of 

Swin Transformers makes them particularly suitable 

for capturing both local details (important for 

texture and border patterns) and global con- text 

(important for overall lesion morphology) in skin 

lesion images. 

 

C. Contrastive Learning and Class Imbalance 

Contrastive learning has emerged as a powerful 

paradigm for representation learning, particularly in 

scenarios with    limited labeled data. Originally 

developed for self-supervised learning, techniques 

like SimCLR [12] and MoCo [13] learn 

representations by contrasting positive pairs against 

negative pairs. Khosla et al. [14] extended this 

concept to the super- vised setting, showing that 

incorporating label information into contrastive 

learning can lead to more discriminative 

representations. The problem of class imbalance is 

particularly pronounced in medical imaging 

datasets, including skin lesion collections, where 

benign conditions often vastly outnumber malignant 

cases. Various techniques have been proposed to 

address this issue, including resampling methods 

[15], loss function modifications such as focal loss 

[16], and data augmentation strategies. More 

recently, Cui et al. [17] proposed a class-balanced 

loss that takes into account the effective number of 

samples, while Lin et al. [18] proposed feature- 

level reweighting through meta-learning. Our work 

builds upon these advances by combining the 

architectural strengths of Swin Transformers with 

supervised contrastive learning while explicitly 

addressing class imbalance through weighted 

sampling and specialized loss functions. 

 

III. METHODOLOGY 

 

A. Dataset and Preprocessing 

This study utilizes the International Skin Imaging 

Collaboration (ISIC) dataset, which contains 

dermatoscopic images across nine different 

categories of skin lesions, including both benign 

and malignant conditions. The dataset presents a 

natural class imbalance that reflects the relative 

prevalence of different skin conditions. Figure 1 

shows the data samples form our dataset used. 

Figure 2 shows the data distribution can be found in 

the dataset according to each classes. 
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1) Data Augmentation: To improve model 

generalization and address the limited sample 

size, we implement a    comprehensive data 

augmentation strategy. For the training set, we 

apply: 

• Random resized cropping (224×224 pixels) 

with scale variations (0.8-1.0) 

• Random horizontal flipping 

• Color jittering (brightness, contrast, 

saturation, and hue adjustments) 

• Random rotation (up to 10 degrees) 

• Random affine transformations with translation 

These augmentations help the model learn 

invariance to common variations in dermatoscopic 

images, such as      orientation, positioning, and 

lighting conditions. For the validation set, we apply 

only resizing to 224×224 pixels to maintain 

consistent evaluation. 

2) Normalization: All images are normalized 

using mean and standard deviation values of 

[0.5, 0.5, 0.5] across all three RGB channels. 

This normalization strategy centers the pixel 

values around zero with a standard deviation of 

one, which facilitates model training. 

B. Model Architecture 

1) Swin Transformer: Our model uses the Swin 

Trans- former Base (Swin-B) architecture as 

the backbone feature extractor. The Swin 

Transformer introduces several key   

innovations that make it suitable for skin lesion 

classification: 

• Hierarchical feature representation through a 

pyramid structure 

• Local attention within shifted windows, 

enabling efficient modeling of both local 

features and global context 

• Relative position encoding that improves 

generalization to different image resolutions 

We initialize the Swin-B backbone with weights 

pretrained on ImageNet-1K, leveraging transfer 

learning to improve   performance on our relatively 

smaller medical dataset. 

2) Projection Head: We extend the standard Swin 

Transformer architecture with a projection head 

designed specifically for contrastive learning. 

The projection head consists of: 

• Layer normalization to stabilize training 

• Linear projection to 512 dimensions 

• GELU activation function 

 

 
Fig. 1. Sample images from each class. 
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Fig. 2. Data Distribution in each class. 

 

• Dropout (0.3) for regularization 

• Final linear projection to 128-dimensional 

embedding space 

• Layer normalization to produce the final 

embeddings  

 

Figure 3 and 4 shows visualizes the embeddings 

of the images. This projection head transforms the 

1024-dimensional features from the Swin backbone 

into a 128-dimensional space where contrastive 

learning is performed. The classifier branch, 

operating directly on the 1024-dimensional features, 

consists of a single linear layer that produces logits 

for the nine skin lesion classes. 

 
Fig. 3. Projection embeddings of the images after 

training. 

 

C. Loss Functions 

Our training objective combines three 

complementary loss components: 

1) Label Smoothing Loss: Label smoothing 

prevents the model from becoming overconfident 

in its predictions by 

 
Fig. 4. Visualization of Image Projections 

 

distributing a small portion of probability mass 

across all classes: 

 
where y′ = (1 − α)yi + α/C is the smoothed 

label, yi is the original one-hot label, pi is the 

predicted probability for class i, C is the number 

of classes, and α is the smoothing parameter (set 

to 0.1 in our implementation). 

2) Contrastive Loss: The supervised 

contrastive loss encourages the model to learn 

feature representations where samples from the 

same class are close together and samples from 

different classes are far apart: 

 
where zi is the normalized projection of the i-th 

sample, P (i) is the set of indices of samples with the 

same label as i, A(i) is the set of all indices except i, 

and τ is a temperature parameter (set to 0.5). 

3) Focal Loss: While not used in the final 

training   configuration, we implement focal loss to 

address class imbalance by down-weighting well-

classified examples: 

LF L = −α(1 − pt)γ log(pt) 

where pt is the model’s predicted probability for the 

true class, 

α is a balancing parameter, and γ is the focusing 

parameter. 

4) Combined Loss: Our final training 

objective is a weighted combination of the label 

smoothing loss and super- vised contrastive loss: 
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L = LLS + λLSCL 

where λ is set to 0.01 to balance the two 

components. 

 

D. Training Strategy 

1) Class Imbalance Handling: To address the 

class im- balance in the ISIC dataset, we implement 

weighted random sampling during training. The 

sampling weights are inversely proportional to the 

class frequencies: 

 
where fc is the frequency of class c in the training 

set. This ensures that each class is represented with 

equal probability during training, preventing the 

model from being biased to- ward majority classes. 

2) Optimization: We train the model using 

the AdamW optimizer with a weight decay of 1e-4 

to prevent overfitting. The learning rate is managed 

through the One Cycle LR scheduler, which 

implements a single cycle of cosine annealing 

with a maximum learning rate of 3e-4. This 

scheduling strategy helps the model converge faster 

and often achieves better generalization. 

3) Exponential Moving Average: To improve 

the stability of the model, especially during 

evaluation, we implement an Exponential Moving 

Average (EMA) of model parameters with a decay 

rate of 0.999. The EMA maintains a moving 

average of the model weights and is used during 

evaluation, which typically results in better 

generalization performance. 

4) Mixed Precision Training: To accelerate 

training and reduce memory consumption, we 

employ mixed precision training using PyTorch’s 

automatic mixed precision (AMP) feature. This 

allows the model to perform certain operations in 

half-precision (FP16) while maintaining master 

weights in single precision (FP32), significantly 

speeding up training without sacrificing accuracy. 

The complete architecture is illustrated in Figure 5. 

 
Fig. 5. Architecture of the proposed model 

showing the Swin Transformer backbone, 

projection head, and classifier 

IV. EXPERIMENTS AND RESULTS 

 

A. Experimental Setup 

1) Dataset Split: The ISIC dataset was divided 

into training and testing sets according to the 

official split provided by the challenge 

organizers. The training set was further divided 

into training and validation sets using an 85/15 

split, ensuring that the class distribution was 

maintained. 

2) Implementation Details: The model was 

implemented using PyTorch and trained on an 

NVIDIA GPU with CUDA support. Training 

was conducted for 50 epochs with a batch size 

of 16. The best model was selected based on 

validation accuracy. 

3) Evaluation Metrics: We evaluate our model 

using the following metrics: 

• Accuracy: Overall percentage of correctly 

classified  samples 

• Per-class precision, recall, and F1-score 

• Confusion matrix to analyze error patterns 

 

V. RESULTS 

 

1) Classification Performance: Our model 

achieves a     validation accuracy of 73 percent and 

96 percent on the ISIC dataset, demonstrating 

strong performance across all nine classes. Table I 

shows the detailed per-class metrics. 

Class Precision Reca

ll 

F1-

Score 

Suppo

rt 

Actinic 

Keratosis 

1.00 0.56 0.72 16 

Basal Cell 

Carcinoma 

0.65 0.94 0.77 16 

Dermatofib

roma 

1.00 0.44 0.61 16 

Melanoma 0.12 0.06 0.08 16 

Nevus 0.42 1.00 0.59 16 

Pigmented 

Benign 

Keratosis 

0.81 0.81 0.81 16 

Seborrheic 

Keratosis 

0.00 0.00 0.00 3 

Squamous 

Cell 

Carcinoma 

0.83 0.62 0.71 16 

Vascular 

Lesion 

0.60 1.00 0.75 3 

Accuracy  0.63  118 

Macro Avg 0.60 0.60 0.56 118 

Weighted 

Avg 

0.67 0.63 0.60 118 
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TABLE I: CLASSIFICATION REPORT FOR SKIN 

LESION CLASSES. 

 

Figure 6 visualizes the accuracy achieved over 

epochs where training accuracy achieved 96 and 

validation accuracy touches 73 percent. Figure 7 

visualizes the loss over epochs where 

 
Fig. 6. Accuracy over epochs 

training and validation loss decreases gradually. 

The confusion matrix 8reveals that the most 

common misclassifications occur between visually 

similar lesion types, such as [specific 

 
Fig. 7. Accuracy over epochs 

examples based on actual results]. The complete 

architecture is illustrated in Figure 1. Figure 9 

visualizes the accuracy 

 

Fig. 8. Confusion matrix showing classification 

performance across all nine classes achieved over 

epochs where according to each classes. 

 

2) Comparison with State-of-the-Art: We 

compare our   approach with several state-of-the-art 

methods for skin lesion classification on the ISIC 

dataset. As shown in Table 3, our method 

achieves competitive performance across all   

metrics and several benchmark architectures, 

namely ResNet18, DenseNet, and MobileNetV2. 

The proposed model achieved a training accuracy 

of 96% and a validation accuracy of 73%, 

thereby surpassing the state-of-the-art baselines in 

both training and validation phases. Although 

EfficientNet-B0 and ResNet18 demonstrated strong 

performance, with validation accuracies of 71% and 

70% respectively, they lagged behind the proposed 

model. MobileNetV2 recorded a comparatively 

 
Fig. 9. Accuracy over epochs 

lower validation accuracy of 68%. These results 

highlight the superior generalization capability of 

the proposed approach, which can be attributed to 

its improved feature learning capacity and tailored 

optimization process. The findings      underscore 

the robustness and efficiency of the proposed model 

in comparison to traditional architectures in the 

domain. 

Model Training Accu- 

racy (%) 

Validation 

Accuracy (%) 

ResNet18 94 70 

DenseNet 95 71 

MobileNetV2 92 68 

Proposed Model 96 73 

(Swin  +  Con-  

 

trastive)   

TABLE II: COMPARISON WITH STATE OF 

ART MODELS 

 

VI. DISCUSSION 

 

A. Analysis of Results 
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The experimental results demonstrate the 

effectiveness of our approach in classifying skin 

lesions across nine categories. The use of the Swin 

Transformer backbone provides several advantages 

over conventional CNN architectures, particularly 

in capturing both local details and global 

context, which is crucial for distinguishing 

between visually similar skin conditions. The 

addition of supervised contrastive learning 

significantly improves the model’s ability to learn 

discriminative features, as evidenced by the ablation 

study. This is particularly important for challenging 

cases where the visual differences between benign 

and malignant lesions are subtle. The weighted 

sampling strategy effectively addresses the class 

imbalance issue, ensuring that the model performs 

well across all classes, including those with fewer 

training samples. This is reflected in the balanced 

precision and recall scores across classes. Figure 10 

visualizes samples of classified images with our 

model. 

 

B. Clinical Implications 

From a clinical perspective, our model shows 

promise as an assistive tool for dermatologists. The 

high accuracy across different lesion types could 

help improve diagnostic 

 
Fig. 10. Classified images 

consistency and potentially reduce the need for 

invasive   biopsies in cases where the model 

confidently identifies benign conditions. However, 

it is important to note that our model is intended to 

augment rather than replace clinical judgment. The 

integration of such systems into clinical workflows 

requires careful consideration of how model 

predictions are presented to clinicians and how they 

influence decision-making. 

C. Limitations 

Despite the strong performance, our approach has 

several limitations: 1. The model’s performance is 

dependent on the quality and representativeness of 

the training data. Biases in the dataset, such as 

under representation of certain skin types or lesion 

presentations, could lead to disparities in 

performance across different patient populations. 2. 

While our model achieves high accuracy in 

classifying lesions into pre- defined categories, it 

does not provide explicit reasoning for its decisions. 

This ”black box” nature could limit clinical trust and 

adoption. 3. The current implementation does not 

incorporate patient metadata or clinical history, 

which are important factors in dermatological 

diagnosis. 4. The evaluation was conducted on a 

single dataset, and the generalizability to images 

acquired under different conditions or with different 

equipment remains to be validated. 

 

VII. CONCLUSION AND FUTURE WORK 

 

In this paper, we presented a novel approach for 

skin cancer classification that combines the 

hierarchical feature    representation capabilities of 

the Swin Transformer with supervised contrastive 

learning. Our method effectively addresses the 

challenges of class imbalance and feature 

discrimination in skin lesion datasets through 

weighted sampling and a multi- component loss 

function. The experimental results demonstrate that 

our approach achieves competitive performance on 

the ISIC dataset, with balanced precision and recall 

across nine classes of skin lesions. The ablation 

studies confirm the value of each component in our 

design. Future work could explore several 

promising directions: Incorporating multimodal 

data, including clinical metadata and 

dermoscopic features, to improve diagnostic 

accuracy. Developing explainable AI techniques 

specific to dermatological images to provide    

interpretable justifications for model predictions. 

Investigating few- shot learning approaches to 

improve performance on rare skin conditions with 

limited training data. Validating the model on 

diverse datasets to ensure generalizability across 

different   patient populations and imaging 

equipment. Exploring the potential of self-

supervised pretraining on large unlabeled datasets 

of dermatological images. By addressing these 

challenges, future research can further advance the 

field of automated skin cancer diagnosis and 

potentially improve patient outcomes through 

earlier and more accurate detection. 
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