
© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2595

Integrating Backtracking Algorithms and ASCII

Steganography for Enhanced Cloud Data Security

Sangeetha Priya B (1), Abith Thomas R A (2), Kumaravelu R (3), Jayatheeratha R (4), Edgin(5)
(1) Assistant Professor, Department of CSE (Internet of Things and Cyber Security Including Blockchain

Technology), SNS College Of Engineering, Coimbatore-641107.
(2), (3)(4)(5), Department of CSE (Internet of Things and Cyber Security Including Blockchain

Abstract- Cloud computing offers scalability and

accessibility but introduces significant data security

challenges, including unauthorized access, data breaches,

and ensuring confidentiality in multi-tenant environments.

While encryption protects data content, it does not conceal

the existence of sensitive information. Steganography

provides a complementary layer by hiding data within

innocuous cover media. This paper proposes a novel

approach to enhance cloud data security by combining

ASCII-based steganography with a backtracking

algorithm. The backtracking algorithm is employed to

optimize the embedding process within ASCII text data

(e.g., logs, configuration files, plain text documents

commonly found in cloud storage), aiming to maximize

embedding capacity and resilience against statistical

steganalysis while adhering to specific constraints. We

detail the proposed framework, including the data hiding

and extraction processes, the role of the backtracking

algorithm in selecting optimal embedding locations or

parameters based on a defined cost function (e.g.,

minimizing statistical deviations), and the integration

within a cloud storage context. The methodology leverages

the subtle manipulation of ASCII characters (e.g.,

whitespace, control characters, or character substitutions)

guided by the backtracking search. We present a theoretical

analysis of the security enhancements and discuss

potential performance trade-offs. This combined approach

aims to provide an additional layer of defense, making

sensitive data less conspicuous and harder to detect even if

cloud storage is compromised or subjected to surveillance.

Keywords: Cloud Security, Data Hiding, Steganography,

ASCII Steganography, Text Steganography, Backtracking

Algorithm, Information Security, Data Confidentiality.

I. INTRODUCTION

The proliferation of cloud computing services (IaaS,

PaaS, SaaS) has revolutionized data storage,

processing, and accessibility [Reference 1].

Organizations leverage the cloud for its cost-

effectiveness, scalability, and flexibility. However,

entrusting sensitive data to third-party providers raises

significant security concerns [Reference 2]. Data

breaches, insider threats, insecure APIs,

misconfigurations, and inadequate data isolation in

multi-tenant architectures pose substantial risks to data

confidentiality, integrity, and availability [Reference

3]. Traditional security mechanisms like encryption,

access control (IAM), and network security protocols

are fundamental but often insufficient on their own.

Encryption protects data content from unauthorized

viewing if the decryption key is secure, but the

encrypted data itself remains visible and potentially

flags the presence of valuable information, attracting

attackers [Reference 4]. Furthermore, certain cloud

operations might require data to be decrypted

temporarily, creating windows of vulnerability.

Steganography, the art and science of hiding

information within other, seemingly harmless data

(cover media), offers a complementary security layer

known as "security through obscurity" [Reference 5].

Unlike cryptography, which makes data unreadable,

steganography aims to make the existence of the secret

data undetectable. By embedding sensitive

information within innocuous cover files stored or

transmitted in the cloud (e.g., images, audio files, text

documents), one can reduce the likelihood of

detection. Text steganography, particularly using

ASCII-based cover media, is relevant in cloud

environments where text files like logs, source code,

configuration files, and datasets are abundant

[Reference 6]. ASCII steganography techniques often

involve subtle modifications like manipulating

whitespace (spaces, tabs), using special Unicode

characters that look like standard ASCII, or slightly

altering character codes [Reference 7]. However,

naive embedding can introduce statistical anomalies

detectable by steganalysis tools. This paper proposes a

© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2596

novel method to enhance ASCII steganography for

cloud data security by incorporating a backtracking

algorithm. Backtracking is a general algorithmic

technique for solving problems recursively by trying

to build a solution incrementally, one piece at a time,

removing those solutions ("backtracking") that fail to

satisfy the problem's constraints [Reference 8]. We

hypothesize that backtracking can be used to

systematically explore the potential embedding

locations or parameters within an ASCII cover text,

guided by constraints designed to minimize statistical

detectability and maximize capacity or robustness.

The primary contributions of this paper are:

1. A Novel Framework: Proposing the integration of

a backtracking algorithm with ASCII

steganography specifically for enhancing cloud

data security.

2. Optimized Embedding Strategy: Detailing how

backtracking can systematically search for

optimal embedding configurations within ASCII

text based on predefined security and capacity

constraints.

3. Enhanced Security Potential: Analyzing how this

approach can potentially improve resilience

against statistical steganalysis compared to

simpler embedding methods.

4. Cloud Contextualization: Discussing the

applicability and integration of the proposed

method within typical cloud storage and data

processing scenarios.

II. RELATED WORK

This research builds upon existing work in cloud

security and steganography.

2.1. Cloud Data Security: Numerous studies have

addressed cloud security challenges. Solutions

range from advanced cryptographic techniques

like homomorphic encryption [Reference 9] and

searchable encryption [Reference 10] to robust

identity and access management (IAM) policies

[Reference 11], intrusion detection systems (IDS)

tailored for cloud environments [Reference 12],

and data loss prevention (DLP) strategies

[Reference 13]. While effective, these primarily

focus on preventing unauthorized access or

making intercepted data unreadable, not

concealing its existence.

2.2. Steganography: Steganography has been

extensively studied for various cover media,

including images [Reference 14], audio

[Reference 15], and video [Reference 16]. These

methods often exploit redundancy or noise within

the cover medium.

2.3. Text Steganography: Text steganography presents

unique challenges due to the lower redundancy in

text compared to multimedia files [Reference 6,

7]. Techniques include:

2.4. Format-Based Methods: Manipulating

whitespace (spaces, tabs), line shifts, or text

justification [Reference 17]. These are often

simple but can have low capacity and be

vulnerable to reformatting or basic statistical

analysis.

2.5. Linguistic Steganography: Modifying text

content using synonym substitution, grammatical

changes, or generating cover text that naturally

encodes the secret message [Reference 18]. This

is often more robust but complex and may require

sophisticated natural language processing.

2.6. Character/Code-Based Methods: Using visually

similar Unicode characters (homoglyphs) or

subtly modifying character encodings [Reference

19].

2.7. Steganalysis: Counteracting steganography

involves steganalysis, which aims to detect the

presence of hidden messages [Reference 20]. For

text, statistical analysis (e.g., frequency analysis

of characters, words, or whitespace patterns) is a

common detection method. Effective

steganography must minimize deviations from the

expected statistics of the cover medium.

2.8. Optimization Algorithms in Steganography:

Some research has explored using optimization

algorithms (e.g., genetic algorithms, simulated

annealing) to improve steganographic embedding

by minimizing distortion or maximizing capacity

under certain constraints [Reference 21].

However, the specific application of backtracking

algorithms to guide ASCII steganography

embedding for cloud security appears relatively

unexplored. Backtracking's strength lies in

© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2597

exhaustive, constrained search, which could be

beneficial for finding optimal embedding patterns

within the discrete structure of text.

Our work differs by specifically combining the

systematic, constraint-driven search capabilities of

backtracking with the nuances of ASCII

steganography, targeting the unique environment and

data types prevalent in cloud storage. We aim to

leverage backtracking not just for simple optimization

but for finding secure embedding configurations that

adhere to complex constraints related to statistical

invisibility in text data.

III. BACKGROUND CONCEPTS

3.1 Cloud Computing Security Threats Data stored in

the cloud faces various threats:

• Unauthorized Access: Due to misconfigured

permissions, weak authentication, or exploited

vulnerabilities.

• Data Breaches: Malicious actors gaining access to

large volumes of data stored by the cloud provider

or its tenants.

• Insecure Interfaces/APIs: Vulnerabilities in cloud

management APIs can be exploited for

unauthorized access or control.

• Multi-tenancy Risks: Shared resources (CPU,

memory, storage) potentially allowing

interference or data leakage between tenants if

isolation mechanisms fail.

• Insider Threats: Malicious actions by employees

of the cloud provider or the tenant organization.

• Data Loss/Leakage: Accidental deletion,

hardware failures, or subtle leakage through side

channels.

3.2 Backtracking Algorithms Backtracking is an

algorithmic paradigm that finds solutions to

computational problems, notably constraint

satisfaction problems, by incrementally building

candidate solutions and abandoning ("backtracking")

a candidate as soon as it determines that it cannot

possibly lead to a valid, complete solution [Reference

8].

Key characteristics:

• State Space Search: Explores a state space tree

representing possible solutions.

• Recursive/Iterative Structure: Typically

implemented recursively.

• Constraints: Uses constraints to prune branches of

the search tree that violate problem conditions.

• Exhaustive Search (within constraints): Can find

all possible solutions or the first/optimal one

satisfying the criteria.

Example applications include solving puzzles (N-

Queens, Sudoku), parsing languages, and

combinatorial optimization problems. In our context,

the "state" could represent the current state of the

cover text after embedding some bits, and the

"constraints" relate to maintaining statistical

properties or adhering to embedding rules.

3.3 ASCII Steganography ASCII (American Standard

Code for Information Interchange) defines character

encodings for electronic communication. Standard

ASCII uses 7 bits (128 characters), including control

characters, punctuation, numbers, and letters.

Extended ASCII uses 8 bits (256 characters).

ASCII steganography techniques exploit

characteristics of text files:

• Whitespace Manipulation: Adding/removing

spaces or tabs at the end of lines, between words,

or using different combinations of space/tab

characters to encode bits [Reference 17]. This is

simple but sensitive to reformatting.

• Character Substitution: Replacing characters with

visually similar ones (homoglyphs) from

extended character sets (e.g., Unicode) or subtly

modifying existing characters (less common with

pure ASCII).

• Using Control Characters: Embedding data using

non-printable control characters, although this can

sometimes corrupt file interpretation.

• LSB of Character Codes: Modifying the least

significant bit(s) of the ASCII codes of characters.

This can cause subtle, potentially noticeable

changes depending on the character.

© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2598

• Custom Encoding Schemes: Defining specific

patterns or sequences of characters/whitespace to

represent bits.

The main challenges are achieving sufficient

embedding capacity without introducing detectable

statistical changes (e.g., unusual whitespace

frequency) and ensuring robustness against accidental

or intentional modifications (e.g., text editors

automatically trimming trailing whitespace).

IV. PROPOSED METHODOLOGY

We propose the Backtracking-Enhanced ASCII

Steganography (BACS) framework to securely hide

data within ASCII text files stored in a cloud

environment. The core idea is to use backtracking to

guide the embedding process, optimizing for security

(low detectability) and capacity based on defined

constraints.

4.1 System Architecture The BACS system operates

within a typical cloud storage scenario (e.g., object

storage like AWS S3, Azure Blob Storage, Google

Cloud Storage).

Input: Secret Message (binary data M), Cover Text

(ASCII file C), Stego-Key (K, optional, for added

security like selecting specific character sets or initial

parameters), Security/Capacity Constraints (P).

• Processing (Cloud Function/VM):

1. Preprocessing: The secret message M may be

optionally encrypted and compressed. The cover

text C is analyzed to identify potential embedding

locations (e.g., end-of-lines, inter-word spaces,

specific character positions).

2. Backtracking Embedding Module: This core

module uses the backtracking algorithm to embed

M into C.

3. Output: Stego-Text (ASCII file S containing the

hidden message).

• Storage: The stego-text S is stored in the cloud,

appearing as a regular text file.

• Extraction (Cloud Function/VM):

1. Input: Stego-Text S, Stego-Key K (if used).

2. Backtracking Extraction Module: Recovers the

hidden bitstream. The backtracking logic might be

needed if the embedding path itself needs to be

reconstructed based on constraints, or a simpler

direct extraction based on the key might suffice

depending on the embedding method.

3. Postprocessing: Decompress and decrypt (if

applicable) the extracted bitstream to recover the

original secret message M.

4.2 ASCII Steganography Technique BACS can be

adapted to various ASCII steganography techniques.

For illustration, let's consider a whitespace

manipulation technique: encoding bits using the

number of trailing spaces/tabs at the end of lines.

• '0': Represented by one trailing space.

• '1': Represented by two trailing spaces.

• (Alternative: Use combinations of space/tab for

higher capacity).

Constraints (P) could include:

• Maximum number of trailing whitespace

characters allowed per line (to avoid suspicion).

• Maintaining the overall whitespace statistics

(frequency of lines with 0, 1, 2... trailing spaces)

close to the original cover text or a 'natural'

distribution.

• Ensuring embedding does not significantly alter

file size beyond a certain threshold.

• Skipping lines that are empty or too short/long.

4.3 Backtracking Algorithm Integration The

backtracking algorithm searches for an optimal

sequence of embedding actions (e.g., which lines to

use and how many spaces/tabs to add) that satisfy the

constraints P while embedding the entire message M.

• State Representation: A state in the search could

be (line_index, bits_embedded, current_stats),

representing the current line being considered, the

number of secret bits already embedded, and the

current statistics of the modified text (e.g.,

whitespace distribution).

© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2599

• Search Space: The tree nodes represent choices at

each potential embedding location (e.g., embed '0'

here, embed '1' here, skip this location).

• Constraint Checking: At each step, the algorithm

checks if the potential embedding action violates

any constraint in P. For example:

o Does adding two spaces exceed the max

allowed trailing whitespace?

o Does embedding here push the whitespace

frequency distribution outside acceptable

bounds (e.g., compared using Chi-squared

test against expected distribution)?

• Cost Function (Optional, for Optimization): If

aiming for the 'best' embedding (e.g., lowest

statistical deviation), a cost function can guide the

search. The algorithm would seek a path

minimizing this cost. Cost could be a measure of

statistical difference between the stego-text and

the original cover or a model of natural text.

• Backtracking: If a path leads to a state where

constraints are violated or the message cannot be

fully embedded using the remaining locations, the

algorithm backtracks to the previous decision

point and explores alternative choices.

4.4 Extraction Process Extraction involves reading the

stego-text S and reversing the embedding process. If

the embedding locations and method are solely

determined by the key K and the cover text structure,

extraction is straightforward. If the backtracking

search path itself encodes information or if multiple

valid paths exist, the key K might need to guide the

extractor to follow the correct sequence of locations

identified during embedding, possibly involving a

similar (but simpler) traversal or lookup based on the

key.

V. IMPLEMENTATION AND EXPERIMENTAL

SETUP (PLANNED)

• Implementation: The proposed BACS framework

would be implemented using Python, leveraging

libraries for text processing and potentially cloud

SDKs (like Boto3 for AWS, Azure SDK, Google

Cloud Client Libraries) for integration.

• Cloud Environment: Experiments could be

simulated locally or deployed using cloud

functions (e.g., AWS Lambda, Google Cloud

Functions) triggered by file uploads to cloud

storage.

• Datasets:

o Cover Texts: A diverse set of ASCII files

representative of cloud data (e.g., system logs,

configuration files, source code repositories,

plain text notes). Files of varying sizes and

structures would be used.

o Secret Messages: Sample binary data of

different sizes (small keys, medium-sized

messages, larger data chunks).

• Metrics:

o Embedding Capacity: Bits embedded per

character or per line of the cover text.

o Imperceptibility/Security: Statistical analysis

comparing original cover texts and stego-

texts. Metrics could include:

▪ Frequency distribution of characters

(especially whitespace).

▪ Chi-squared statistic comparing

distributions.

▪ Entropy analysis.

▪ Detection rate using standard text

steganalysis tools (if available and

applicable).

o Performance: Time taken for embedding and

extraction processes (computation overhead).

CPU and memory usage in the cloud

environment.

o Robustness: Sensitivity to minor

modifications (e.g., automatic whitespace

trimming by editors, format conversions).

• Comparison: The performance and security of

BACS would be compared against:

o Simple/naive ASCII steganography (e.g.,

appending spaces without optimization).

© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2600

o Other existing text steganography tools or

algorithms.

VI. RESULTS AND DISCUSSION (EXPECTED)

We anticipate the following outcomes:

• Feasibility: The experiments should demonstrate

the feasibility of embedding and extracting data

using the BACS framework.

• Security Enhancement: We expect the

backtracking approach, guided by statistical

constraints, to produce stego-texts that are

significantly harder to detect using statistical

steganalysis compared to naive methods. The

IsValid function incorporating statistical checks is

crucial here. Results would likely show statistical

metrics (e.g., Chi-squared values) for BACS

stego-texts being closer to those of original cover

texts.

• Capacity vs. Security Trade-off: Stricter security

constraints (e.g., tighter bounds on statistical

deviation) will likely reduce the embedding

capacity. The backtracking algorithm allows

exploring this trade-off systematically. Results

should quantify this relationship.

• Performance Overhead: The backtracking search

introduces computational overhead compared to

simple embedding. Experiments will measure this

overhead, which is expected to increase with the

size of the cover text, the message size, and the

complexity of the constraints. The efficiency of

the IsValid check is critical. Pruning ineffective

search paths early is key to managing

performance.

• Robustness: The chosen ASCII steganography

technique (e.g., trailing whitespace) might have

inherent robustness issues. The results should

evaluate how well the stego-texts survive

common text manipulations. Using techniques

less susceptible to automatic formatting might be

necessary for practical deployment.

VII. SECURITY ANALYSIS

• Confidentiality: The primary goal is to hide the

existence of the secret message. By embedding

data within seemingly normal ASCII files and

using backtracking to minimize statistical

anomalies, BACS aims to make the stego-text

indistinguishable from benign traffic or stored

files, thus enhancing confidentiality. Optional

encryption of the message before embedding adds

another layer.

• Integrity: Standard steganography does not

guarantee the integrity of the hidden message if

the stego-text is modified. Error correction codes

could be added to the secret message before

embedding to provide some resilience against

minor modifications. Hash checksums embedded

alongside the data could detect tampering upon

extraction.

• Detectability (Resistance to Steganalysis): The

core security contribution is reduced detectability.

The backtracking algorithm's role is to ensure the

embedding process adheres to constraints

designed to mimic the statistical profile of

natural/original text files, making detection via

statistical analysis harder. The effectiveness

depends on the accuracy of the statistical models

and constraints used.

• Key Management: If a stego-key K is used (e.g.,

to seed the backtracking search, select parameters,

or encrypt the message), standard key

management practices are essential. The security

of the key directly impacts the security of the

hidden data.

VIII. Limitations

• Embedding Capacity: Text steganography

generally offers lower capacity compared to

multimedia steganography. BACS is suitable for

hiding smaller amounts of sensitive data (keys,

configuration parameters, short messages) rather

than bulk data.

• Computational Overhead: The backtracking

search can be computationally intensive,

potentially making it unsuitable for resource-

constrained environments or applications

requiring very fast embedding/extraction.

• Sensitivity to Formatting: Techniques like

whitespace manipulation are vulnerable to text

editors or systems that automatically normalize

© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2601

whitespace. Robustness requires careful selection

of the underlying ASCII technique or additional

mechanisms.

• Steganalysis Evolution: Advanced steganalysis

techniques, possibly using machine learning,

might be developed that can detect the subtle

patterns introduced even by optimized

embedding.

• Cover Text Dependency: The effectiveness

depends on the availability of suitable ASCII

cover texts with sufficient redundancy or

acceptable locations for modification within the

cloud environment.

IX. Future Work

• Adaptive Constraints: Develop methods for

dynamically adjusting constraints based on the

specific characteristics of the cover text using

machine learning.

• Hybrid Approaches: Combine BACS with

linguistic steganography features, potentially

using backtracking to optimize synonym choices

or sentence structures.

• Improved Robustness: Investigate ASCII

steganography techniques inherently more robust

to reformatting and integrate them into the BACS

framework. Incorporate stronger error correction

codes.

• Performance Optimization: Explore heuristics or

pruning strategies to accelerate the backtracking

search without significantly compromising

security. Parallelize the search process.

• Formal Security Proofs: Develop more formal

models and proofs regarding the security

(indistinguishability) provided by BACS under

specific statistical assumptions.

• Real-World Deployment & Evaluation:

Implement and evaluate BACS in a real cloud

environment (e.g., securing configuration secrets,

hiding audit logs snippets) to assess practical

challenges and effectiveness.

X. Conclusion

This paper proposed BACS, a framework combining

ASCII steganography with a backtracking algorithm

to enhance data security in cloud environments. By

systematically searching for embedding patterns that

satisfy predefined security constraints (primarily

minimizing statistical detectability), BACS aims to

hide sensitive information within common ASCII text

files more effectively than naive methods. While

traditional encryption protects content, BACS focuses

on concealing the existence of secret data, providing a

complementary layer of security against surveillance

and targeted attacks in the cloud. The backtracking

approach allows for a principled exploration of the

trade-offs between embedding capacity, security, and

computational cost. Although challenges related to

capacity, robustness, and computational overhead

exist, the proposed methodology presents a promising

direction for leveraging algorithmic optimization

techniques to improve text steganography for securing

data in the increasingly pervasive cloud landscape.

Further research, implementation, and rigorous

experimental evaluation are needed to fully assess its

practical potential and limitations.

REFERENCE

[1] P. Mell and T. Grance, "The NIST Definition of

Cloud Computing," National Institute of

Standards and Technology, Special Publication

800-145, Sept. 2011.

[2] K. Hashizume, D. G. Rosado, E. Fernández-

Medina, and E. B. Fernandez, "An analysis of

security issues for cloud computing," Journal of

Internet Services and Applications, vol. 4, no. 1,

pp. 1-13, Dec. 2013.

[3] S. Subashini and V. Kavitha, "A survey on security

issues in service delivery models of cloud

computing," Journal of Network and Computer

Applications, vol. 34, no. 1, pp. 1-11, Jan. 2011.

[4] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and

H. Balakrishnan, "CryptDB: Protecting

confidentiality with encrypted query processing,"

in Proc. 23rd ACM Symp. Operating Systems

Principles (SOSP), 2011, pp. 85–100. (Illustrates

complexity and potential vulnerabilities even with

encryption).

[5] N. F. Johnson and S. Jajodia, "Exploring

steganography: Seeing the unseen," Computer,

vol. 31, no. 2, pp. 26-34, Feb. 1998.

© May 2025| IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177702 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2602

[6] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,

"Techniques for data hiding," IBM Systems

Journal, vol. 35, no. 3.4, pp. 313-336, 1996.

(Classic paper, includes text methods).

[7] M. A. A. Mohamed, A. A. M. Rahma, and H. A. H.

Al-any, "A survey on text steganography

techniques," in Proc. Int. Conf. on Computer and

Information Sciences (ICCOINS), 2014, pp.1-6.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein, Introduction to Algorithms, 3rd ed. MIT

Press, 2009. (Standard textbook covering

backtracking).

[9] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A.

Jäschke, C. A. Reuter, and T. Strandberg, "A guide

to fully homomorphic encryption," IACR

Cryptology ePrint Archive, Report 2015/1192,

2015. [Online]. Available:

https://eprint.iacr.org/2015/1192

[10] S. Kamara and K. Lauter, "Cryptographic cloud

storage," in Proc. Int. Conf. on Financial

Cryptography and Data Security (FC), 2010, pp.

136-149.

[11] M. S. Hasan, E. S. Hosseini, R. K. St-Hilaire, and

A. C. Squicciarini, "A survey on identity

management in cloud computing," ACM

Computing Surveys, vol. 53, no. 6, pp. 1-38, Dec.

2020.

[12] C. Modi, D. Patel, B. Borisaniya, H. Patel, A.

Patel, and M. Rajarajan, "A survey of intrusion

detection techniques in cloud," Journal of

Network and Computer Applications, vol. 36, no.

1, pp. 42-57, Jan. 2013.

[13] A. A. Ghafoor, M. A. Al-Maitah, and H. M. Al-

Maitah, "Data Loss Prevention in Cloud

Computing: A Survey," Int. Journal of Computer

Network and Information Security (IJCNIS), vol.

12, no. 1, pp. 39-53, Feb. 2020.

[14] J. Fridrich, M. Goljan, and R. Du, "Reliable

detection of LSB steganography in color and

grayscale images," in Proc. ACM Workshop on

Multimedia and Security, 2001, pp. 27-30.

[15] K. Gopalan, "Audio steganography using bit

modification," in Proc. IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing

(ICASSP), vol. 2, 2003, pp. II-357-II-360.

[16] K. A. T. Elshoush and E. A. E. Dahshan, "Video

Steganography: A Survey," ACM Computing

Surveys, vol. 53, no. 3, pp. 1-36, Jun. 2020.

[17] S. H. Low, N. F. Maxemchuk, J. T. Brassil, and L.

O'Gorman, "Document marking and

identification using both line and word shifting,"

in Proc. IEEE INFOCOM '95, 1995, pp. 853-860.

[18] M. Topkara, G. M. Topkara, and M. J. Atallah,

"The hiding virtues of ambiguity: On the limits of

linguistic steganography," in Proc. Int. Workshop

on Information Hiding (IH), 2006, pp. 164-181.

[19] V. L. L. Thing and K. H. K. Teh, "Unicode based

Steganography for Instant Messaging

Applications," in Proc. IEEE Int. Conf. on

Telecommunications and Malaysia Int. Conf. on

Communications (ICT-MICC), 2007, pp. 661-

665.

[20] J. Fridrich and M. Goljan, "Practical

steganalysis of digital images: state of the art," in

Security and Watermarking of Multimedia

Contents IV, Proc. SPIE, vol. 4675, 2002, pp. 1-

13. (Focuses on images but outlines general

steganalysis principles).

[21] C.-K. Chan and L. M. Cheng, "Hiding data in

images by simple LSB substitution," Pattern

Recognition, vol. 37, no. 3, pp. 469-474, Mar.

2004. (While basic LSB, discusses

capacity/distortion trade-offs relevant to

optimization)

