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Abstract—Clinical decision-making in healthcare is 

already being impacted by predictions or suggestions 

generated by data-driven technologies. Machine learning 

applications have exploded in the most recent clinical 

literature, especially in the creation of outcome 

prediction models. Acute illnesses, cardiac arrest, and 

mortality are only a few of the many outcomes that are 

covered by these models. When it comes to forecasting 

patient waiting times, the PTTP (Patient Treatment 

Time Prediction) model is the most accurate of these 

models. For outcome prediction models that use data 

taken from electronic health records, our study offers a 

thorough review of the state-of-the-art in data 

processing, inference, and model evaluation. We also 

discuss the shortcomings of current modeling 

assumptions and suggest some directions for further 

study. 

 

Index Terms—Machine Learning, Electronic Medical 

Records, Clinical Outcome 

 

1. INTRODUCTION 

 

With its unmatched potential for clinical outcome 

prediction, machine learning has become a critical 

component in the healthcare industry. In a time when 

there is a wealth of complex and multifaceted medical 

data, machine learning techniques have emerged as 

essential tools for turning this data into useful 

knowledge. This transformational capacity raises the 

precision and efficacy of clinical decision-making, 

with important ramifications for the healthcare 

industry. In this succinct synopsis, we will examine the 

significance of machine learning in clinical outcome 

prediction, emphasizing its potential to revolutionize 

patient care, optimize resource allocation, and improve 

the larger healthcare landscape. 

 

1.1 MACHINE LEARNING 

Within the broader subject of artificial intelligence 

(AI), machine learning is a dynamic and 

transformative field that enables computers to learn 

from data and perform better on tasks without explicit 

programming. From self-driving cars to  

 

virtual personal assistants like Siri and Alexa, this 

technology is at the core of many innovative  

applications and is revolutionizing industries like 

healthcare and finance. In order to find patterns, 

predict results, and uncover insights in vast amounts of 

complex data, machine learning makes use of 

statistical models and mathematical algorithms. By 

analyzing these data-driven patterns, machines may 

make well-informed decisions and continuously 

improve their comprehension of the surroundings, 

leading to improved performance and more precise 

outcomes in a range of tasks.  

 

1.2 ELECTRONIC MEDICAL RECORDS 

Electronic medical records (EMRs) are at the forefront 

of a fundamental transformation in the healthcare 

industry in the current digital era. Healthcare has been 

transformed by electronic medical records, which 

offer previously unheard-of accessibility and 

efficiency. These electronic patient data repositories 

offer a number of advantages over conventional paper 

records. EMRs simplify administrative processes, 

enhance service quality, and support medical research 

while enabling healthcare practitioners to safely store 

and retrieve patient data. The significance of electronic 

medical records in contemporary healthcare is 

examined in this introduction, along with the broad 

ramifications for patient safety, data correctness, and 

medical advancement. The healthcare system is now 
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built on electronic medical records, or EMRs, which 

have fundamentally changed the way patient data is 

gathered, handled, and utilized.  

 

1.3 CLINICAL OUTCOME 

The healthcare industry is built on the foundation of 

clinical outcomes. They show the results of medical 

procedures, the consequences of illnesses, and the 

overall health of a patient. A key component of 

medical practice is the pursuit of positive clinical 

outcomes, with healthcare professionals dedicated to 

enhancing the quality of life for their patients. A 

patient's general health, recuperation from illness, 

reaction to therapy, and quality of life are some of 

these multifaceted outcomes. The significance of 

clinical outcomes in healthcare is covered in this 

introduction, along with how they affect treatment 

choices, healthcare policy, and the overarching goal of 

giving people and communities the best care possible. 

Clinical outcomes are the gold standard for success in 

the healthcare industry. They capture the real-world 

effects of medical treatment, including life extension 

and the management of chronic illnesses, as well as 

symptom relief and surgical recovery. 

 

2. LITERATURE REVIEW 

 

In order to outperform the state-of-the-art two-stage 

detectors, Tsung-Yi Lin et al.'s study [1] presents a 

revolutionary method for object identification. Using 

a proposal-driven method, these detectors made 

popular by the R-CNN framework apply a classifier to 

a sparse set of potential item positions. On the other 

hand, the authors suggest using one-stage detectors 

that cover a dense, regular sampling of potential object 

locations. However, traditionally, one-stage detectors 

have not been as accurate as their two-stage 

equivalents. The authors look into the causes of this 

discrepancy and conclude that the main culprit is the 

severe foreground-background class imbalance that 

occurs during intensive detector training. In order to 

overcome this problem, they suggest a brand-new loss 

function known as Focal Loss, which modifies the 

conventional cross entropy loss in order to reduce the 

weight given to samples that are correctly identified. 

This method keeps the detector's performance from 

being impacted by an excessive number of easy 

negatives by concentrating the training on a small 

number of hard cases.  

The notion of artificial intelligence (AI), which 

involves using computers or other technologies to 

mimic human cognition, was originally forth by 

Anthony D. Yao [2] et al. in this work. Machine 

learning (ML) is an area of artificial intelligence (AI) 

where models are developed to produce desired 

outputs from pre-existing datasets without the need for 

explicit instructions. Supervised and unsupervised 

learning are two more subcategories of machine 

learning. In supervised learning, models predict 

whether an image shows a dog or a cat, or if a chest 

radiograph is normal or pathological, based on 

particular labels or results. For this kind of learning, 

the intended output must be clearly identified on the 

input data. Conversely, in unsupervised learning, 

models generate data representations without explicit 

labeling by using the data's underlying distribution. As 

a branch of machine learning (ML), deep learning 

(DL) makes use of deep neural networks (DNNs) as 

models for a range of tasks, including supervised and 

unsupervised learning. DNNs are made up of several 

layers of neurons with weighted connections and are 

intended to resemble the synaptic connections found 

in the human brain. By comparing the model's output 

with the data's labeled ground truth, these weights 

which indicate how strong the relationships are can be 

changed.  

 

Chenhong Zhou [3] et al. tackle the problem of class 

imbalance in medical picture segmentation in this 

article. Although this problem has been successfully 

mitigated by the model cascade (MC) approach, it 

overlooks model correlation and can result in system 

complexity. The One-pass Multi-Task Network (OM-

Net), a lightweight deep model that combines distinct 

segmentation tasks into a single model with shared and 

task-specific parameters, is the authors' solution to 

these drawbacks. The authors employ a curriculum 

learning-based training technique that capitalizes on 

task correlation and an online training data transfer 

strategy to maximize OM-Net. The authors also 

suggest a cross-task guided attention (CGA) module 

that adaptively recalibrates channel-wise feature 

responses based on category-specific statistics by 

sharing prediction findings across tasks. All things 

considered, the OM-Net method provides a more 

effective and efficient way to address class imbalance 

in medical image segmentation. To improve 

segmentation results, a simple yet effective post-
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processing method is applied to a suggested attention 

network.  

 

Po-Yu Kao et al. have presented a novel approach to 

improve brain tumor segmentation by combining a 3D 

U-Net with a lesion prior [4]. Using ground-truth brain 

tumor lesions from a group of patients, the method 

generates heat maps of different lesion kinds. These 

heat maps are then utilized to produce a volume-of-

interest (VOI) map that contains previous information 

about brain tumor lesions. Multimodal MR images and 

the VOI map are fed into a 3D U-Net for segmentation. 

When tested on a publicly available benchmark 

dataset, the suggested approach outperformed baseline 

techniques. Additionally, it performs competitively 

when compared to the most advanced techniques. 

Since malignant primary brain tumors are still one of 

the most challenging cancers to treat, radiologists and 

doctors can benefit from automatic and precise brain 

tumor segmentation technologies for both diagnosis 

and therapy planning.  

In their study, Emmanuel Montagnon [5] et al. suggest 

that deep learning has become increasingly popular in 

radiology within the last ten years. The outstanding 

results obtained in a variety of computer vision tasks, 

including as detection, segmentation, classification, 

monitoring, and prediction, are responsible for this 

spike in interest. The goal of the paper is to offer 

thorough instructions for carrying out deep learning 

projects in radiology, including all phases from 

specification definition to deployment and scaling. 

The article's goals include providing a summary of 

current methods for patient, data, model, and hardware 

selection, describing the makeup of a multidisciplinary 

team, and providing an overview of clinical use cases 

for deep learning. The authors utilize examples from a 

typical study centered on imaging colorectal liver 

metastases to highlight important concepts. The 

workflow for liver lesion detection, segmentation, 

classification, monitoring, and tumor recurrence and 

patient survival prediction is presented in the article. 

The authors also go into issues including data 

gathering, anonymization, co-hosting, ethical issues, 

and the availability of expert annotations.  

 

3. RELATED WORK 

 

The term artificial intelligence (AI) refers to a wide 

range of projects that use computers to carry out tasks 

that normally require human intervention. In the 

healthcare industry, AI techniques have shown 

remarkable efficacy in forecasting clinical outcomes 

by identifying patterns in standardized input data and 

using this information to generate precise predictions 

when tested with fresh data. In order to train AI-based 

clinical prediction models, there are established 

procedures for cleaning, generating, accessing, 

extracting, augmenting, and representing data. As a 

result, AI-driven healthcare predictions is a quickly 

developing field with constantly new methods and 

applications. The extraction and integration of patient 

genetic data from electronic health records is a major 

area of attention since it has enormous potential for 

future medical improvements. Deep learning 

approaches like multi-layer and recurrent neural 

networks, as well as machine learning techniques like 

Random Forest and XGBoost, which are based on 

decision trees, offer strong capabilities for producing 

accurate predictions from complicated, high-

dimensional, and multimodal healthcare data. 

 

4. METHODOLOGY 

 

By examining their needs, this initiative seeks to 

determine the conditions of the patients. Based on their 

demands, patients are grouped into slots A and B, and 

their treatment progress is tracked appropriately. It is 

possible to reduce unnecessary waiting time and 

increase the effectiveness of treatment time by 

effectively scheduling time slots. Predicting patient 

wait times and allocating time slots optimally are two 

areas in which the PTTP model excels. 

 

A. VM SETUP AND EVALUATION MODULE 

In this Module, "Treatment Evaluation" refers to the 

assessment of virtual treatment periods throughout the 

scheduling process. This assessment takes into 

account the patient's physical activity while they are in 

the hospital. Each cloud-based virtual task's burden is 

determined before being sent to the client for further 

processing. A Hospital Queuing-Recommendation 

(HQR) system was created to meet the demand for a 

convenient and effective treatment plan. Because of 

the vast, realistic dataset and the need for real-time 

reaction, this system, which uses the PTTP method, 

requires efficiency and low-latency response. 

 

B. REGULARIZED WORKFLOW STATES 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177791 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2927 

The workflow states that have been identified must be 

spatially continuous. We want to identify areas with 

high semantic value, such 'patient rooms on the 

northeast side of the second floor' and ‘storage rooms 

in the center section of the basement', to give an 

example. We set a prior on the distribution of 

workflow states based on the distances between rooms 

in this section to guarantee that each workflow state is 

a continuous area within the building. 

 

C. CALCULATE NEW FEATURE VARIABLES OF 

THE DATA 

Compute a number of important data elements, such as 

the length of each patient's treatment record, the day of 

the week the treatment was given, and the treatment's 

time range, in order to create the PTTP model. In order 

to make the initial raw data easier to process, feature 

extraction is an essential step in reducing its 

dimensionality into more manageable categories. The 

main issue with these large data sets is the large 

number of variables, which makes processing them 

computationally demanding. 

 

D. Work Flow Scheduling 

In work flow scheduling, the PTTP algorithm 

improves clinical outcome prediction accuracy and 

results. Assuring real-time payment based on resource 

utilization, this scheduling procedure entails allocating 

user-submitted workflow tasks to appropriate 

computer resources for execution. The completion 

time and cost of completing workflow tasks two 

important measures of service quality are the main 

concerns of average consumers. 

 
FIGURE 1. BLOCK DIAGRAM 

5. ALGORITHM DETAILS 

 

Hospital history data is used to develop a Patient 

Treatment Time Prediction (PTTP) model. PTTP, 

which is the total of all patients' waiting times in the 

present line, predicts the waiting time for each 

treatment task. A Hospital Queuing Recommendation 

(HQR) system then suggests an effective and easy 

treatment plan with the shortest waiting time for the 

patient based on the desired treatment tasks for each 

patient. 

 

for i =1 to k do  

create training subset straini ←sampling(STrain);  

create OOB subset sOOBi ←(STrain−straini);  

create an empty CART tree hi; 

 for each independent variable yj in straini do 

 calculate candidate split points vs ←yj; 

 for each vp in vs do  

calculate the best split point (yj,vp)  

end for  

append node Node(yj, vp) to hi; 

 split data for left branch RL(yj,vp) ←{x|yj ≤ vp};  

split data for right branch RR(yj,vp) ←{x|yj > vp};  

for each data R in{RL(yj,vp), RR(yj,vp)}do  

calculate ɸ(vpL|yj)←maxi ɸ(vi|y); 

 if (ɸ(vp(L|R)|yj)≥ ɸ(vp|yj)) then  

append sub node Node(yj,vp(L|R)) to Node(yj,vp) as 

multi-branch; 

split data to two forks RL(yj,vpL) and RR(yj,vpR); 

else 

collect cleaned data for leaf node Dleaf ← (IL ≤ yj ≤ 

OL); 

 calculate mean value of leaf node c ← 1/k∑Dleaf ;  

end if 

 end for 

 remove yj from strain;  

end for 

 calculate accuracy CAi ← I(hi(x)=y)/ 

I(hi(x)=y)+PI(hi(x)=z)  

for hi by testing sOOBi; end for PTTPRF ←H (X, Ѳj) 

← 1/ k∑ k i=1 [CAi × hi]; 

 return PTTPRF. 

 

6. RESULT ANALYSIS 

 

The findings indicate that in a clinical setting, the 

PTTP (Patient Treatment Time Prediction) model 

performs better at forecasting patient wait times. Our 
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results, which are based on a thorough examination of 

state-of-the-art methods including data processing, 

inference techniques, and model evaluation standards, 

verify that the PTTP model outperforms other options. 

By correctly forecasting patient treatment durations, 

the model has the potential to significantly increase 

healthcare efficiency, as seen by its accomplishment 

of surpassing existing benchmarks. Notwithstanding 

these encouraging findings, our analysis reveals a 

number of limitations brought on by widely held 

modeling assumptions, highlighting the significance 

of continued study to overcome these limitations and 

enhance the predictive capabilities of next healthcare 

models. 

 

One of the most widely used metrics for assessing 

classification performance is accuracy, which is 

defined as the proportion of correctly segmented 

samples to all samples.  

Accuracy = TP/ (TP+ FN) 

Precision: Precision is a measure of how many positive 

class forecasts actually belong to the positive class. It 

is calculated in the way that follows. 

 

Precision = TP / (TP + FP) 

Recall or sensitivity is the proportion of true positives 

to all (actual) positives in the data. Recall and 

sensitivity are interchangeable. 

 

Recall = TP / (TP + FN) 

Specificity is defined as the proportion of true 

negatives to all negatives in the data. The program's 

precise classification for each person who is genuinely 

healthy is known as specificity.  

 

Specificity = TN / (TN + FP) 

algorith

m 

accura

cy 

precisi

on 

sensitivi

ty 

specifici

ty 

PTTP 90.74 89.74 97.22 

 

77.78 

NN 85.19 87.84 90.27 75 

NB 80.56 90.48 79.16 83.33 

Linear 84.26 86.67 61.67 88.89 

 

Table 1. Comparison Table 

 
Figure 2.Comparison graph 

 

7. CONCLUSION 

 

By reducing wait times, improving patient-provider 

communication, and supporting healthcare 

practitioners in making well-informed decisions about 

resource allocation, the application of Patient 

Treatment Time Prediction (PTTP) models is a useful 

strategy to improve patient care. Based on the patient's 

particular characteristics and the status of the 

healthcare system at the time, these models use 

machine learning algorithms to predict how long a 

patient will require therapy. By prioritizing patients, 

this data can be used to improve patient flow, decrease 

wait times, more effectively allocate resources, and 

improve patient-provider communication. 

 

8. FUTURE WORK 

 

Using large and diverse datasets, using new machine 

learning techniques, and adding additional features to 

the models are some ways to improve the accuracy of 

PTTP models. Improving PTTP models' 

interpretability would help medical professionals 

understand how they work and have faith in their 

forecasts. Additionally, creating PTTP models for 

various patient demographics and medical problems 

would allow for customization to meet the particular 

needs of various patient groups. 
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