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Abstract—This paper presents a comprehensive 

approach to securing data transmission in IoT-based 

healthcare systems through Whale-based Advanced 

Encryption Standard (WbAES) and edge computing 

integration. The research addresses the critical 

challenges of maintaining data privacy and security in 

healthcare IoT devices while ensuring efficient and 

reliable communication under resource constraints. We 

propose a novel Medical Edge Computing (MEC) 

framework that combines bio-inspired encryption 

algorithms with edge-based processing to achieve both 

robust security and low-latency performance. Our 

WbAES implementation demonstrates significant 

improvements in computational efficiency and energy 

consumption compared to traditional approaches, 

making it particularly suitable for resource-constrained 

healthcare IoT environments. Experimental results 

with up to 500 concurrent devices validate the system's 

scalability, reliability, and security characteristics. 

 

Index Terms—Medical Edge Computing (MEC), 

Whale-based AES encryption, healthcare IoT security, 

real-time data processing, priority-based analysis, 

multicast device discovery, resource constrained 

devices 

 

I. INTRODUCTION 

 

The integration of Internet of Things (IoT) devices 

into healthcare systems has initiated a paradigm shift 

in medical data collection and processing. While 

these connected medical devices offer real-time 

patient monitoring capabilities, they also present 

significant challenges in security, efficiency, and 

scalability. Traditional cloud-based systems, despite 

their storage benefits, often fall short in time-

sensitive medical applications due to latency issues, 

bandwidth constraints, and security vulnerabilities. 

 

Recent studies have highlighted these challenges, 

with researchers emphasizing the need for 

trustworthy authentication and data preservation in 

digital healthcare systems[1]. The necessity for 

enhanced security protocols has been particularly 

emphasized[2], while others have suggested 

combining emerging technologies like fog 

computing and blockchain for improved security and 

reliability[3]. A comprehensive survey by Newaz et 

al.[4] highlights the critical security and privacy 

challenges in modern healthcare systems, while 

Wang et al.[5] demonstrate the potential of Medical 

Edge Computing in healthcare applications. To 

address these challenges, we propose a Medical Edge 

Computing (MEC) system that processes and secures 

medical sensor data at the network edge. Our solution 

incorporates: 

● A Whale-based Advanced Encryption. Standard 

(WbAES) for robust data encryption. 

● Automatic discovery mechanisms for medical 

sensors and MEC layer. 

● Real-time data processing capabilities. 

● A scalable microservices based architecture. 

 

The key objectives of this research include: 

● Securing medical data transmission through 

WbAES implementation. 

● Reducing latency through edge-based 

processing. 

● Enabling seamless device integration through 

auto-discovery. 

● Achieving scalability via microservices 

architecture. 

● Ensuring robust error handling and system 

reliability. 

This paper presents our approach to developing a 

secure, efficient, and scalable framework for 

healthcare IoT systems, addressing the critical needs 

of modern medical data processing while maintaining 

high standards of data privacy and security. 

 

II. RELATED WORK 

 

Recent advancements in healthcare IoT have 

highlighted several critical challenges in security, 

efficiency, and real-time processing. We analyze 

existing solutions across three key areas: security 

frameworks, edge computing integration, and 

authentication mechanisms. 
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A. Security Frameworks 

Traditional healthcare IoT implementations relied on 

centralized architectures with standard encryption 

protocols, which proved inadequate for large-scale 

deployments. These systems typically struggled with 

handling more than 100-150 concurrent device 

connections and showed significant latency issues, 

particularly in emergency scenarios requiring real-

time monitoring[2]. Recent work by Lee et al.[6] 

demonstrates the potential of blockchain-based 

architectures for secure health record exchange, 

though with significant computational overhead. 

Irshad et al.[2] introduced a Whale-based Attribute 

Encryption Scheme (WbAES) that demonstrated 

substantial reduction in computational overhead 

compared to traditional AES implementations. 

Building upon the foundational work of Mirjalili and 

Lewis[7] in whale optimization algorithms, and their 

subsequent applications in various domains[8], our 

approach employs attribute-based encryption using 

whale optimization algorithm behavior, which 

transforms plain data to ciphertexts and adjusts the 

whale fitness to generate suitable master public and 

secret keys. The system achieved impressive results, 

including: 

● Reduced execution time of 11s for 20 sensors. 

● Energy consumption of 0.000053 Wh for 20 

sensors. 

● Throughput of 812 Kbps for 20 sensors. 

● Accuracy of 98.56% for 20 sensors. 

● Computational cost of 0.19 ms for 20 sensors. 

 

However, while their approach showed promising 

results in resource-constrained environments, it 

exhibited limitations in handling multiple 

simultaneous device connections and showed 

inconsistent performance under high-load scenarios. 

Additionally, their implementation faced challenges 

in attribute selection and prediction coverage, which 

could impact the system’s reliability in certain 

healthcare environments. 

 

B. Edge Computing Integration 

Shukla et al.[3] demonstrated significant 

improvements through fog computing integration 

with healthcare IoT, implementing an Advanced 

Signature-Based Encryption (ASE) system. Their 

hierarchical processing architecture successfully 

handled up to 1000 data points per second per device. 

However, their reliance on blockchain technology 

introduced new challenges in power consumption 

and implementation complexity. 

C. Authentication and Security Challenges 

Almaiah et al.[1] proposed a hybrid decentralized 

authentication model that achieved: 

● 40% reduction in validation latency 

● Enhanced security through deep learning 

integration 

● Improved device authentication scalability 

 

Current solutions exhibit several common 

limitations: 

● High computational overhead in blockchain-

based approaches 

● Limited scalability in real-world healthcare 

environments 

● Energy efficiency concerns in resource-

constrained devices 

● Vulnerability to man-in-the-middle attacks 

during device pairing 

● Challenges in key management and data 

integrity verification at scale 

 

Our work addresses these limitations through an 

innovative MEC system that combines enhanced 

WbAES implementation with efficient edge 

processing and automated device discovery. Unlike 

previous approaches, our solution focuses on 

practical applicability in healthcare environments 

while maintaining robust security standards and real-

time processing capabilities. 

 

III. PROPOSED SYSTEM ARCHITECTURE 

 

Our Medical Edge Computing (MEC) system 

implements a distributed architecture designed for 

secure medical data transmission and processing at 

the network edge. The system utilizes a 

microservices-based approach with three primary 

components working in harmony to ensure data 

security, real-time processing, and scalability. 

 

A. Core Components 

1) MEC Server: The central server, implemented 

in Rust for memory safety and performance, 

serves as the primary processing unit with the 

following responsibilities: 

● Connection management through UDP-

based discovery protocol with automatic 

failover 

● Real-time data processing using priority-

based analysis with configurable thresholds 

● Security operations using enhanced WbAES 

implementation with parallel processing 
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● Redis-based distributed storage 

management with cluster replication 

● Load balancing across multiple MEC nodes 

using consistent hashing 

 

2) Medical Devices: The device layer 

implements: 

● Automated server discovery using multicast 

UDP (239.255.255.250:1900) 

● Local data encryption with WbAES (256-bit 

keys) 

● Real-time data transmission with 

configurable sampling rates (1-1000 Hz) 

● Error recovery with exponential back off (1-

30s intervals) 

● Local data buffering during network 

interruptions 

 

B. Security Implementation 

Our enhanced WbAES implementation improves 

upon traditional approaches through: 

● Bio-inspired key generation using Whale 

Optimization Algorithm. 

- Population size: 20 whales for optimal 

convergence. 

- Maximum iterations: 50 with early stopping 

criteria. 

- Search space dimension: 32 (AES-256) with 

entropy validation. 

- Fitness function incorporating key strength 

metrics 

 

● 30-second key rotation intervals with parallel 

processing. 

- Pre-generation of next key set during 

current interval. 

- Parallel key distribution to all connected 

devices. 

- Graceful fallback mechanism for failed 

rotations. 

 

● Version control for backward compatibility. 

- Support for multiple encryption versions. 

- Automatic protocol negotiation. 

- Seamless version transitions 

 

C. Auto-Discovery Protocol 

The system implements a UDP-based multicast 

discovery protocol: 

● Network Configuration: 

- Multicast address: 239.255.255.250 

- Port: 1900 

- TTL: 4 (subnet-restricted) 

- Maximum packet size: 1024 bytes 

 

● Protocol Features: 

- Announcement interval: 1 second with jitter. 

- Capability negotiation for encryption 

methods. 

- Health monitoring with 5-second intervals. 

- Automatic server failover within 3 seconds 

 

D. Data Processing Pipeline 

The system implements priority-based data 

processing with: 

● Priority Analysis: 

- Real-time classification based on 

transmission patterns. 

- Data volume analysis for different sensor 

types (ECG, BP). 

- Historical pattern analysis for transmission 

regularity. 

- Weighted scoring system (transmission: 

60%, volume: 20%, pattern: 20%) 

 

● Storage Architecture: 

- Redis cluster with node replication 

- Time-series data organization (1ms 

precision) 

- Automatic data expiration policies 

- Query optimization with indexing 

 

E. Scalability Features 

The architecture ensures system reliability through: 

● Device Management: 

- UDP-based multicast device discovery. 

- Automatic device registration and status 

tracking. 

- Device capability negotiation and health 

monitoring. 

- Configurable clean-up of stale device 

connections. 

 

● Error Handling: 

- Redis-based connection pooling. 

- Comprehensive error logging with 

timestamps. 

- Automatic device reconnection 

mechanisms. 

- Data buffering during network interruptions 

 

The proposed architecture addresses the limitations 

identified in existing solutions by providing a 

comprehensive framework for secure, efficient, and 
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scalable medical data processing at the network edge. 

Fig. 1 illustrates the data flow between components, 

demonstrating the system’s ability to handle multiple 

concurrent device connections while maintaining 

security and performance requirements. 

 

IV. IMPLEMENTATION 

 

The MEC system is implemented primarily in Rust, 

chosen for its memory safety and performance 

characteristics. The implementation focuses on four 

key areas: encryption, data processing, device 

discovery, and storage management. 

 

A. WbAES Implementation 

Our WbAES implementation extends the traditional 

AES encryption through bio-inspired optimization, 

as illustrated in Fig. 1: 

 

1) Optimization Parameters: The whale 

optimization process uses the following fixed 

parameters: 

● Population size: 20 whales 

● Maximum iterations: 50 

● Search space dimension: 32 (matching 

AES-256 key length) 

● Search space bounds: [-1.0, 1.0] 

 

2) Key Generation Process: The key generation 

process implements two main behaviors based 

on a probability factor: 

 

1) Encircling Prey (r < 0.5): 

● Updates whale positions relative to the best 

solution 

● Implements local search when b < 0.5 

● Performs exploitation of the search space 

when b >= 0.5 

 

2) Random Search (r >= 0.5): 

● Performs exploration of the search space 

● Updates positions using random movement 

factors 

● Maintains search space bounds through 

value clamping 

 

3) Encryption Pipeline: The encryption process 

utilizes parallel processing through the following 

steps: 

1) Data Preparation: 

● Implements PKCS7 padding for non-

aligned data blocks. 

● Validates input data length and padding. 

 

2) Block Processing: 

● Parallel processing of 16-byte blocks using 

rayon 

● Direct integration with AES-256 block 

operations 

● Automatic thread pool management for 

optimal performance 

 

B. Priority Analysis System 

The priority analyzer implements a metadata-based 

approach, drawing inspiration from recent advances 

in machine learning for medical data analysis[9]: 

 

● Priority Calculation: 

 

  (1) 

Where: 

● : Transmission frequency score (0.0-1.0) 

● : Data volume score (0.0-1.0) 

● : Pattern analysis score (0.0-1.0) 

 

● Priority Calculation: 

- Historical pattern analysis using sliding 

windows 

- Device-specific behavior tracking 

- Anomaly detection through pattern 

deviation 

 

C. Priority Analysis System 

The system implements a UDP-based discovery 

mechanism: 

 

● Discovery Process: 

- Multicast announcements on port 1900 

- Device capability negotiation 

- Automatic stale device cleanup 

 

● Device Registration: 

- Redis-backed device registry 

- State-machine-based connection 

management 

- Automatic health monitoring 
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Fig. 1. WbAES Key Generation Process showing the 

whale optimization stages and final key derivation. 

 

D. Storage Architecture 

The data storage system utilizes Redis with a 

hierarchical organization: 

● Key Structure: 

- device:id:raw - Raw encrypted data 

- device:id:encrypted - Base64 encoded data 

- readings:id:timestamp - Time-series data 

 

● Connection Management: 

- Thread pool size: num cpus × 4 

- Connection timeouts: 30s wait, 60s recycle 

- Priority-based task distribution 

 

The implementation leverages Rust’s ownership 

system and smart pointers (Arc, RwLock) for thread-

safe resource management, ensuring efficient 

concurrent operation while maintaining memory 

safety. 

 

V. RESULTS AND ANALYSIS 

 

We evaluated our MEC system’s performance under 

various load conditions, focusing on throughput, 

latency, and reliability metrics. Tests were conducted 

with different device loads ranging from 50 to 500 

concurrent devices. 

TABLE I: SYSTEM CONFIGURATION 

Component Specification 

MEC Server Memory 512MB 

CPU Cores 2 

Redis Connections 20 

Device Memory 256MB per device 

Network Simulated delays 

enabled 

 

TABLE II: SYSTEM PERFORMANCE METRICS 

UNDER DIFFERENT LOADS 

Metric 50 

Devices 

100 

Devices 

500 

Devices 

Throughp

ut (req/s) 

172.3 190.4 905.4 

Avg. 

Latency 

(ms) 

29.8 33.9 484.6 

95th 

Percentile 

(ms) 

53.2 96.2 751.1 

Success 

Rate (%) 

93.1 91.2 87.3 

 

TABLE III: AVERAGE PROCESSING STAGE 

TIMINGS 

Processing Stage Time (ms) 

Device Discovery 0.10 

Registration 1.55 

WbAES Operations 20.3 

Priority Analysis 3.6 

Storage Operations 4.1 

Total Pipeline 29.65 
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TABLE III: RESOURCE USAGE UNDER 

DIFFERENT LOADS 

Resource 50 Dev. 100 Dev. 500 Dev. 

Memory 

(MB) 

334 412 610 

CPU 

Usage (%) 

84 96 115 

 

A. Experimental Setup 

The experimental evaluation of our MEC system was 

conducted on a virtualized testbed configured to 

simulate real-world healthcare environments. Table I 

outlines the system configuration used for testing. 

 

The MEC server was deployed on a VM with 2 CPU 

cores and 512MB RAM, running Ubuntu 20.04 LTS 

with kernel version 5.4.0. Redis version 6.2.6 was 

configured with 20 maximum connections and 

cluster mode enabled with three nodes for replication. 

The medical devices were simulated using custom 

software that accurately replicated the behavior 

patterns of commercial medical IoT devices, each 

allocated 256MB of memory. 

 

Network conditions were simulated using the Linux 

Traffic Control (tc) utility to introduce realistic 

network characteristics: 

 

● Base latency: 5-15ms (uniform distribution) 

● Packet loss: 0.01% (normal operation), 0.5% 

(stress testing) 

● Jitter: 2-5ms (normal operation), 5-15ms (stress 

testing) 

 

Tests were conducted under three primary load 

scenarios: 

 

1. Normal load: 50 concurrent devices 

2. Medium load: 100 concurrent devices 

3. High load: 500 concurrent devices 

 

For each scenario, the following metrics were 

captured: 

 

● Throughput (requests per second) 

● Average latency (milliseconds) 

● 95th percentile latency (milliseconds) 

● Success rate (percentage) 

● Resource utilization (CPU, memory) 

 

The test duration was set to 10 minutes per scenario 

with a 60-second warm-up period to ensure steady-

state operation before measurements commenced. 

Each test was repeated three times, and the average 

results are reported. 

 

B. Performance Analysis 

The performance metrics collected during our 

experimental evaluation are presented in Table II. 

While the system still demonstrates scalability, 

performance degradation is evident under increased 

load, indicating areas for optimization. 

 

Under normal load conditions (50 devices), the 

system achieved a throughput of 172.3 requests per 

second with an average latency of 29.8ms. This level 

of performance remains within the operational 

thresholds of many medical monitoring applications, 

which typically operate at sampling rates between 1–

100Hz, though the increased latency may affect use 

cases demanding real-time responsiveness. 

 

As the load increased to 100 devices, the system 

showed modest scalability, reaching 190.4 requests 

per second, but average latency rose to 33.9ms, 

representing a noticeable increase. The 95th 

percentile latency increased to 96.2ms, indicating a 

growing frequency of processing delays during peak 

intervals. 

 

Under high load conditions (500 devices), the system 

handled 905.4 requests per second, which, while 

significantly higher, came at the cost of much higher 

latency (484.6ms). This elevated latency may be 

unsuitable for latency-sensitive applications. The 

success rate also declined, dropping to 87.3%, 

reflecting the system's strain under heavy load. 

 

The system maintained high reliability (93.1%) under 

normal load and moderate reliability (91.2%) at 

medium load, with performance degrading more 

noticeably (87.3%) under high load. While these 

results highlight the system's resilience, further 

optimization would be necessary to meet strict 

reliability requirements in critical healthcare 

applications under peak demand. 

 

C. Processing Pipeline Performance 

To better understand the system's behavior, we 

analyzed the time spent in each processing stage of 

the pipeline. Table III presents the updated average 

time consumption for each stage under normal load 

conditions (50 devices). 
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The WbAES operations remained the dominant 

contributor, consuming 20.8ms (approximately 66% 

of the total pipeline time), which aligns with 

expectations given the complexity of the encryption 

and bio-inspired key generation processes. The key 

generation step continues to account for a substantial 

portion of the encryption cost. 

 

The device discovery and registration stages, though 

slightly more time-consuming than before, remained 

efficient with a combined time of 1.68ms, thanks to 

the use of UDP-based multicast discovery and a 

Redis-backed registration mechanism. 

 

Priority analysis and storage operations accounted for 

3.6ms and 4.2ms respectively. The increase in these 

values suggests that system metadata handling and 

I/O operations are becoming more significant as data 

volume and device count increase. Priority analysis 

still functions without requiring decryption, helping 

mitigate processing overhead. 

 

The total pipeline time rose to 31.48ms, which 

remains in reasonable proximity to the observed 

average latency of 29.8ms under normal load, 

suggesting that the majority of latency is attributed 

directly to the core processing pipeline rather than 

ancillary overhead. 

 

Analysis of processing time distribution across 

different load levels revealed: 

 

● At normal load (50 devices): WbAES (66%), 

Storage (13%), Priority Analysis (11%), 

Registration (6%), Discovery (1.5%) 

● At medium load (100 devices): WbAES (63%), 

Storage (16%), Priority Analysis (13%), 

Registration (6%), Discovery (2%) 

● At high load (500 devices): WbAES (49%), 

Storage (25%), Priority Analysis (19%), 

Registration (5.5%), Discovery (1.5%) 

 

This trend indicates that while WbAES remains a 

core contributor, its relative share in total latency 

decreases as the system scales, with storage and 

priority analysis becoming more prominent 

bottlenecks. These findings suggest that future 

optimization efforts should focus on enhancing 

storage throughput and refining metadata handling 

for better performance in large-scale deployments. 

 

D. Processing Pipeline Performance 

These results demonstrate that our system continues 

to fulfil its core design objectives of scalability, 

reliability, and security, while maintaining 

acceptable latency levels for a wide range of medical 

applications. Although performance naturally 

degrades under high load, the system maintains 

strong throughput and reliability (≥87%), confirming 

its robustness even under stress. 

 

With latency and success rates well within 

operational tolerances under normal and medium 

loads, the architecture remains well-suited for 

deployment in real-time healthcare environments. 

Furthermore, the insights gained from performance 

bottlenecks at scale—particularly in encryption and 

storage—offer clear avenues for future optimization, 

reinforcing the system’s potential for broader clinical 

adoption. 

 

E. Priority Analysis Performance 

 

TABLE IV: PRIORITY ANALYSIS TEST 

RESULTS 

Device Pattern Data 

Volume 

Expect

ed 

Actual 

dev1 100ms 

interval 

1000 

readings 

Critical Critical 

dev2 2s 

interval 

200 

readings 

High Critical 

dev3 5s 

interval 

200 

readings 

High High 

dev4 20s 

interval 

100 

readings 

Mediu

m 

High 

dev5 60s 

interval 

50 

readings 

Low Low 

Our priority analysis system was evaluated through 

extensive testing with different device transmission 

patterns and data volumes. Notably, the priority 

analysis operates solely on transmission metadata 

(timing, volume, patterns) and does not require 

decryption of the actual medical data, enhancing 

both security and performance. The system uses a 

weighted scoring mechanism: 

 

  (1) 

Where: 

● : Transmission frequency score (0.0-1.0) 
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● : Data volume score (0.0-1.0) 

● : Pattern analysis score (0.0-1.0) 

 

This metadata-based approach allows the system to 

make priority decisions without exposing sensitive 

medical readings, as the scoring components are 

derived entirely from transmission characteristics 

rather than the encrypted payload contents. 

 

Priority thresholds are defined as: 

● Critical:  

● High:  

● Medium:  

● Low:  

 

Test results with five representative device scenarios 

demonstrated the system’s behavior: 

 

The system achieved 60% accuracy in priority 

classification, with perfect accuracy for Critical and 

Low priorities. Analysis of transmission patterns 

showed: 

 

● Transmission Frequency Scoring: 

- < 200ms: 1.0 (Very frequent) 

- < 1s: 0.9 (Frequent) 

- < 5s: 0.8 (Regular fast) 

- < 15s: 0.7 (Regular medium) 

- < 30s: 0.5 (Regular slow) 

- < 60s: 0.3 (Slow) 

- ≥ 60s: 0.2 (Very slow) 

 

● Data Volume Impact: 

- Critical devices maintained high volume 

(1000+ readings) 

- High priority showed moderate volume (200 

readings) 

- Medium and Low priorities demonstrated 

reduced volumes (50-100 readings) 

 

● Pattern Recognition: 

- Regular patterns stabilized after 2-3 

transmissions 

- Irregular patterns (dev3) showed 

appropriate priority adjustment 

- Low-priority devices exhibited consistent 

pattern recognition 

 

The results indicate strong performance in 

identifying critical and low-priority cases, with some 

overlap in the medium-to-high priority range. This 

behavior aligns with the system’s design goal of 

ensuring critical data receives immediate attention 

while maintaining efficient resource utilization for 

lower priority transmissions. 

 

VI. CONCLUSION 

 

This paper presented a Medical Edge Computing 

(MEC) system designed to address key challenges in 

IoT-based healthcare environments through a novel 

combination of bio-inspired encryption, edge 

computing, and real-time data processing. Despite 

encountering some performance degradation under 

extreme load, our implementation demonstrates 

several noteworthy achievements: 

 

● Enhanced Security: The WbAES encryption 

module continues to offer strong protection for 

sensitive medical data. Even under high load 

(500 devices), the system maintained a reliability 

rate of 87.3%, underscoring its robustness in 

resource-constrained edge scenarios. 

● Efficient Processing: The system sustains 

acceptable average latency (29.8ms under 

normal load) while executing complex 

processing tasks, including encryption, 

metadata-based prioritization, and secure data 

storage. 

● Scalable Architecture: Throughput scaled from 

171.9 req/s (50 devices) to over 835.7 req/s (500 

devices), demonstrating the system's potential to 

adapt to growing device counts and data 

volumes, with graceful performance degradation 

rather than failure. 

● Resource Efficiency: Even with increased 

processing demands, the system maintained 

reasonable resource usage, confirming its 

suitability for edge deployment without 

requiring high-end infrastructure. 

 

A. Future Work 

Several avenues for continued development and 

enhancement have been identified: 

 

● Security Enhancement: Further strengthening of 

the encryption layer through integration of 

additional bio-inspired key generation schemes 

and expanded adversarial testing protocols. 

● Distributed Architecture: Expansion to support 

multi-region MEC clusters with dynamic load 

balancing and redundancy to ensure seamless 

operation under varying network conditions. 
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● Healthcare Compliance: Incorporation of 

features to enforce compliance with standards 

such as HIPAA, GDPR, and DISHA, ensuring 

legal and ethical data handling practices. 

● AI Integration: Embedding machine learning 

models for real-time anomaly detection, 

predictive health analytics, and adaptive 

prioritization of medical data streams. 

 

The demonstrated performance and security 

characteristics make our MEC system a viable 

solution for healthcare environments requiring real-

time, secure data processing at the network edge. 
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