
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177901   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2901 

Hybrid Position Analysis Integrating Video and Motion 

Sensors for Enhanced Tracking  
 

 

Dr. V. Dooslin Mercy Bai1, Ashok D2, Ashwin Siddharth S3, Bavani S4, Dhanush T5 

1,2,3,4,5 Dept. of Biomedical Engineering, Sri Shakthi Institute of Engineering and Technology, 

Coimbatore, India 

 

Abstract—This invention presents an AI-powered 

biomechanical posture analysis system that integrates 

webcam video data and motion sensors to provide real-

time posture monitoring, analysis, and corrective 

feedback. The system employs computer vision algorithms 

to detect body landmarks and calculate joint angles, while 

motion sensors (such as accelerometers, gyroscopes, and 

inertial measurement units) measure angular deviations, 

enhancing accuracy beyond standalone vision-based 

methods. The AI model classifies posture patterns based 

on predefined biomechanical thresholds, identifying 

improper postures that may lead to musculoskeletal 

disorders. Upon detecting a deviation, the system triggers 

an alert through visual notifications, audio cues, or 

haptic feedback, prompting users to adjust their posture. 

The system can be applied in various settings, including 

office ergonomics, fitness training, physiotherapy, and 

industrial workplaces, where prolonged improper posture 

may result in chronic health issues.  

  

Unlike conventional posture correction methods that 

depend only on webcams or wearable devices, this hybrid 

approach leverages the advantages of both technologies, 

offering improved accuracy and flexibility across various 

settings. The machine learning component of the system 

enables personalized posture tracking, adapting to users' 

individual biomechanics and habits over time. 

Additionally, an analytics dashboard provides long-term 

posture insights, helping users track improvements and 

optimize ergonomics. This invention offers a cost-

effective, user-friendly, and privacy-conscious solution 

for individuals and organizations aiming to improve 

posture and prevent health complications associated with 

poor ergonomics. By integrating AI-based vision 

processing with sensor-based motion tracking, this system 

ensures real-time, intelligent posture monitoring and 

correction, contributing to enhanced well-being and 

productivity.  

  

 Index Term- Posture Analysis, Motion Sensors, Video-

Based Tracking, Pose Estimation, Ergonomics 

 

I. INTRODUCTION 

 

Poor posture is a significant contributor to 

musculoskeletal disorders, particularly in 

environments where individuals are subjected to 

prolonged static positions or repetitive movements. 

With the increasing reliance on computer-based work 

and sedentary lifestyles, the demand for effective 

posture monitoring and correction systems has grown 

substantially. Traditional solutions—relying either 

on vision-based systems or wearable motion 

sensors—often suffer from limited accuracy and 

contextual adaptability. 

This paper presents an AI-powered biomechanical 

posture analysis system that integrates webcam-

based video data with motion sensor inputs to deliver 

real-time posture detection and correction. By 

combining computer vision algorithms for body 

landmark detection and joint angle calculation with 

data from accelerometers, gyroscopes, and inertial 

measurement units (IMUs), the system achieves 

enhanced precision in detecting postural deviations. 

An embedded machine learning model classifies 

posture patterns based on biomechanical thresholds 

and user-specific parameters, enabling personalized 

and adaptive posture assessment. When improper 

posture is identified, the system generates real-time 

corrective feedback through visual, auditory, or 

haptic cues, facilitating immediate user response. 

Additionally, an integrated analytics dashboard 

provides long-term posture insights, aiding users in 

understanding trends and making informed 

ergonomic improvements. 

This hybrid approach offers several advantages over 

conventional systems, including improved accuracy, 

adaptability to diverse environments, and support for 

continuous learning. Potential applications span 

across office ergonomics, physiotherapy, fitness 

training, and industrial safety. The proposed system 

delivers a cost-effective, user-friendly, and privacy-

conscious solution aimed at enhancing occupational 

health and overall well-being. 

 

II. LITERATURE REVIEW 

 

Advancements in human posture recognition have 
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been primarily driven by developments in computer 

vision and wearable sensor technologies. Traditional 

camera-based systems, such as OpenPose [1] and 

MediaPipe Pose [2], demonstrated high accuracy in 

body landmark detection, enabling real-time pose 

estimation from video feeds. These systems utilize 

deep learning models to predict human keypoints but 

can be affected by occlusion, lighting variations, and 

background clutter. 

To enhance robustness, researchers have explored 

combining vision data with motion sensors. Inertial 

Measurement Units (IMUs), containing 

accelerometers and gyroscopes, have been widely 

used to track angular motion and body orientation [3]. 

Studies show that sensor fusion, which integrates 

video-based tracking with inertial data, significantly 

improves posture monitoring accuracy in dynamic 

and cluttered environments [4]. 

Hybrid systems that integrate multiple sensing 

modalities are increasingly favored for ergonomic 

assessments. For example, Feng et al. [5] proposed a 

real-time posture monitoring framework using a 

fusion of vision-based skeletal tracking and IMU 

sensors, achieving better accuracy in detecting 

slouching and asymmetrical postures. Similarly, 

Karatsidis et al. [6] developed a wearable inertial 

motion capture system that was validated against 

optical motion capture systems for clinical gait 

analysis. 

Recent works also emphasize the importance of 

personalized posture correction. Machine learning 

algorithms have been trained to adapt to individual 

body structures and movement patterns [7], reducing 

false-positive alerts and providing tailored 

ergonomic feedback. AI-driven posture monitoring 

has found applications in office ergonomics [8], 

physiotherapy rehabilitation [9], and industrial 

workplaces [10], where real-time correction can 

prevent long-term musculoskeletal disorders. 

Given these findings, the proposed system leverages 

a hybrid approach by combining laptop camera-based 

pose estimation with motion sensor data for enhanced 

accuracy. An AI model processes fused data streams 

to classify posture deviations, providing users with 

real-time corrective feedback. This hybrid strategy 

ensures reliable posture monitoring even under 

challenging environmental conditions and user 

variability. 

 

III. METHODOLOGY 

 

The proposed AI-powered biomechanical posture 

analysis system adopts a hybrid framework that 

integrates video-based pose estimation with motion 

sensor data fusion to enhance real-time posture 

monitoring and correction accuracy. The system 

architecture consists of five core modules: (i) data 

acquisition, (ii) pose estimation, (iii) sensor 

integration, (iv) posture classification using machine 

learning, and (v) real-time feedback generation. 

 

A. Data Acquisition 

Posture data is collected through two primary 

sources: (1) a webcam capturing 2D video frames of 

the user, and (2) wearable motion sensors such as 

accelerometers, gyroscopes, and inertial 

measurement units (IMUs). The video feed captures 

the full-body view, while the motion sensors are 

strategically placed on key body joints (e.g., 

shoulders, spine, hips) to measure angular 

displacements and body orientation. 

 

B. Pose Estimation using Computer Vision 

The captured video frames are processed using pose 

estimation algorithms based on convolutional neural 

networks (CNNs), such as OpenPose or MediaPipe. 

These models detect body landmarks (e.g., neck, 

elbows, spine, hips) and compute joint angles in real 

time. This allows for a non-intrusive, camera-based 

analysis of body posture without requiring markers or 

specialized equipment. 

 

C. Sensor Fusion and Calibration 

Motion sensor data is synchronized with the visual 

data using timestamp alignment. Sensor fusion 

techniques, such as Kalman filtering, are employed to 

combine vision-based joint angles with inertial data 

to improve overall precision and minimize drift 

errors. This hybrid approach overcomes individual 

limitations of standalone systems, providing a robust 

biomechanical analysis of posture. 

 

D. AI-based Posture Classification 

The fused data is fed into a machine learning model 

trained on labeled biomechanical posture patterns. 

Features such as joint angle deviations, body tilt, and 

symmetry are extracted and compared against 

predefined ergonomic thresholds. The model 

classifies the user’s posture into categories such as 

“neutral,” “slouched,” “leaning forward,” or “twisted 

spine,” and updates in real time. 

 

E. Feedback and Alert System 

Upon detecting a deviation from the optimal posture, 
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the system generates corrective feedback through 

multiple channels: 

 Visual notifications on the display screen. 

 Audio cues such as warning beeps. 

 Haptic feedback via vibration modules in 

wearables. 

This feedback mechanism ensures immediate 

awareness and encourages corrective behaviour. 

 
Fig: 3.1 

 

IV. IMPLEMENTATION 

 

The proposed hybrid posture analysis system was 

implemented using accessible hardware and open-

source software to ensure cost-effectiveness and ease 

of replication. The system architecture supports real-

time processing and integrates both visual data from 

a webcam and motion data from inertial sensors. 

 

A.Hardware Components 

 Laptop Camera: A built-in HD laptop webcam 

(720p, 30 fps) was used to capture continuous 

video streams of the user for pose estimation. 

The camera was positioned to provide a clear 

frontal view of the subject. 

 Inertial Measurement Units (IMUs): Compact 

sensor modules integrating a 3-axis 

accelerometer and 3-axis gyroscope were placed 

on key body regions such as the upper back and 

shoulders to capture angular deviations. 

 Microcontroller: An Arduino Uno was used to 

interface with the IMUs and transmit the sensor 

data to the computer through a USB serial 

connection. 

 Computer System: The system was run on a 

laptop equipped with an Intel Core i3 processor, 

4GB RAM, and Windows 10 OS. Despite 

limited computational resources, optimization 

techniques ensured smooth operation and low-

latency feedback. 

 

B. Software Environment 

 Python 3.x: Used for developing the core 

application, including data acquisition, fusion, 

and posture classification. 

 OpenCV: Utilized for processing the video 

stream, detecting the human figure, and 

displaying real-time feedback. 

 MediaPipe: Employed to perform pose 

estimation and extract body landmarks from 

video frames using the webcam. 

 Scikit-learn: Applied to train a lightweight 

machine learning model for posture 

classification using extracted joint angles and 

sensor inputs. 

 Arduino IDE: Used for programming the 

microcontroller to read and transmit sensor data. 

 Matplotlib: Deployed for visualizing posture 

metrics and plotting performance graphs during 

testing. 

 

V. EXPERIMENTAL SETUP 

 

To evaluate the performance of the proposed AI-

based biomechanical posture monitoring system, a 

series of structured experiments were conducted in a 

controlled indoor environment. The objective was to 

test the system’s ability to detect, classify, and 

respond to various postural deviations in real time 

using hybrid inputs from a webcam and wearable 

motion sensors. 

 

A. Setup Environment 

Experiments were carried out in a quiet, well-lit room 

to simulate typical office or home workstation 

conditions. The laptop, equipped with an integrated 

HD camera and running the main application, was 

placed on a stable desk at a distance of approximately 

1.2 meters from the participant. This positioning 

ensured a full upper-body view within the camera 

frame, enabling accurate pose detection. 

Wearable inertial sensors (IMUs) were securely 

attached to key anatomical points including: 

 The upper back (thoracic region) to detect 

slouching or leaning, 

 The left and right shoulders to monitor symmetry 

and tilt, 

 The lower back (lumbar region) to observe 

bending or forward flexion. 
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B. Data Collection Protocol 

Participants were instructed to perform a predefined 

set of postures, both correct and incorrect, while 

seated: 

1. Neutral posture (ergonomically correct, upright 

sitting), 

2. Forward head posture (head extended beyond 

shoulders), 

3. Slouched back (rounded spine, forward lean), 

4. Leaning to one side, 

5. Excessive spinal twist or rotation. 

Each posture was held for a fixed duration of 60 

seconds, during which synchronized data from the 

camera and sensors were recorded. This process was 

repeated three times per participant to ensure data 

consistency. Time-stamped logs were generated to 

align sensor readings with pose landmarks extracted 

from the video stream. 

 

C. Data Preprocessing 

Captured video frames were processed using 

MediaPipe to extract 2D coordinates of major body 

joints. From these, joint angles (e.g., neck-to-back, 

shoulder-to-spine) were computed. Simultaneously, 

sensor readings were filtered using a low-pass filter 

to remove high-frequency noise. Both data streams 

were normalized and formatted into feature vectors 

suitable for training and validation. 

 

D. Model Training and Validation 

A supervised machine learning model was developed 

using the labeled dataset, which was divided into 

80% for training and 20% for testing. Each sample 

was labeled with its corresponding posture class. 

Feature selection included joint angle variations, 

relative body landmark positions, and IMU 

orientation data. 

Model performance was evaluated using metrics 

such as: 

 Classification accuracy 

 Precision and recall 

 Response latency (time between deviation and 

alert) 

 

C. Real-Time Testing 

After training, the system was deployed in real-time 

mode. Participants repeated the posture set while the 

system continuously classified their posture and 

provided immediate feedback through visual and 

audio cues. The alert timing and classification 

accuracy were logged and later compared to 

manually annotated ground truth for final evaluation. 

VI. POSTURE SEGMENTATION AND 

RECOGNITION ALGORITHM 

 

The effectiveness of the proposed posture monitoring 

system relies on its ability to accurately segment 

body posture in real time and classify it into 

predefined ergonomic categories. This is achieved 

through a combination of pose estimation, sensor 

fusion, and machine learning-based recognition 

algorithms. 

 

A. Pose Segmentation using Vision Data 

The segmentation process begins with the webcam 

capturing a continuous stream of video frames. Each 

frame is passed to a pose estimation model, such as 

MediaPipe Pose, which identifies key body 

landmarks including the shoulders, elbows, spine, 

hips, and knees. These landmarks are represented as 

2D coordinates. 

From the detected points, joint angles are computed 

using geometric relationships. For example: 

 Neck angle = angle between the line connecting 

the shoulder and ear landmarks. 

 Spinal inclination = angle formed between the 

vertical axis and the line connecting shoulder to 

hip landmarks. 

 These angles are used to construct a pose vector, 

which represents the user’s body posture in that 

frame. 

 

B. Motion Sensor Data Integration 

 In parallel, data from the IMU sensors placed on 

key body segments is collected. The sensors 

provide: 

 Angular velocity 

 Linear acceleration 

 Orientation (pitch, roll, yaw) 

To enhance accuracy and reduce noise, data from the 

vision system and sensors are fused using a Kalman 

filter, which provides an optimized estimate of the 

true posture by combining both inputs. 

 

C. Temporal Segmentation 

The system uses a sliding time window (e.g., 2 

seconds) to analyze sequences of posture vectors, 

ensuring stability and accounting for momentary 

body shifts. Postures are only classified when 

consistent deviation is observed across multiple 

frames, minimizing false alerts. 

 

D. Posture Recognition Model 

A supervised machine learning classifier (e.g., 
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Random Forest, KNN, or a lightweight Neural 

Network) is trained using labeled data comprising 

feature vectors extracted from the pose and sensor 

data. 

Input Features: 

 Joint angles (neck, spine, shoulder tilt) 

 Orientation values from IMUs 

 Landmark symmetry (left-right shoulder 

height difference) 

 Body tilt and curvature 

Output Classes: 

 Neutral / Upright 

 Slouching 

 Leaning Forward 

 Lateral Lean (Left/Right) 

 Twisted Posture 

 

The trained model outputs the most probable posture 

class for each input vector. A confidence threshold is 

set to trigger feedback only when the probability of 

misclassification is low. 

 

E. Feedback Trigger Mechanism 

When an improper posture is recognized with high 

confidence, the system initiates an alert via: 

 On-screen warning 

 Audio beep 

 Optional haptic signal (vibration through 

wearable device) 

This feedback is designed to guide the user toward 

corrective action without being disruptive. 

 

VII. RESULT 

 

The performance of the proposed hybrid posture 

monitoring system was evaluated through a series of 

real-time experiments involving multiple postural 

deviations. The system was tested on multiple 

participants in seated conditions to simulate real-

world ergonomic scenarios. The analysis focused on 

classification accuracy, response time, and system 

robustness under varying conditions. 

 

A. Classification Accuracy 

The machine learning model trained on fused vision 

and sensor data achieved an overall posture 

classification accuracy of 93.4% on the test dataset. 

The confusion matrix indicated high precision for 

neutral and slouched postures, with minor 

misclassifications occurring between lateral lean and 

spinal twist, likely due to similar joint angle patterns 

in those classes. 

Posture 

Class 
Precision Recall F1-Score 

Neutral 95.2% 94.7% 94.9% 

Slouching 91.6% 92.4% 92.0% 

Leaning 

Forward 
92.8% 93.0% 92.9% 

Lateral Lean 

(Left) 
89.3% 87.6% 88.4% 

Lateral Lean 

(Right) 
88.7% 86.9% 87.8% 

Twisted 

Posture 
90.4% 91.1% 90.7% 

Table:8.1 

 

These results demonstrate that the integration of IMU 

data significantly improves posture recognition, 

especially in cases where camera-only systems 

struggle due to occlusions or limited field of view. 

 

B. Feedback Response Time 

The system maintained a consistent average feedback 

latency of 430 milliseconds, measured from the 

moment of posture deviation detection to the delivery 

of the alert. This delay is well within acceptable 

limits for real-time corrective feedback and allows 

users to make immediate adjustments without delay 

or lag. 

 

C. Impact of Sensor Fusion 

A comparison between vision-only, sensor-only, and 

hybrid (sensor + vision) models showed that the 

hybrid system outperformed the others in terms of 

accuracy and stability. Specifically: 

 Vision-only model: 85.6% accuracy 

 Sensor-only model: 88.3% accuracy 

 Hybrid model: 93.4% accuracy 

This confirms that sensor fusion reduces false 

positives and increases detection robustness under 

variable lighting, motion blur, or partial occlusions. 

 

D. System Robustness 

The system was tested under different lighting 

conditions (natural, fluorescent, dim) and varying 

clothing styles (loose, tight, dark, light). It 

consistently maintained detection accuracy above 

90%, highlighting its adaptability. Additionally, the 

system handled small user movements and micro-

adjustments without generating false alerts, thanks to 

the time-window-based smoothing approach. 

 

E.Usability Feedback 

Participants reported the system as non-intrusive, 
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easy to use, and informative, particularly 

appreciating the real-time correction mechanism. 

Some suggested mobile integration or gamification 

features for future versions to enhance engagement 

and long-term use. 

 
Fig:8.1 

 

VIII. DISCUSSION 

 

The findings of this study demonstrate that the 

proposed hybrid posture monitoring system, which 

fuses vision and IMU sensor data, significantly 

enhances posture classification accuracy (93.4%) 

compared to vision-only (85.6%) and sensor-only 

(88.3%) models. This supports existing literature that 

emphasizes the advantages of multimodal sensing in 

improving human activity recognition, particularly in 

overcoming limitations like occlusion, poor lighting, 

or motion blur. The system's low response latency 

(430 ms) ensures timely corrective feedback, which 

is essential for real-time ergonomic intervention. Its 

robustness across varied lighting conditions and 

clothing types, along with its ability to filter out 

minor user movements, confirms its reliability in 

realistic environments. Positive user feedback further 

validates its usability, with suggestions pointing 

toward future enhancements such as mobile app 

integration and gamified feedback. However, 

limitations include the controlled testing 

environment focused solely on seated postures and a 

relatively homogeneous participant sample, which 

may restrict generalizability. These results 

underscore the system’s potential in promoting 

healthier posture habits and preventing 

musculoskeletal disorders, while highlighting the 

need for further research in more diverse and 

dynamic scenarios.  
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