
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2104

AI-Based Accident Detection System

E. Prabhakar1, P. Ajay Kumar Reddy2, K. Kalyan Kumar3, M. Vamshi Naik4

1Assistant Professor, Dept of ECE, TKR College of Engineering and Technology
2,3,4 Student, Dept of ECE, TKR College of Engineering and Technology

Abstract— Road accidents have become a serious

concern in today’s world, often leading to injuries, loss

of life, and delayed emergency response. To help

address this issue, this project presents an AI-based

accident detection system that uses a camera and deep

learning techniques to automatically identify accidents

as they happen. The system is built using a Raspberry

Pi 4 and a camera module to capture live video. A

trained object detection model is used to analyze the

video and detect accidents. When an accident is

detected, the system sends an alert message instantly

using Twilio SMS service, helping to ensure a quicker

response from emergency services or concerned

authorities. While the system works best in controlled

setups, it represents an early step toward developing

low-cost, intelligent solutions for accident detection.

With further improvements, it could potentially be

applied in scenarios such as accident-prone zones and

remote highway stretches.

Index Terms— YOLOv5n, Accident Detection, ONNX,

Raspberry Pi 4, Flask, Twilio

I. INTRODUCTION

Road accidents are a growing concern across the

world, often resulting in severe injuries, fatalities,

and delayed emergency response. In India alone,

more than 4.6 lakh accidents were reported in 2022,

many of which occurred in areas with limited or no

human monitoring. Locations such as sharp turns and

remote highway stretches are particularly vulnerable

due to their low visibility or sparse traffic presence.

Timely detection of accidents in such places can play

a key role in minimizing the impact and saving lives.

With the rise of Artificial Intelligence (AI) and

Machine Learning (ML), smart solutions can now be

developed to detect such incidents automatically

using image or video input [4], [5], [15]. One such

advancement is object detection, which allows

systems to recognize and locate objects or events in

real-time video feeds. These technologies provide the

foundation for building practical systems that can

enhance public safety.

This project introduces an AI-based accident

detection system using a Raspberry Pi 4 and camera

module. It integrates a YOLOv5n object detection

model [7], trained to differentiate between accident

and non-accident visuals. The model is converted to

a lightweight ONNX format [9], deployed on a

Raspberry Pi 4 for efficient local processing and

accessed through a simple Flask web interface. When

an accident is identified, the system sends an SMS

alert through the Twilio API [12], ensuring faster

response by emergency services or concerned

authorities.

While designed as a prototype, the system

demonstrates the potential of AI-powered solutions

in enhancing road safety, especially in areas where

constant human monitoring or advanced surveillance

systems are unavailable.

Existing System:

Earlier methods for accident detection primarily

relied on manual observation through surveillance

cameras or human reporting, which often led to

delayed responses and limited real-time action. In

some cases, traditional machine learning algorithms

like Support Vector Machines (SVM) and Decision

Trees were used with handcrafted features such as

edge detection, motion vectors, or color patterns to

classify accident scenes. While these approaches

introduced automation, they depended heavily on

manually designed feature extractors and lacked the

adaptability required for varied environments or

complex accident scenarios.

With the rise of deep learning, image-based

classification models like basic Convolutional Neural

Networks (CNNs) and lightweight architectures such

as MobileNetV2 began to replace traditional

methods. These models improved accuracy and

reduced manual effort by learning features directly

from data. However, they were mostly limited to

classifying individual frames as "accident" or "no

accident" without the ability to localize objects or on-

device live video inference. These limitations

underscore the need for an object detection-based

approach capable of identifying accidents with

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2105

spatial accuracy and generating immediate alerts —

a gap addressed by the proposed system using

YOLOv5n.

Proposed System:

The proposed system is designed to automatically

detect accidents using deep learning and camera-

based monitoring without requiring human

intervention. It aims to provide a low-cost, efficient

solution that can be deployed in areas with limited

surveillance or delayed emergency reporting.

This system uses a Raspberry Pi 4 as the processing

unit and a Raspberry Pi Camera Module v1.3 to

capture live video input. A YOLOv5n object

detection model, trained and exported in ONNX

format, is used to analyze the video feed for accident

detection. The model runs directly on the Raspberry

Pi using a lightweight inference setup, enabling real-

time prediction with minimal resources.

A Flask-based web interface is provided to start or

stop inference and to view prediction results,

including confidence scores. In addition, the system

includes a manual mode where users can test

predefined images or videos. If an accident is

detected during live monitoring, an SMS alert is sent

to the concerned authorities using the Twilio API,

ensuring timely action. The system is compact, easy

to operate, and suitable for locations like remote

roads or accident-prone areas where traditional

monitoring methods are difficult to implement.

II. DESIGN PROCEDURE

The AI-Based Accident Detection System is

designed as a lightweight, modular, and edge-

deployable solution that processes visual inputs to

detect potential road accidents [20]. The architecture

emphasizes low-latency inference, minimal hardware

dependency, and real-time user interaction, making it

ideal for surveillance and traffic monitoring

applications in resource-constrained environments.

At a high level, the system is composed of five core

components: (1) input acquisition via a camera

module or uploaded media, (2) preprocessing and

frame handling, (3) accident prediction using an

ONNX-based YOLOv5n model, (4) user interface

via a Flask web application, and (5) alert and logging

mechanisms. The design ensures separation of

concerns between the inference logic and the user

interface, allowing for smoother integration and

better system stability.

A Raspberry Pi 4 device [10] serves as the central

processing unit, receiving input either from a

connected 5MP camera module (for real-time

inference) or from stored images and video files (for

manual inference). Frames captured or uploaded are

resized and normalized before being passed to the

ONNX runtime, which hosts a YOLOv5n model

trained to classify scenes as either “Accident” or “No

Accident.”

The model performs inference either continuously

(live feed) and results are rendered in a web-based

interface built with Flask. Users can start or stop real-

time monitoring, view recent logs, or manually test

the system with images and videos via separate

routes. Predictions are displayed alongside

confidence scores for transparency. The last 100

predictions are stored in a rotating log file, and a

Twilio SMS alert system is integrated to notify

concerned authorities when an accident is detected in

the live stream.

A high-level block diagram of the system is shown in

Fig. 1, illustrating the flow from input to inference,

UI display, and alerting.

Fig. 1. Block diagram of the AI-Based Accident

Detection System

III. IMPLEMENTED DESIGN

The proposed system is a lightweight accident

detection framework that utilizes computer vision

techniques to identify road accidents in image or

video input. The system leverages a YOLOv5n (You

Only Look Once version 5 - Nano) model trained to

classify scenes as either “Accident” or “No

Accident.” To enable efficient deployment on low-

power edge devices [17], the trained model is

exported to ONNX (Open Neural Network

Exchange) format and executed using the ONNX

Runtime on a Raspberry Pi 4. The core functionality

of the system is divided into two modes of operation:

(i)Real-Time Inference Mode:

In this mode, the system captures frames

continuously from a Raspberry Pi Camera v1.3. Each

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2106

frame is preprocessed using OpenCV [11] and

NumPy libraries — including resizing to 416×416,

RGB conversion, and normalization. The processed

frame is then passed to the YOLOv5n ONNX model

for inference. If the model detects an accident with a

confidence above a defined threshold, the result is

displayed on a Flask-based web interface, stored in

the prediction log file, and an SMS alert is sent to

concerned authorities using the Twilio API. This

enables timely response in live monitoring scenarios.

(ii)Manual Inference Mode:

This mode allows users to manually select and upload

images or videos via the web interface. For image

input, a single prediction is generated after

preprocessing. For video input, the system analyzes

every 10th frame to optimize performance and reduce

processing load. If an accident is detected in any of

the sampled frames, the final result is labeled as

“Accident.” Otherwise, it is marked as “No

Accident.” This feature is particularly useful for

offline evaluation or reviewing archived footage.

In both modes, prediction results are annotated with

confidence scores and visual overlays. A rotating log

mechanism is used to store the latest 100 predictions,

which can be viewed or downloaded through the web

interface. This ensures traceability and facilitates

debugging or record-keeping.

The overall workflow of the proposed system is

illustrated in the flowchart shown in Fig. 2. It

summarizes the input handling, preprocessing steps,

prediction generation, and output routing for both

inference modes.

Fig. 2. Flowchart of the proposed AI-Based Accident

Detection System

IV. RESULTS AND DISCUSSION

The AI-Based Accident Detection System was

developed and deployed on a Raspberry Pi 4 using a

YOLOv5n model optimized for edge inference. The

system was implemented using Python, OpenCV,

NumPy, Flask, and ONNX Runtime libraries. The

web interface was developed with Flask templates

and supports both real-time and manual inference

modes.

Model Training and Conversion:

A custom dataset was created by collecting and

curating accident-related and normal scene images

from various open sources including Kaggle and

YouTube frame extractions. The dataset was labeled

in YOLO format with a single class: accident. Images

without accidents were assigned empty .txt files,

allowing the model to learn from both positive and

negative examples. The YOLOv5n model was

trained using the Ultralytics YOLOv5 training

pipeline, and the best-performing weights were

exported to ONNX format for Raspberry Pi

compatibility.

Deployment on Raspberry Pi:

The trained ONNX model was deployed on a

Raspberry Pi 4 (4GB RAM) running Raspberry Pi OS

64-bit. Inference was executed using the ONNX

Runtime with CPUExecutionProvider. The camera

module (Raspberry Pi Camera v1.3) captured live

video input, while image and video files were

handled through the manual mode UI.

Real-Time Inference Results:

In real-time mode, frames were captured

continuously from the camera, processed, and passed

to the model. If an accident was detected, the system

displayed the label with a bounding box, logged the

result with a timestamp, and sent an alert SMS using

Twilio. The system achieved smooth performance

with frame-wise prediction at intervals of ~1–2

seconds depending on lighting and motion [19].

Fig. 3 shows a frame captured during real-time

inference where the system successfully detected an

accident scenario. The prediction label is overlaid on

the frame.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2107

Fig. 3. Real-time inference result showing an

accident prediction

Fig. 4 displays a real-time frame classified as a non-

accident scene. No accident-related features were

detected, and the system returned a 'No Accident'

prediction.

Fig. 4. Real-time inference result showing a no

accident prediction

Fig. 5 shows the SMS alert sent by the system using

the Twilio API when an accident is detected during

real-time inference.

Fig. 5. Twilio SMS alert triggered upon accident

detection

Manual Inference Results:

In manual mode, users selected images or videos

from preloaded folders. For images, predictions were

rendered with annotated output. For videos, every

10th frame was processed, and the final label was

determined based on the presence or absence of

accidents in sampled frames.

Fig. 6 displays the manual image inference interface,

where users can select an input image from the

dropdown list before initiating the prediction.

Fig. 6. Image selection interface in manual inference

mode

Fig. 7 shows the result of a manually selected image

after inference. The system processed the input and

returned an 'Accident' prediction with visual

feedback.

Fig. 7. Manual image inference result showing an

accident prediction

Fig. 8 shows the manual video inference interface

where users can select a video file from the dropdown

before initiating the accident detection process.

Fig. 8. Video selection interface in manual inference

mode

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2108

Fig. 9 displays the result after analyzing a user-

selected video. The system processed every 10th

frame and returned 'Accident' prediction based on the

sampled frames.

Fig. 9. Manual video inference result showing

accident prediction

Logging and Output:

The system maintains a rotating log of the last 100

predictions, viewable and downloadable via the web

interface. Each entry includes timestamp, predicted

label, and confidence score. The Twilio alert system

was tested and successfully delivered SMS

notifications for accident scenarios.

Fig. 10. Log view displaying the last 100 prediction

results with timestamps

Model Evaluation Metrics:

The YOLOv5n model was evaluated on a test set of

420 images using the built-in validation script

(val.py). The following performance metrics were

obtained:

Table I

Metric Value

Precision 0.861

Recall 0.797

mAP@0.5 0.862

mAP@0.5:0.95 0.497

V. CONCLUSION

This project successfully demonstrates the

development and deployment of an AI-based

accident detection system using a Raspberry Pi and

deep learning techniques. The core objective was to

design a cost-effective, real-time monitoring solution

capable of detecting accidents from live camera feeds

and triggering alerts without human intervention. The

YOLOv5n object detection model, trained on a

custom accident dataset, formed the backbone of the

system. Its conversion to ONNX format enabled

optimized inference on the Raspberry Pi 4, proving

that edge devices can handle real-time computer

vision tasks effectively. The use of a Flask web

interface added user accessibility, while the

integration of Twilio ensured that accident events

could be communicated quickly via SMS alerts. The

system was tested across multiple scenarios,

including live detection, manual image testing, and

video inference. It delivered consistent results in

controlled environments and showcased its potential

for deployment in surveillance setups such as remote

roads, blind curves, and campus intersections. The

logging feature further enhanced transparency and

allowed for post-event validation. While the current

version focuses on binary accident detection, the

modular design leaves room for future

improvements, such as integrating GPS, extending to

multi-class classification, or enhancing robustness

under varied environmental conditions. Overall, the

project highlights the feasibility of combining

affordable hardware, efficient deep learning models,

and real-time communication tools to build

intelligent, self-contained surveillance systems

tailored for public safety applications.

REFERENCES

[1] A. Darokar, A. Talware, A. Jadhav, D.

Guntiwarr, S. Dandhare, and D. Dandekar,

“Accident Detection System Using YOLOv8

and CNN Algorithms,” International Journal

of Scientific Research in Engineering and

Management (IJSREM), vol. 07, no. 04, pp. 1–

5, 2023.

[2] T. Tamagusko, M. G. Correia, M. A. Huynh,

and A. Ferreira, “Deep Learning Applied to

Road Accident Detection with Transfer

Learning and Synthetic Images,” Information,

vol. 12, no. 6, 2021.

[3] A. P. Adil, M. G. Anandhu, J. E. Joy, and T. S.

Karetha, “Accident Detection in Surveillance

Camera,” International Research Journal of

Engineering and Technology (IRJET), vol. 08,

no. 04, pp. 1027–1031, 2021.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 177950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2109

[4] H. Ghahremannezhad, H. Shi, and C. Liu,

“Real-Time Accident Detection in Traffic

Surveillance Using Deep Learning,” in

International Joint Conference on Neural

Networks (IJCNN), 2020.

[5] F. Liang, “Deep Learning Based Traffic

Accident Detection,” in 2020 International

Conference on Artificial Intelligence and Big

Data (ICAIBD), pp. 369–373, 2020.

[6] A. Bochkovskiy, C. Y. Wang, and H. Y. M.

Liao, “YOLOv4: Optimal Speed and Accuracy

of Object Detection,” arXiv preprint

arXiv:2004.10934, 2020.

[7] G. Jocher et al., “YOLOv5 by Ultralytics,”

GitHub Repository, [Online]. Available:

https://github.com/ultralytics/yolov5

[Accessed: Apr. 2025].

[8] C. Szegedy et al., “Going Deeper with

Convolutions,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2015, pp. 1–9.

[9] Microsoft, “ONNX Runtime: Cross-Platform,

High Performance Scoring Engine for ML

Models,” [Online]. Available:

https://onnxruntime.ai [Accessed: Apr. 2025].

[10] Raspberry Pi Foundation, “Raspberry Pi 4

Model B,” [Online]. Available:

https://www.raspberrypi.org/products/raspberr

y-pi-4-model-b [Accessed: Apr. 2025].

[11] OpenCV.org, “OpenCV Library,” [Online].

Available: https://opencv.org [Accessed: Apr.

2025].

[12] Twilio Inc., “Twilio Programmable Messaging

API,” [Online]. Available:

https://www.twilio.com/messaging [Accessed:

Apr. 2025].

[13] S. Redmon and A. Farhadi, “YOLOv3: An

Incremental Improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[14] T. Y. Lin et al., “Focal Loss for Dense Object

Detection,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 42, no.

2, pp. 318–327, 2020.

[15] B. Zhou, S. Wang, X. Huang, and Y. Gao,

“Accident Detection in Traffic Surveillance: A

Deep Learning Perspective,” IEEE Access, vol.

7, pp. 10139–10149, 2019.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet Classification with Deep

Convolutional Neural Networks,” in Advances

in Neural Information Processing Systems

(NeurIPS), 2012.

[17] S. Liu, Y. Zhang, X. Liu, and C. Liu, “Deep

Learning on Edge Devices: A Review,” Neural

Computing and Applications, vol. 34, pp.

4567–4593, 2022.

[18] K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale

Image Recognition,” arXiv preprint

arXiv:1409.1556, 2015.

[19] H. Wang, Q. Zhang, and Z. Li, “Real-Time

Event Detection Using YOLOv5 on Embedded

Systems,” International Conference on

Embedded Vision Systems (ICEVS), pp. 81–86,

2021.

[20] D. J. Reber, “Designing Lightweight Edge AI

Systems for Public Safety,” Journal of

Embedded AI and IoT Applications, vol. 6, no.

1, pp. 42–50, 2023.

https://github.com/ultralytics/yolov5
https://onnxruntime.ai/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b
https://www.raspberrypi.org/products/raspberry-pi-4-model-b
https://opencv.org/
https://www.twilio.com/messaging

