
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177950   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2104 

AI-Based Accident Detection System 
 

 

E. Prabhakar1, P. Ajay Kumar Reddy2, K. Kalyan Kumar3, M. Vamshi Naik4 

1Assistant Professor, Dept of ECE, TKR College of Engineering and Technology 
2,3,4 Student, Dept of ECE, TKR College of Engineering and Technology 

 

Abstract— Road accidents have become a serious 

concern in today’s world, often leading to injuries, loss 

of life, and delayed emergency response. To help 

address this issue, this project presents an AI-based 

accident detection system that uses a camera and deep 

learning techniques to automatically identify accidents 

as they happen. The system is built using a Raspberry 

Pi 4 and a camera module to capture live video. A 

trained object detection model is used to analyze the 

video and detect accidents. When an accident is 

detected, the system sends an alert message instantly 

using Twilio SMS service, helping to ensure a quicker 

response from emergency services or concerned 

authorities. While the system works best in controlled 

setups, it represents an early step toward developing 

low-cost, intelligent solutions for accident detection. 

With further improvements, it could potentially be 

applied in scenarios such as accident-prone zones and 

remote highway stretches. 
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I. INTRODUCTION 

 

Road accidents are a growing concern across the 

world, often resulting in severe injuries, fatalities, 

and delayed emergency response. In India alone, 

more than 4.6 lakh accidents were reported in 2022, 

many of which occurred in areas with limited or no 

human monitoring. Locations such as sharp turns and 

remote highway stretches are particularly vulnerable 

due to their low visibility or sparse traffic presence. 

Timely detection of accidents in such places can play 

a key role in minimizing the impact and saving lives. 

 

With the rise of Artificial Intelligence (AI) and 

Machine Learning (ML), smart solutions can now be 

developed to detect such incidents automatically 

using image or video input [4], [5], [15]. One such 

advancement is object detection, which allows 

systems to recognize and locate objects or events in 

real-time video feeds. These technologies provide the 

foundation for building practical systems that can 

enhance public safety. 

This project introduces an AI-based accident 

detection system using a Raspberry Pi 4 and camera 

module. It integrates a YOLOv5n object detection 

model [7], trained to differentiate between accident 

and non-accident visuals. The model is converted to 

a lightweight ONNX format [9], deployed on a 

Raspberry Pi 4 for efficient local processing and 

accessed through a simple Flask web interface. When 

an accident is identified, the system sends an SMS 

alert through the Twilio API [12], ensuring faster 

response by emergency services or concerned 

authorities. 

 

While designed as a prototype, the system 

demonstrates the potential of AI-powered solutions 

in enhancing road safety, especially in areas where 

constant human monitoring or advanced surveillance 

systems are unavailable. 

 

Existing System: 

Earlier methods for accident detection primarily 

relied on manual observation through surveillance 

cameras or human reporting, which often led to 

delayed responses and limited real-time action. In 

some cases, traditional machine learning algorithms 

like Support Vector Machines (SVM) and Decision 

Trees were used with handcrafted features such as 

edge detection, motion vectors, or color patterns to 

classify accident scenes. While these approaches 

introduced automation, they depended heavily on 

manually designed feature extractors and lacked the 

adaptability required for varied environments or 

complex accident scenarios. 

 

With the rise of deep learning, image-based 

classification models like basic Convolutional Neural 

Networks (CNNs) and lightweight architectures such 

as MobileNetV2 began to replace traditional 

methods. These models improved accuracy and 

reduced manual effort by learning features directly 

from data. However, they were mostly limited to 

classifying individual frames as "accident" or "no 

accident" without the ability to localize objects or on-

device live video inference. These limitations 

underscore the need for an object detection-based 

approach capable of identifying accidents with 
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spatial accuracy and generating immediate alerts — 

a gap addressed by the proposed system using 

YOLOv5n. 

 

Proposed System:  

The proposed system is designed to automatically 

detect accidents using deep learning and camera-

based monitoring without requiring human 

intervention. It aims to provide a low-cost, efficient 

solution that can be deployed in areas with limited 

surveillance or delayed emergency reporting. 

 

This system uses a Raspberry Pi 4 as the processing 

unit and a Raspberry Pi Camera Module v1.3 to 

capture live video input. A YOLOv5n object 

detection model, trained and exported in ONNX 

format, is used to analyze the video feed for accident 

detection. The model runs directly on the Raspberry 

Pi using a lightweight inference setup, enabling real-

time prediction with minimal resources. 

 

A Flask-based web interface is provided to start or 

stop inference and to view prediction results, 

including confidence scores. In addition, the system 

includes a manual mode where users can test 

predefined images or videos. If an accident is 

detected during live monitoring, an SMS alert is sent 

to the concerned authorities using the Twilio API, 

ensuring timely action. The system is compact, easy 

to operate, and suitable for locations like remote 

roads or accident-prone areas where traditional 

monitoring methods are difficult to implement. 

 

II. DESIGN PROCEDURE 

 

The AI-Based Accident Detection System is 

designed as a lightweight, modular, and edge-

deployable solution that processes visual inputs to 

detect potential road accidents [20]. The architecture 

emphasizes low-latency inference, minimal hardware 

dependency, and real-time user interaction, making it 

ideal for surveillance and traffic monitoring 

applications in resource-constrained environments. 

At a high level, the system is composed of five core 

components: (1) input acquisition via a camera 

module or uploaded media, (2) preprocessing and 

frame handling, (3) accident prediction using an 

ONNX-based YOLOv5n model, (4) user interface 

via a Flask web application, and (5) alert and logging 

mechanisms. The design ensures separation of 

concerns between the inference logic and the user 

interface, allowing for smoother integration and 

better system stability. 

A Raspberry Pi 4 device [10] serves as the central 

processing unit, receiving input either from a 

connected 5MP camera module (for real-time 

inference) or from stored images and video files (for 

manual inference). Frames captured or uploaded are 

resized and normalized before being passed to the 

ONNX runtime, which hosts a YOLOv5n model 

trained to classify scenes as either “Accident” or “No 

Accident.” 

The model performs inference either continuously 

(live feed) and results are rendered in a web-based 

interface built with Flask. Users can start or stop real-

time monitoring, view recent logs, or manually test 

the system with images and videos via separate 

routes. Predictions are displayed alongside 

confidence scores for transparency. The last 100 

predictions are stored in a rotating log file, and a 

Twilio SMS alert system is integrated to notify 

concerned authorities when an accident is detected in 

the live stream. 

 

A high-level block diagram of the system is shown in 

Fig. 1, illustrating the flow from input to inference, 

UI display, and alerting. 

 
Fig. 1. Block diagram of the AI-Based Accident 

Detection System 

 

III. IMPLEMENTED DESIGN 

 

The proposed system is a lightweight accident 

detection framework that utilizes computer vision 

techniques to identify road accidents in image or 

video input. The system leverages a YOLOv5n (You 

Only Look Once version 5 - Nano) model trained to 

classify scenes as either “Accident” or “No 

Accident.” To enable efficient deployment on low-

power edge devices [17], the trained model is 

exported to ONNX (Open Neural Network 

Exchange) format and executed using the ONNX 

Runtime on a Raspberry Pi 4. The core functionality 

of the system is divided into two modes of operation: 

 

(i)Real-Time Inference Mode: 

In this mode, the system captures frames 

continuously from a Raspberry Pi Camera v1.3. Each 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177950   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      2106 

frame is preprocessed using OpenCV [11] and 

NumPy libraries — including resizing to 416×416, 

RGB conversion, and normalization. The processed 

frame is then passed to the YOLOv5n ONNX model 

for inference. If the model detects an accident with a 

confidence above a defined threshold, the result is 

displayed on a Flask-based web interface, stored in 

the prediction log file, and an SMS alert is sent to 

concerned authorities using the Twilio API. This 

enables timely response in live monitoring scenarios. 

 

(ii)Manual Inference Mode: 

This mode allows users to manually select and upload 

images or videos via the web interface. For image 

input, a single prediction is generated after 

preprocessing. For video input, the system analyzes 

every 10th frame to optimize performance and reduce 

processing load. If an accident is detected in any of 

the sampled frames, the final result is labeled as 

“Accident.” Otherwise, it is marked as “No 

Accident.” This feature is particularly useful for 

offline evaluation or reviewing archived footage. 

In both modes, prediction results are annotated with 

confidence scores and visual overlays. A rotating log 

mechanism is used to store the latest 100 predictions, 

which can be viewed or downloaded through the web 

interface. This ensures traceability and facilitates 

debugging or record-keeping. 

 

The overall workflow of the proposed system is 

illustrated in the flowchart shown in Fig. 2. It 

summarizes the input handling, preprocessing steps, 

prediction generation, and output routing for both 

inference modes. 

 
Fig. 2. Flowchart of the proposed AI-Based Accident 

Detection System 

IV. RESULTS AND DISCUSSION 

 

The AI-Based Accident Detection System was 

developed and deployed on a Raspberry Pi 4 using a 

YOLOv5n model optimized for edge inference. The 

system was implemented using Python, OpenCV, 

NumPy, Flask, and ONNX Runtime libraries. The 

web interface was developed with Flask templates 

and supports both real-time and manual inference 

modes. 

 

Model Training and Conversion: 

A custom dataset was created by collecting and 

curating accident-related and normal scene images 

from various open sources including Kaggle and 

YouTube frame extractions. The dataset was labeled 

in YOLO format with a single class: accident. Images 

without accidents were assigned empty .txt files, 

allowing the model to learn from both positive and 

negative examples. The YOLOv5n model was 

trained using the Ultralytics YOLOv5 training 

pipeline, and the best-performing weights were 

exported to ONNX format for Raspberry Pi 

compatibility. 

 

Deployment on Raspberry Pi: 

The trained ONNX model was deployed on a 

Raspberry Pi 4 (4GB RAM) running Raspberry Pi OS 

64-bit. Inference was executed using the ONNX 

Runtime with CPUExecutionProvider. The camera 

module (Raspberry Pi Camera v1.3) captured live 

video input, while image and video files were 

handled through the manual mode UI. 

 

Real-Time Inference Results: 

In real-time mode, frames were captured 

continuously from the camera, processed, and passed 

to the model. If an accident was detected, the system 

displayed the label with a bounding box, logged the 

result with a timestamp, and sent an alert SMS using 

Twilio. The system achieved smooth performance 

with frame-wise prediction at intervals of ~1–2 

seconds depending on lighting and motion [19]. 

 

Fig. 3 shows a frame captured during real-time 

inference where the system successfully detected an 

accident scenario. The prediction label is overlaid on 

the frame. 
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Fig. 3. Real-time inference result showing an 

accident prediction 

 

Fig. 4 displays a real-time frame classified as a non-

accident scene. No accident-related features were 

detected, and the system returned a 'No Accident' 

prediction. 

 
Fig. 4. Real-time inference result showing a no 

accident prediction 

 

Fig. 5 shows the SMS alert sent by the system using 

the Twilio API when an accident is detected during 

real-time inference. 

 
Fig. 5. Twilio SMS alert triggered upon accident 

detection  

 

Manual Inference Results: 

In manual mode, users selected images or videos 

from preloaded folders. For images, predictions were 

rendered with annotated output. For videos, every 

10th frame was processed, and the final label was 

determined based on the presence or absence of 

accidents in sampled frames. 

 

Fig. 6 displays the manual image inference interface, 

where users can select an input image from the 

dropdown list before initiating the prediction. 

 
Fig. 6. Image selection interface in manual inference 

mode 

 

Fig. 7 shows the result of a manually selected image 

after inference. The system processed the input and 

returned an 'Accident' prediction with visual 

feedback. 

 
Fig. 7. Manual image inference result showing an 

accident prediction 

 

Fig. 8 shows the manual video inference interface 

where users can select a video file from the dropdown 

before initiating the accident detection process. 

 
Fig. 8. Video selection interface in manual inference 

mode 
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Fig. 9 displays the result after analyzing a user-

selected video. The system processed every 10th 

frame and returned 'Accident' prediction based on the 

sampled frames. 

 
Fig. 9. Manual video inference result showing 

accident prediction 

 

Logging and Output: 

The system maintains a rotating log of the last 100 

predictions, viewable and downloadable via the web 

interface. Each entry includes timestamp, predicted 

label, and confidence score. The Twilio alert system 

was tested and successfully delivered SMS 

notifications for accident scenarios. 

 
Fig. 10. Log view displaying the last 100 prediction 

results with timestamps 

 

Model Evaluation Metrics: 

The YOLOv5n model was evaluated on a test set of 

420 images using the built-in validation script 

(val.py). The following performance metrics were 

obtained: 

Table I 

Metric Value 

Precision 0.861 

Recall 0.797 

mAP@0.5 0.862 

mAP@0.5:0.95 0.497 

 

V. CONCLUSION 

 

This project successfully demonstrates the 

development and deployment of an AI-based 

accident detection system using a Raspberry Pi and 

deep learning techniques. The core objective was to 

design a cost-effective, real-time monitoring solution 

capable of detecting accidents from live camera feeds 

and triggering alerts without human intervention. The 

YOLOv5n object detection model, trained on a 

custom accident dataset, formed the backbone of the 

system. Its conversion to ONNX format enabled 

optimized inference on the Raspberry Pi 4, proving 

that edge devices can handle real-time computer 

vision tasks effectively. The use of a Flask web 

interface added user accessibility, while the 

integration of Twilio ensured that accident events 

could be communicated quickly via SMS alerts. The 

system was tested across multiple scenarios, 

including live detection, manual image testing, and 

video inference. It delivered consistent results in 

controlled environments and showcased its potential 

for deployment in surveillance setups such as remote 

roads, blind curves, and campus intersections. The 

logging feature further enhanced transparency and 

allowed for post-event validation. While the current 

version focuses on binary accident detection, the 

modular design leaves room for future 

improvements, such as integrating GPS, extending to 

multi-class classification, or enhancing robustness 

under varied environmental conditions. Overall, the 

project highlights the feasibility of combining 

affordable hardware, efficient deep learning models, 

and real-time communication tools to build 

intelligent, self-contained surveillance systems 

tailored for public safety applications.  
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