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Abstract: As a major source of carbon dioxide emissions 

as of 2020, the transportation sector faces a major 

obstacle in the fight against pollution. Although electric 

vehicles (EVs) offer a greener alternative and seem like 

a promising option, their short range is a drawback. As 

financially viable alternatives, hybrid electric vehicles 

(HEVs) and hybrid energy storage system electric 

vehicles (HESS EVs) stand out. However, efficient 

energy management and power source size optimization 

continue to be significant obstacles for both HEVs and 

HES SEVs. 

 

The performance, ease of use, and realtime applicabilit

y of the Fuzzy Logic Controller (FLC)make it stand ou

t among other Energy Management Strategies (EMS). 

The various uses of FLC as an EMS in HEVs and HES

S EVs are thoroughly examined in this article, which al

so compares it to other EMS techniques and examines 

the benefits and drawbacks of each strategy. Using 

information from numerous sources, a thorough 

analysis of the different FLC types used as EMS has 

been carried out. Every FLC EMS class is examined, 

including a comprehensive summary of suggested 

approaches within each group. The article gives readers 

the fundamental knowledge and understanding they 

need to support the ongoing advancement of FLC EMS 

in hybrid electric and hybrid energy storage system 

electric vehicles by offering this thorough information. 

 

1. INTRODUCTION 

 

The transportation industry is responsible for up to 

35% of carbon dioxide emissions as of 2020 [1]. 

Adopting electric vehicles (EVs), which emit no 

pollutants, appears to be a viable way to reduce 

transportation-related pollution [2, 3, 4]. Compared 

to conventional engine-equipped vehicles, EVs have 

many benefits, such as reduced pollution, enhanced 

efficiency, and a plentiful supply of energy [5]. 

Rechargeable batteries are the main power source in 

electric cars, and because of their finite capacity, they 

limit the vehicle's range. Hybrid Electric Vehicles 

(HEVs) have shown themselves to be feasible for 

EVs traveling shorter distances [6], with lower 

emissions than traditional Internal Combustion 

Engine (ICE) vehicles [7]. HEVs use two or more 

power sources, usually a battery and an engine.  

 

According to a study by Rajper and Albrecht [8], 

HEVs avoid issues like high costs, restricted charging 

infrastructure, lengthy charging periods, and power 

outages that EVs face. As demonstrated by Mansour 

and Haddad, who draw attention to problems with 

Lebanon's EV charging infrastructure, HEVs are 

useful in developing nations [9].  

 

They contend that HEVs are a sensible option for the 

typical user because they have no up-front fees and 

emit fewer greenhouse gases than conventional ICE 

cars. This highlights the advantages of HEVs for the 

environment and their usefulness in areas with 

insufficient EV charging infrastructure. 

 
Fig1.EMS CLASSIFICATION 

 

HEVs are a practical and viable choice for 

developing countries, helping to reduce carbon 

emissions without significantly raising infrastructure 

costs, according to a study conducted in Bangladesh 

by Limon et al. [10]. 

Plug-in Hybrid Electric Vehicles (PHEVs) are 

engine-battery hybrid vehicles that employ a greater 

capacity battery that can be recharged from the grid. 
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PHEVs use a variety of battery types, mainly lithium-

ion batteries, and run mostly in electric mode when 

the battery has enough energy.  Despite having a high 

energy storage density, lithium-ion batteries have 

drawbacks such low specific power, restricted 

capacity for charging and discharging, and a brief 

lifespan. An alternative Energy Storage System 

(ESS) with high power and current capabilities is 

necessary to address these drawbacks. As a 

supplement to batteries, supercapacitors (SC) provide 

great power density and long lifespan . According to 

a battery is a high-energy ESS that allows for a longer 

vehicle's travel distance, while a SC is a high-power 

ESS that can manage a high load power during the 

acceleration phase.  

 

The Hybrid Energy Storage System (HESS), which 

combines the advantages of batteries and 

supercapacitors, is suggested. Utilizing the properties 

of supercapacitors, the Energy Management Strategy 

(EMS) for HESS seeks to prolong battery life, 

improve energy efficiency, reduce high current 

damage to the battery, and increase driving distance . 

According to Rimpas et al., by reducing battery 

stress, HESS in EVs improves power supply system 

performance and extends battery life. The microgrid 

that integrated ESS and renewable energy sources 

also embraced the HESS concept.  

 

By effectively distributing energy from various 

sources, the EMS is essential to both HEVs and 

HESS EVs. Numerous EMS techniques have been 

presented by academics, all aimed at optimizing 

energy use. According to Panaparambil et al., EMS 

aims to reduce pollutants and greenhouse impacts, 

ensure safe and efficient source consumption to 

extend ESS lifespan, improve performance, and 

increase fuel and energy economy. 

three main categories: rule-based, optimization-

based, and learning-based as shown in Fig. 1. Rule-

based methods include deterministic and fuzzy-logic 

approaches, while optimization-based methods 

encompass online and offline optimization Learning-

based approaches, such neural networks (NN) and 

reinforcement learning (RL), make use of artificial 

intelligence (AI) and machine learning (ML). 

Researchers like  and  have conducted a review study 

on the EMS in hybrid cars. Both of them, however, 

cover a wide range of EMS utilized in hybrid cars 

rather than concentrating on any one EMS technique. 

Low-pass filtering (LPF) , model predictive control 

(MPC), equivalent consumption minimization 

strategy (ECMS), and reinforcement learning (RL)  

are among the EMS techniques that are reviewed in 

certain publications. However, as far as the authors 

are aware, there isn't a single publication that 

examines and discusses fuzzy logic controllers 

(FLCs) as EMS in the Scopus database. After the 

deterministic rule-based approach, FLC is one of the 

most popular EMS techniques, according to the 

Scopus database from 2019 to 2023. Thus, the review 

of the FLC EMS utilized in both HEVs and HESS 

EVs will be the main objective of this study. 

 

Based on a thorough analysis of literature from the 

Scopus database, this study focuses on the use of the 

Fuzzy Logic Controller (FLC), a real-time and useful 

EMS technique. By (1) reviewing the basic ideas and 

architecture of FLC and its use in HEVs and HESS 

EVs, (2) talking about the difficulties and restrictions 

that FLC in EMS is now facing, and (3) suggesting 

potential avenues for future research, the essay seeks 

to make a contribution.  

 

The purpose of the material provided here is to help 

researchers who work with HEV and HESS EV 

energy management choose the best FLC EMS 

technique. 

Following that, there is a thorough analysis of FLC in 

EMS, a comparison of FLC EMS with alternative 

approaches, a discussion of the difficulties, 

constraints, and upcoming advancements, and a 

conclusion. 

 

II. REAL-TIME EMS 

 

Optimizing the performance of electric vehicles 

(EVs) and hybrid electric vehicles (HEVs) with 

hybrid energy storage systems (HESS EVs) requires 

a real-time energy management strategy (EMS). 

Real-time energy distribution balancing is a 

challenging process that is frequently impacted by 

computing limitations. This section will cover a 

variety of real-time EMS techniques, with an 

emphasis on fuzzy logic control (FLC). 

 
TABLE 1. EMS methods comparison based on 

structural complexity 
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In a research comparing fuzzy-based EMS with 

alternative techniques, Panday and Bansal took into 

account the need for previous information, 

computing time, solution type, and structural 

complexity . According to the findings, which are 

compiled in Table 1, FLC performs similarly to 

Model Predictive Control (MPC) across the first three 

criteria. Though not required, FLC does require prior 

knowledge, which can improve its outcomes. MPC is 

more dependent on the system model in contrast. 

Furthermore, Xu et al. compared the performance of 

several EMS techniques, assigning scores according 

to real-time performance, computational time, fuel 

economy, computational burden, and realization 

degree, as shown in Fig. 2  

 

Fuzzy and other rule-based approaches scored 

highest overall, despite worries about their low fuel 

Combining optimization strategies with rule-based 

approaches can help overcome this restriction. 

Additional comparisons in demonstrate FLC's higher 

performance over ECMS, MPC, Proportional-

Integral (PI), and deterministic rule-based 

approaches.  

 
FIGURE 2. EMS performance comparison  

 

The fact that its performance differs from MPC's 

shows how contextual the comparison is Dynamic 

Programming (DP) is a standard in EMS evaluations, 

despite being limited to simulations because of its 

intricate structure. After comparing the FLC's 

performance to that of a traditional rule-based EMS 

in a Toyota Prius, Montazeri and Mahmoodi came to 

the conclusion that the suggested FLC cut emissions 

and fuel consumption by about 10% . 

 

The benefits of FLC are outlined in Table 3, along 

with the parallels and discrepancies between it and 

MPC and deterministic rule-based approaches. 

Deterministic rule-based techniques and FLC are 

both straightforward, inexpensive, resilient, and easy 

to design. They do, however, have several 

disadvantages in common, such as poor fuel 

efficiency and subpar performance. In contrast, MPC 

provides near-optimal solutions, high accuracy, and 

predictive capability; nonetheless, the system model 

has a significant impact on how well it performs. 

 

III. FUZZY LOGIC CONTROLLER EMS 

 

A common Energy Management Strategy (EMS) in 

HEVs and HESS EVs is the fuzzy logic controller 

(FLC). FLC is categorized as an EMS controller by 

two parties. Conventional fuzzy, also referred to as 

basic or traditional, adaptive fuzzy, and predictive 

fuzzy are the classifications made by one side.  

Conversely, an optimized fuzzy takes the place of the 

conventional fuzzy, while the other two remain 

unchanged. This review distinguishes between the 

conventional and optimized fuzzy because of their 

notable differences in methodology and outcomes. 

Furthermore, only a small number of academics have 

adopted predictive fuzzy. Because of this, it is called 

a combination, meaning that FLC EMS is combined 

with other EMS techniques. Lastly, the FLC EMS in 

this review is categorized as combination, adaptive, 

optimum, and conventional. 

 

A. CONVENTIONAL FLC 

The traditional FLC method is the cornerstone of 

energy management strategy (EMS), employing 

fuzzy reasoning to generate desired outputs from 

inputs to the FLC. This approach necessitates 

designing fuzzy memberships and rules by utilizing 

existing knowledge or experience  

The literature has proposed a wide variety of standard 

FLC EMS designs to accommodate various vehicle 

layouts. 

Many researchers have used the traditional FLC EMS 

for Hybrid Electric Vehicles (HEVs). In a study 

comparing FLC and ANFIS, Suhail et al. used two 

inputs (engine speed and battery state of charge, or 

SoC) and one output (battery power) . With a slight 

SoC dip, ANFIS outperformed FLC and showed 

better performance. Simulation and Hardware-in-the-

Loop (HIL) testing showed that Singh et al.'s use of a 

Mamdani-type FLC with inputs of torque demand, 

battery SoC, and brake demand increased fuel 

efficiency by 50.56%. Similarly, Ma et al. used the 

Madani-type FLC with inputs for battery SoC and 

necessary torque, showing a 13.3% decrease in fuel 

consumption over the logic-threshold approach. 

Conventional FLC has shown promise in a variety of 

HEV configurations, including fuel cell extended-
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range cars and through-the-road hybrid vehicles 

(TTR HEVs). When FLC-based EMS was used in a 

TTR HEV, Sabri et al. were able to reduce fuel usage 

by 62% in comparison to rule-based EMS . Nar wade 

and associates. evaluated Neural Network (NN) EMS 

against FLC for a two-wheeler TTR parallel HEV, 

finding that NN EMS performed better in terms of 

total energy used. A fuel cell extended-range vehicle 

with FLC EMS was proposed by Geng et al., who 

showed enhanced performance in terms of 

acceleration time and total mileage. 

As demonstrated by studies like researchers have 

widely used conventional FLC as an Energy 

Management Strategy (EMS) in fuel-cell cars. By 

using switching control to protect the Supercapacitor 

(SC) within a certain operating range, Lin et al. 

implemented FLC EMS in a hybrid Fuel Cell and 

Supercapacitor Electric Vehicle (FCHEV). A moving 

average filter was also used to lower charge rates and 

safeguard the fuel cell (FC). By using delta-power 

and SC State of Charge (SoC) as inputs, the 

Mamdani-type FLC, which was manually built using 

rules, produced an output scaling factor for FC 

power. Fuel consumption was significantly reduced 

by this method compared to PI and power follower 

control, by 13.15% and 9.18%, respectively. FLC 

EMS was also used by Song et al. in an FCHEV that 

combined battery and FC components. Through 

Hardware-in-the-Loop (HIL) testing, they came to 

the conclusion that FLC EMS was more adaptable to 

changing driving conditions than power follower 

control. In order to replace the battery with a 

bidirectional DC converter, Shen et al. designed FLC 

EMS, a hybrid fuel-cell and battery system that 

incorporates a special Variable Structure Battery 

(VSB). With power demand, FC power, and battery 

SoC as inputs, the traditional FLC produced FC delta-

power as the output, demonstrating the capacity to 

retain high efficiency while smoothing FC power. 

FLC EMS in FC-battery EV was suggested by the 

authors along with model predictive direct torque 

control (MPDTC) for motor speed control. The FLC 

inputs battery SoC and loads power using the 

Mamdani type. On the other hand, the output serves 

as the fuel cell's power reference. They get to the 

conclusion that the suggested EMS technique can 

maintain the battery SoC within acceptable bounds. 

Keskin and Urazel presented FLC EMS for EVs with 

batteries and supercapacitors (SCs), taking battery 

degradation into account, in the context of EVs fitted 

with hybrid energy storage systems (HESS) . This 

manually developed Mamdani-type fuzzy system 

generated power allocation for the battery as its 

output by using power demand, battery SoC, and SC 

SoC as inputs.  

When compared to battery-only and logic threshold 

techniques, the suggested FLC EMS was found to be 

more successful in lowering peak current while 

maintaining the lowest possible battery SoC use took 

a similar tack when examining the consequences of 

motor control. 

 
FIGURE 3. Conventional FLC-EMS      

 
FIGURE 4. Optimal FLC EMS 

 

As demonstrated by research like conventional FLC 

was also used in setups including three power 

sources: FC, battery, and SC. In their dual-level 

controller EMS, Kamoona et al. used a proportional-

integral (PI) controller adjusted by particle swarm 

optimization (PSO) for low-level control and FLC 

and an artificial neural network (ANN) for high-level 

control . With load power and battery State of Charge 

(SoC) as inputs, the FLC generated an FC power 

reference, which was then utilized to train an ANN 

for EMS. Low-level control comparisons showed that 

FLC and ANN produced outcomes that were 

essentially comparable. Similar to this, the authors of 

demonstrated an EV structure with a direct 

connection of SC, highlighting its excellent SC 

charge efficiency, serving as an energy buffer, and 

helping to achieve a 13.54% gain in fuel economy, 
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which was confirmed by experimental testing. Some 

investigations, such those integrated traction motor 

control with traditional FLC.  

 

Reference currents for FC, battery (B), and SC are 

shown in Fig. 3 after the FLC received inputs of load 

current, battery SoC, and SC SoC. The converters of 

FC, B, and SC were controlled using the Sliding 

Mode Control (SMC) technique. According to the 

suggested approach, hydrogen consumption was 

reduced by 29%. The Vehicle Dynamics Controller 

(VDC), Vehicle Speed Controller (VSC), and motor 

current were used as inputs, while the battery and SC 

power references were used as outputs. The control 

demonstrated quick and excellent performance under 

a range of speeds and system dynamics by using the 

PI algorithm and SMC in motor control suggested a 

similar idea but with Backstepping-Direct Torque 

Control (BS-DTC) in place of motor control. 

 

B. OPTIMAL FLC 

The optimized or optimal FLC approach uses 

optimization techniques to improve performance, in 

contrast to standard FLC, which necessitates experts 

to build membership functions and rules. The time-

consuming nature and unproven optimality of 

traditional FLC are addressed by this method. When 

compared to traditional methodologies, researchers 

like those have shown that optimization techniques 

can increase FLC EMS's efficiency. The main way 

that optimal FLC and conventional FLC differ from 

one another is in how optimization techniques are 

used to determine the best memberships and/or rule 

bases for the fuzzy system. 

 

Based on the literature, the most popular optimization 

techniques for enhancing FLC EMS are Particle 

Swarm Optimization (PSO) and Genetic Algorithm 

(GA). Scientists like Jia et al. improved mileage by 

using PSO to optimize a series FLC (SFLC) for 

hybrid fuel cell (FC) and battery systems . Tifour et 

al. demonstrated increases in fuel economy and 

overall efficiency by optimizing  Sugeno-type FLC 

for hybrid FCHEVs using PSO. 

 

GA has also been widely applied to FLC EMS 

optimization. In order to reduce energy loss, Wang et 

al. used GA to optimize fuzzy membership functions. 

In a similar vein, scientists in used GA to optimize 

FLC for a hybrid fuel cell vehicle, improving vehicle 

performance, fuel efficiency, and the best possible 

energy distribution. In order to achieve effective 

HESS configurations, Eckert et al. used GA to 

optimize FLC EMS for Electric Vehicles (EVs) with 

batteries and Supercapacitors (SC). They employ 

three objective functions: performance, driving 

range, and HESS mass minimization. They came to 

the conclusion that the HESS arrangement, which 

uses a smaller SC with a high-capacity battery, is 

more efficient after simulation testing. 

 

An ideal FLC EMS suggested  is shown in Fig. 4, 

demonstrating the incorporation of GA for improved 

performance. Ye et al. compared several FLC-based 

EMS techniques for EVs with batteries and SC, 

including FLC, FLC-GA, FC-PSO, and Dynamic 

Programming (DP) as a benchmark. The findings 

showed that FLC-GA had peak currents that were 

lower and more consistent than FLC-PSO, deviating 

from DP by just 0.6%. An overview of certain 

enhanced PSO and GA techniques for FLC EMS 

optimization is given in Table 4. FLC is also 

optimized using other optimization techniques, such 

as rule-learning from dynamic programming the 

Differential Evolution Algorithm (DEA) etc. 

 

Researchers incorporate some driving cycles in the 

training step, as to increase the optimality in the 

unknown drive cycle and to boost the resilience of the 

optimal FLC.They apply optimization using the 

Genetic Simulated Annealing Algorithm (GASA) 

and combine three drive cycles. This analysis also 

takes the cooling burden into account. Ultimately, 

they come to the conclusion that the suggested 

approach outperforms both rule-based and adaptive 

ECMS (A-ECMS) used the similar idea to the 

NSGA-III optimization technique. 

 

In addition to optimizing FLC, the optimization 

method can be applied to determine the ideal HESS 

dimensions. Because it influences the vehicle's mass, 

performance, and cost, component size is crucial for 

both HEVs and HESS EVs. Herrera et al. used GA 

multi-objective optimization to integrate two FLCs 

for EMS on a hybrid bus, resulting in the Energy 

Storage System (ESS) operating and scaling 

optimally [84]. According to simulation tests, the 

suggested approach can save fuel consumption and 

daily operating costs by up to 19% and 15%, 

respectively. The same idea is applied by Silva et al. 

using an interactive adaptive weight genetic 

algorithm (i-AWGA).The suggested solution can 

lower the cost-to-autonomy ratio by up to 63.59%, 

according to the cost study. The investigation is 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 177959   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY        1712 

expanded by the authors in utilizing a dual-HESS 

system with FLC EMS optimized by i-AWGA. The 

front and rear wheels of the vehicle are equipped with 

propulsion systems, respectively. There are three 

FLC EMS used: two for each HESS and one for 

power sharing between front and rear propulsion. 

When compared to a comparable EV with a single 

HESS and optimized for the same driving 

circumstances, dual HESS can improve battery life 

and driving range by up to 22.88% and 19.57%, 

respectively. 

 

C. ADAPTIVE FLC 

 
FIGURE 5. Adaptive FLC EMS classification 

 

Fuzzy Logic Controllers (FLC) in the context of 

Energy Management Strategy (EMS) demonstrate 

flexibility within operational ranges, although they 

are constrained by elements such as membership 

limits. As EMS develops, the adaptive FLC 

acknowledges the necessity for customized 

regulations for various driving profiles. The four 

types of adaptive FLC are examined in this section: 

Fig. 5 shows the powering-braking-based, road-

condition-based, driving-conditions-based, and 

online-based models. 

One method, shown in Fig. 6, uses separate fuzzy 

matrix rules for braking and powering conditions. For 

electric vehicles  

(EVs) with hybrid batteries and supercapacitors (SC), 

the authors in use  

 
FIGURE 6. Adaptive FLC EMS: powering-braking 

FLC-charge and FLC-discharge controllers, which 

dynamically distribute power based on load power, 

battery SoC, and SC SoC. By reducing charge and 

discharge currents, this adaptive system improves 

battery performance through the use of particle filters 

for SoC estimate.In order to maximize the scaling 

factor for battery power, Lu et al. use multiple FLCs 

for braking and powering in a hybrid battery-

flywheel system . By employing a twin FLC EMS to 

effectively distribute powering and braking torque, 

Xu et al. expand this idea to parallel hybrid engines 

and batteries. 

 

The study optimizes FLC rules using Genetic 

Algorithms (GA), outperforming rule-based and 

single-FLC approaches and showing performance on 

par with Dynamic Programming (DP). Furthermore, 

Zhang et al. present two unique fuzzy rules for charge 

and discharge modes, which allow for smooth battery 

charging during regenerative braking and effective 

power providing during discharge. The simulation 

findings demonstrate better energy consumption 

metrics by 2.4% and 1.28%, respectively, as 

compared to rule-based and traditional fuzzy 

techniques in terms of Energy Consumption (kJ) also 

makes use of the same idea . In contrast,  creates a 

hierarchical coordinated EMS by combining this 

Adaptive-FLC technique with MPC. They draw the 

conclusion that this structure enhances performance 

in terms of stability, error reduction, and time 

response. 

 

Suggests the adaptable FLC based on the road 

circumstances, which is shown in Fig. 7. The road 

conditions are divided into three profiles: highway, 

road, and urban. By segmenting power demand, this 

method uses Genetic Algorithms (GA) to optimize 

fuzzy rule sets offline while dynamically adjusting to 

driving conditions. The same idea is put out who use 

neural networks (NN) to recognize driving cycles. 

Zhang et al. optimize FLC rules using GA . The 

suggested adaptive FLC exhibits versatility across a 

range of driving cycles by improving stability and 

consuming less gasoline. Additionally, the authors 

use FLC to modify the power distribution between 

the battery and supercapacitor and a Contour 

Positioning System (CPS) to determine route slope. 

Performance improvements in an electric vehicle's 

(EV) hybrid energy storage system (HESS) are 

confirmed by simulations. 

A multimode-FLC (MFLC) for a hybrid tractor is 

introduced by the authors , who modify fuzzy rules in 
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response to predetermined operational (driving) 

conditions. By employing fuzzy C-means (FCM) for 

operational condition identification, MFLC can 

reduce power usage by up to 13% when compared to 

thermostat control strategy (TCS). Furthermore, 

highlights  data-driven approaches, making use of 

actual driving data to forecast routes and maximize 

fuel economy. Fuel savings of up to 16% in 

residential neighborhoods are confirmed by the 

simulation. 

 
FIGURE 7. Adaptive FLC-EMS proposed 

 

Additionally, Hussan et al. use FLC to control voltage 

in a hybrid system that combines supercapacitors, 

batteries, and fuel cells. The suggested FLC performs 

better than the Proportional-Integral (PI) and Sliding 

Mode Control (SMC) approaches in voltage 

regulation, energy management, and reference 

tracking when rules are categorized according to 

driving circumstances such as normal, acceleration, 

deceleration, uphill, and down hill.Suggests the final 

online adaption, which employs the FLC Sugeno type 

as EMS for a battery-and-SC hybrid tram. FLC's 

weight fluctuates because its weighting method is 

optimized online utilizing a hyper-spherical search 

algorithm. They confirm through the simulation that, 

in comparison to FLC with a fixed weight scheme, 

the suggested approach can boost tram mileage by 

22.45% and decrease battery peak current by 31.02%. 

 

D. COMBINATION 

In order to enhance its performance, the FLC EMS 

also integrated other techniques. There are three 

combinations in this section: FLC and NN, FLC with 

frequency decoupling, and others. In this section, 

each will be covered in more detail. 

 

I.FLC AND FREQUENCY DECOUPLIN 

The wavelet transform (WT) and low-pass filter 

(LPF) are the frequency decoupling methods 

typically used in conjunction with FLC for EMS.  

controlling power distribution based on State of 

Charge (SoC) disparities. In a similar manner, 

controls SC State of Charge (SoC) and power ratios 

by integrating FC and LPF. The supercapacitor 

receives high-frequency power, guaranteeing battery 

deterioration and confirming the suggested HESS.  

Hardware-in-the-Loop (HIL) testing and simulations 

verify increased efficiency of up to 14.89%. The 

authors of [108] employ a three-layered strategy, 

dividing low- and high-frequency power demands 

using WT, allocating power using FLC-EMS, and 

optimizing Hybrid Energy Storage Systems (HESS) 

characteristics based on driving cycles.  

 
FIGURE 8. FLC combined with LPF 

 

When compared to WT-based-only systems, the 

integrated EMS reduces energy consumption by 

6.54%, exhibiting longer battery life. Additionally, 

[109] suggests a two-step EMS that uses a power-

sharing algorithm based on WT and FLC as well as 

adaptive LPF based on FLC. The second stage, where 

WT and FLC distribute power to FC and battery, 

receives the remaining power from the adaptive LPF, 

which uses FLC for cut-off frequency adjustment and 

supplies power to SC. Fuel consumption is reduced 

by 7.94% in comparison to the Equivalent 

Consumption Minimization Strategy (ECMS), 

according to simulation and experimental data. 

 

II.FLC AND NN (ANFIS) 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS), 

which combine learning capabilities with fuzzy logic 

flexibility, are the consequence of the combination of 

FLC and Neural Networks (NN). 

 

The authors of provide examples of how ANFIS is 

used in EMS for parallel hybrid electric vehicles 

(EVs) and hybrid electric buses. Reference trains 

ANFIS for EMS in a hybrid electric bus using 
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iterative Dynamic Programming (DP), 

outperforming ECMS and rule-based techniques in 

simulations and experiments.  

Through simulations and HIL testing, the authors of  

teach ANFIS to simulate ECMS as EMS for a hybrid 

bus, demonstrating lower fuel usage than ECMS 

itself. In contrast, Gao et al. train ANFIS for a parallel 

hybrid EV with a DC-motor traction motor using 

logic threshold EMS, improving simulation test 

results.  

In order to improve kinetic energy usage using 

ANFIS EMS, the authors in suggest a special HESS 

EV setup. Battery, SC, and FC are the ESSs that are 

utilized. To enhance the energy absorption of 

regenerative braking, a DC generator is mounted on 

the front wheels. According to the simulation, this 

system's efficiency with ANFIS EMS can reach 

98.2%. 

 

III OTHER APPROACHES 

 
FIGURE 9. Combined-FLC EMS 

 

In Fig. 9 , Zhang et al. combine Wavelet Transform 

(WT), neural networks (NN), and the best FLC EMS 

for hybrid battery and SC vehicles. PSO optimizes 

FLC membership functions, NN processes real-time 

application data, and WT extracts battery power 

demand. According to experimental testing, the 

suggested approach improves regenerative braking 

energy recovery by 44.22% and lowers battery life 

costs by 18%. Guo et al. create a hybrid FC and 

battery EV by combining FLC with Reinforcement 

Learning (RL) . In Hardware-in-the-Loop (HIL) 

simulations, the suggested Fuzzy-Reinforce employs 

Policy Gradient Reinforcement Learning (PGRL), 

exhibiting stability, speed, and reduced hydrogen 

consumption in comparison to conventional RL. 

Matignom et al. create an integrated EMS by 

combining learning-, rule-, and optimization-based 

EMS techniques. The suggested approach achieves 

performance that is comparable to ideal offline 

strategies by utilizing fuzzy rule-based techniques, 

online Pontryagin's minimal principle (PMP) 

optimization, and fuzzy C-means for driving pattern 

recognition. This wide range of hybrid strategies 

demonstrates how FLC can be used in conjunction 

with other methods to optimize EMS for a variety of 

hybrid and electric vehicle applications. 

 

IV. DISCUSSION AND FUTURE 

DEVELOPMENT 

 

The EMS in HEV and HESS EV has distinct 

functions. FLC EMS designs accommodate a variety 

of operating modes and energy sources in Hybrid 

Electric Vehicles (HEVs), which combine electric 

powertrains with conventional engines. Optimising 

energy use under dynamic driving situations and 

guaranteeing smooth power source transitions are 

challenges. FLC EMS handles the complexities of 

controlling energy from batteries and supercapacitors 

in Hybrid Energy Storage Systems of Electric 

Vehicles (HESS EV), which primarily concentrate on 

electric propulsion. High-frequency load demands 

and maintaining the lifespan of responsive but aging 

ESS components, such as batteries and fuel cells 

(FC), present challenges. 

 

V. FLC EMS PERFORMANCE INSIGHTS 

 

Four main strategies are recognized for the use of 

FLC EMS: combination, optimum, adaptive, and 

conventional. Traditional FLC uses fuzzy logic of the 

Mamdani type and is manually tuned. The output—

power reference for Energy Storage Systems 

(ESS)—is determined by inputs, most commonly 

load power and State of Charge (SoC).  

Optimization techniques like Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA), 

also referred to as optimal FLC, are widely used to 

get around tuning issues and produce ideal outcomes. 

Numerous aim functions are also employed, 

including boosting mileage, cutting fuel 

consumption, cutting energy use, cutting energy loss, 

etc. 

The ideal FLC EMS, which is adjusted according to 

the particular driving cycle, cannot provide the best 

results in other drive cycles due to the unpredictable 

drive cycle. The adaptive FLC EMS is suggested as a 

solution to this problem. Scholars offer many 

adaptive methods. Four categories—powering-

braking-based, road-condition-based, driving 

conditions-based, and online-based—are used to 
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group this review. See the section on adaptive FLC 

for further information. The powering and braking 

are affected by the state of the road and the driver. 

Consequently, both driving condition-based and road 

condition-based can be accommodated by the 

appropriate powering-braking-based option. 

However, if the infrastructure is available, the online 

method is the most effective. 

Combining FLC with another technique is the final 

option. Thus, the researcher has offered numerous 

combinations of FLC approaches. The majority of 

them, as far as the authors can tell, work in tandem 

with frequency decoupling techniques like LPF and 

WT. Low response ESS like FC and batteries age 

because power sharing or energy management from 

FLC cannot handle high-frequency loads. In order to 

help distribute load power into the appropriate ESS 

with the load power frequency, frequency decoupling 

is added. For ANFIS, FLC can also be combined with 

NN. It can be trained as a fuzzy inference. The 

implementation of highly computational EMS, like 

DP and ECMS, is also made possible by the ANFIS. 

Lastly, a combination of the frequency decoupling 

method, optimization algorithm, adaptive 

mechanism, and FLC is also available.  

The results of optimal FLC are superior to those of 

standard FLC. But because it depends on the track, it 

can be difficult to execute consistently across 

different tracks. Adaptive FLC successfully 

addresses this constraint by dynamically modifying 

fuzzy rules. The classification of FLC and its 

advantages and disadvantages in applications for 

HEVs and HESS EVs are shown in Fig. 10. 

FUTURE DIRECTIONS: FLC EMS will be 

developed with an emphasis on combination, 

adaptable, and optimal forms. Even if the adaptable 

form can adjust to a wide range of circumstances, it 

still needs a lot of rules. As a result, a high processor 

specification is needed. Enhancing both the optimal 

and combination FLC EMS is the answer. Any novel 

optimization technique that can handle multi-

objective functions and perform more effectively can 

be used to improve the optimal FLC. Similar to the 

adaptive FLC but using fewer criteria, the optimal 

FLC can also be taught with a large number of drive 

cycles to become optimal in the majority of drive 

cycles. When combined with another technique, FLC 

EMS performance can be enhanced without 

appreciably increasing computation time. 

Opportunities to improve FLC EMS are presented by 

developments in communication paradigms, 

especially Vehicle-to-Everything (V2X) 

technologies. Vehicle-to-device (V2D), Vehicle-to-

infrastructure (V2I), Vehicle-to-grid (V2G), Vehicle-

to-pedestrian (V2P), Vehicle-to-network (V2N), and 

Vehicle-to-vehicle (V2V) subsystems are all included 

in V2X [119]. By lowering processing burdens and 

guaranteeing that FLC EMS is continuously updated 

with the best outcomes, utilizing V2X can enable 

real-time optimization. In terms of calculation time, 

this can resolve the adaptive FLC issue. 

Future advancements might look into how V2X and 

FC EMS technologies can work together to give cars 

real-time traffic updates and operational status 

communication. Increased fuel economy, decreased 

component damage, and improved energy efficiency 

are all possible outcomes of such integration. It 

becomes increasingly important to overcome 

hardware implementation issues as research 

advances. Validating FLC EMS designs in real-world 

situations requires bridging the gap between 

simulation, Hardwarein-the-Loop (HIL) methods, 

and full-scale prototypes. 

 

VI.RESULTS 

 

I.ADAPTIVE FUZZY LOGIC CONTROLLER FOR 

EV POWER MANAGEMENT  

This MATLAB implementation demonstrates an 

adaptive Fuzzy Logic Controller (FLC) that 

optimizes power distribution in electric vehicles 

(EVs) based on varying road conditions and power 

demands. The system uses fuzzy logic to make 

intelligent decisions about how to allocate power 

resources efficiently 
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II.HYBRID ENERGY MANAGEMENT SYSTEM 

WITH WAVELET TRANSFORM, NEURAL 

NETWORK, AND FUZZY LOGIC CONTROL 

 
 

VII. CONCLUSION 

 

The flexibility and efficiency of the fuzzy logic 

controller (FLC) as an energy management strategy 

(EMS) for hybrid electric vehicles (HEVs) and 

hybrid energy storage systems electric vehicles 

(HESS EVs) are highlighted in this review, in 

conclusion. Certain advantages and disadvantages of 

the conventional, optimum, adaptive, and 

combination FLC approaches are shown by analysis. 

Despite its complexity, the adaptive technique 

provides track-independent adaptability and 

improved performance, the optimal method shines in 

particular cases but lacks diversity, and the standard 

method is straightforward but unsatisfactory. When it 

comes to FLC limits, particularly those related to 

frequency constraints, the combination approach 

shows potential. For academics examining energy 

management in EVs, particularly with FLC, this 

review is an invaluable resource. In order to enhance 

Hybrid Energy Storage Systems (HESS), future 

research should concentrate on real-world 

performance evaluations and the practical application 

of FLC.and support environmentally friendly 

transportation options. It is essential to comprehend 

the subtleties of various vehicle architectures in order 

to influence the development of electric and hybrid 

vehicle technologies in the future. There is great 

potential for developing effective and 

environmentally friendly transportation solutions 

with the ongoing improvement of FLC 

methodologies. 
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