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Summary software testing is a critical stage in the 

software development lifecycle and ensures the 

reliability and quality of your software system. With 

modern software becoming more and more complex, 

we can see that traditional manual testing rates are 

inefficient and not scalable. In recent years, artificial 

intelligence (AI) has been proven to be powerful in 

automation and improve many aspects of software 

testing. This systematic review aims to analyze current 

trends and cutting edge trends in AI control software 

te sting. This study examines a variety of approaches, 

techniques an d tools to assess their effectiveness in a 

variety of test contexts. Initially, 90 articles were 

retrieved from the main research database using 

precisely defined search queries. The multiphase filter 

process selected 20 high quality articles for incoming 

analyses and abo ut 50 related studies were checked to 

gain a comprehensive under standing of the domain. 

The results show that AI is effectively use d to 

automate several test tasks, including test cases, defect 

prediction, test case prioritization, transformation test, 

android application testing, test case validation, test 

case validation, white customer testing, among others, 

particularly through machine learning ( ML) and deep 

learning (DL). This review concludes that AI 

integration in software testing not only optimizes the 

testing process, but also improves accuracy, efficiency 

and coverage. This work provides a general overview 

of how AI technology can change traditional software 

testing practices. 

 

I. INTRODUCTION 

 

Software testing plays an important role in software 

engineering as it is essential to ensure the quality, 

performance, safety and reliability of your software 

system. Running tests allows developers to identify 

and fix software errors or defects. It improves 

overall functionality and ensures that the software 

meets the needs and expectations of the customers. 

Since AI is a wide area, this study examines AI's 

Sabar a, which is primarily a software testing ML 

and DL technique. The field of software testing 

currently faces many challenges. When software 

systems become increasingly complex, it becomes 

more difficult to manually test all possible 

scenarios. Furthermore, traditional approaches to test 

automat ion require time-consuming and complex 

time implementation. Apart from that, catching up to 

agile development is a challenge as it requires rapid 

testing. AI may overcome these challenges by 

providing an optimized and effective testing strategy. 

 

The aim of this study is to find the recent trends and 

the current state of the field of software testing 

automation using AI. This study examines the 

various methods, techniques, and tools utilized in 

this domain and evaluates their efficiency. The 

motivation for this study comes from the potential 

benefits of AI that can be offered in the field of 

software testing to improve the existing software 

testing practices. AI has the potential to automate 

the testing process and optimize testing strategies. 

AI can make software testing more efficient, 

effective, and accessible. Moreover, AI can address 

the shortage of skilled testers. Also, It can help to 

keep pace with the rapid development cycles of 

agile development methodologies. There are several 

challenges in software testing that can be solved 

using AI. Some of these issues include manually 

generating test cases, test optimization, test results 

analysis, etc. We tried to identify the recent trends in 

software testing using AI and came up with the 

following research questions which have been 

investigated in this research study. 

RQ1: Does manual testing have drawbacks? 

RQ2: Can integration of AI in software testing help 

to overcome the drawbacks of manual testing? 

RQ3: What software testing tasks can be automated 

by AI? RQ4: What techniques do researchers use to 

assess AI techniques when used in software testing? 

In this research study, 90 articles or research studies 

have been screened from different research libraries. 

In three different phases using PRISMA guidelines, 

we came out with 20 research studies for final 

review. The contributions of this study are 

mentioned below. 

• To identify recent trends in software testing 

using AI. 
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• To identify AI tools and techniques for 

automating software testing. 

• To identify software testing activities automated 

by AI. 

The remaining paper is structured in this way. 

Related works and the background of software 

testing and AI are discussed in sections 2 and 3 

consecutively. The methodology of this systematic 

review, results, and conclusions are discussed in 

sections 4,5 and 6. 

 

II. RELATED WORKS 

 

They [1] proposed a deep learning model to rank 

test cases. In this work, they consider historical 

records of test case executions and based on that 

deep learning model rank test cases. They [2] 

conducted an empirical study on continuous 

integration testing. They found the strategy of 

reward function of Reinforcement learning improves 

the existing test case prioritization practices. They 

[3] developed a deep reinforcement learning 

technique for performing black box testing on 

Android apps. Their developed technique out- 

performs existing techniques in terms of fault 

identification. They [4] proposed a deep learning-

based approach for prioritizing test cases from the 

interaction of humans with software applications. 

They showed that test case prioritization can be 

performed successfully from human interactions 

using their proposed model. They [5] presented an 

approach to generate input for the graphical user 

interface of software applications by only capturing 

screenshots of applications. 

 

They [6] proposed an ML-based approach to predict 

metamorphic relations of scientific software using 

graph kernels. They concluded that features 

extracted from graphs help to achieve a good result. 

They [7] presented an approach to automate test 

oracle mechanism using ML. Their proposed 

approach captures historical usage data and based on 

that generates an oracle. They [8] detected 

metamorphic relations using graph kernels and 

support vector machines (SVM). They [9] analyzed 

software defect predictions using ML algorithms. 

They found that linear classifier performs well 

compared to other algorithms. They [10] proposed 

an improved CNN model to predict software defects 

and their proposed model outperformed existing 

models. 

 

III. SOFTWARE TESTING & ARTIFICIAL 

INTELLIGENCE 

 

Software Testing is a process to evaluate the 

software and identify defects [11]. It is crucial for 

software to work or perform as per requirements but 

it is natural having bugs or defects in software. The 

bugs can be generated during development, bug 

fixing, feature addition, code refactoring, and even 

during software maintenance [12]. Therefore, it is 

crucial for the development team to test the software 

under different scenarios before releasing it to the 

client. There are different strategies and techniques 

for software testing. Based on the nature of the 

software it is decided which software testing 

technique should be used [13]. Software testing 

techniques are very tedious therefore, automation 

comes here to ease the process. How AI can 

automate software testing and why it is getting more 

acceptance than any other technique is discussed in 

this section. AI is a broad area that consists of 

various subareas, and ML is one of the most 

prominent and widely applied subareas within AI. 

Deep Learning (DL) and Machine Learning (ML) 

can be collectively referred to as Machine Learning 

(ML). 

 

A. Software Testing Using Machine Learning 

ML is a process where machines learn from data 

using algorithms and can further predict or make 

decisions based on the data [14]. The data-centric 

learning approach has made ML powerful and 

widely accepted in different areas including the 

software industry. Fig. 1 presents the general 

approach to applying ML techniques in software 

testing. 

 

There are different software testing activities such as 

defect prediction, test case generation, test case 

prioritization, test optimization, API testing, etc that 

can be done using ML [15]. 

Bug Prediction using ML: Bug prediction can be 

per- formed using ML. ML algorithms analyze 

software code and predict the likelihood of future 

bugs in the code. For performing bug prediction, 

ML models need to be trained on historical data 

from past software projects to identify patterns. 

Once the model is trained, then it can predict the 

likelihood of bugs occurring in new code [16]. They 

[17] used supervised ML algorithms to predict 

software faults based on historical data. 

Test Case Generation using ML: In software 
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development, Test case generation from the 

requirement specifications document is one of the 

significant challenges in software testing. Software 

test cases can be generated using ML. ML model 

needs to be trained on a set of data where a set of 

software features are considered as input and the 

corresponding test cases as output. Finally, the 

model uses training data to generate new test cases 

[18]. 

Test Case Prioritization using ML: Test case 

prioritization can be performed using ML. ML 

algorithms determine the most critical test cases to 

execute based on the likelihood of failure and the 

potential effect on the system. For prioritizing test 

cases, an ML model needs to be trained on a set of 

labeled data, where a set of software features is 

considered as input and the corresponding priority 

level of each test case as output. Finally, the model 

uses this training data to prioritize new test cases 

based on their predicted priority level [1]. 

 

IV. METHOD 

 

A review is a systematic study that helps to identify 

the existing work, research questions improvement 

scope, and existing empirical studies [19]. In this 

study, 20 research studies have been reviewed from 

the past 7 years. these studies were collected from 6 

different databases such as Science Direct, IEEE, 

SCITEPRESS, ACM, Wiley Online Library and 

MDPI. 

 

A. Eligibility Criteria and Search String 

Eligibility criteria for selecting articles for a 

systematic literature review include relevance to the 

research questions, publication time frame, 

language, publisher, and study design [20]. In this 

study, 20 articles were selected for final review out 

of 90 articles from the last 7 years, after filtering 

using PRISMA guidelines. Articles relevant to 

software testing using AI techniques such as ML 

and DL were chosen. In this process, we have used 

a search string which was formed to find articles 

related to the research study’s area of interest. 

Boolean operators (AND, OR, NOT) have been 

used to combine and exclude keywords in the search 

query [21]. Our search string was 

[(”Software Testing” AND ”Artificial Intelligence”) 

AND (”Testing Automation Technique” OR 

”Machine Learning” OR ”Deep Learning” OR 

”Black-box Testing” OR ”Integration Testing” OR 

”Metamorphic Testing” OR ”White Box Testing”) 

NOT (”Manual Testing” OR ”Adhoc testing”)]. 

In addition to the search string approach, titles, 

keywords, abstracts and methods have been 

examined to find out relevant publications. 

 
Fig. 1. A general approach to apply ML techniques in software testing 

 

B. Data Screening and Extraction 

Each paper examines different aspects of 

applications of ML techniques in software testing. 

In these studies, the authors applied different ML 

techniques, compared their performance in software 

testing, and came out with the best ML strategy to 

use in software testing. For collecting the research 

studies, PRSIMA [22] guidelines have been 

followed. The PRISMA flow diagram to select the 

articles for this systematic review study is presented 

in Fig. 2. In three different stages, the articles were 

screened. In the first stage, which is the 

identification stage, there were initially 90 articles in 

the database and 12 articles in the registers. In the 

second stage, articles were excluded due to being 

out of scope and poor quality. We read the title, 

keywords, abstract, and methods of each article to 

identify whether the article is relatable or not. 

Finally, 20 articles were included for final review. 

The inclusion and exclusion criteria used in this 

study to select the articles are presented in Fig. 3. 

 
Fig. 2. PRISMA flow diagram used in this study for 

finding literature 
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Data extraction means the process of retrieving 

relevant data from various sources for a specific 

purpose, such as a literature review [23]. In the 

context of software testing using AI, data extraction 

may involve searching through academic journals, 

and conference proceedings to gather information 

on the latest developments and trends in software 

testing using AI. This information can then be used 

to summarise a comprehensive review of the current 

state of the field, identify gaps in existing 

knowledge, and provide insights into future 

directions for research and practice. Table I shows 

the details of the selected number of studies in 

different stages and their publishers. 

 
Fig. 3. Inclusion and Exclusion Criteria 

 

V. RESULTS 

 

This section provides insights into state-of-the-art 

techniques and their effectiveness in improving the 

quality and efficiency of software testing using AI 

techniques. This study aims to provide a 

comprehensive synopsis of the existing research in 

this domain by analyzing a number of studies. 20 

studies have been reviewed in the study and the 

details findings and analysis of these studies have 

been presented in Table II. We also investigated to 

the answers to the research questions from the 

relevant research papers. 

 

RQ1: Does manual testing have drawbacks? 

Manual testing has several drawbacks. Some of the 

draw- backs of manual testing are it is time-

consuming, it does not cover all possible scenarios 

and use cases, it is costly, it is susceptible to human 

errors and it can not reproduce test cases accurately 

[24]. ML techniques can help to overcome the 

mentioned drawbacks of manual testing. By 

leveraging the power of ML algorithms, the software 

testing process can be automated, and more accurate 

testing can be performed [25]. 

 

RQ2: Can integration of AI in software testing help 

to overcome the drawbacks of manual testing? 

Integration of AI techniques in software testing can 

help to overcome the drawbacks of manual testing 

by improving the efficiency, accuracy, and 

effectiveness of the testing process. ML algorithms 

can be trained to automate repetitive testing tasks, 

which reduces the required effort for manual testing. 

This improves the efficiency of the software testing 

process and enables faster testing. ML algorithms 

can also analyze large amounts of data that help to 

identify defects in the software system. 

Identification of the defects improves the accuracy 

of the software testing. Apart from that, ML 

algorithms can generate test cases using historical 

data or existing code, and optimize the testing by 

prioritizing test cases [26]. 

TABLE I: SELECTED NUMBER OF RESEARCH 

STUDIES IN DIFFERENT STAGES 

Publisher 

Name 

First Stage: 

Identification 

Second 

Stage: 

Screening 

Third 

Stage: 

Included 

IEEE 22 14 8 

ACM 23 12 6 

Science 

Direct 

12 5 2 

MDPI 18 4 2 

Wiley 10 3 1 

SCITEPRESS 5 2 1 

Total 90 40 20 

 

RQ3: What software testing tasks can be automated 

by AI ? 

ML techniques can automate different types of 

software testing tasks such as test results analysis, 

test case prioritization, defect prediction, test 

execution, test case evaluation, test case refinement, 

testing cost estimation, test oracle construction, 

identification of metamorphic relations, and test 

case generation [26]. Table III shows testing 

activities automated by ML techniques. 

 

RQ4: What techniques do researchers use to assess 

AI techniques when used in software testing? 

Researchers consider different performance matrices 

to assess ML algorithms when used in software 

testing. The performance matrices are cross-

validation, accuracy, precision, recall, receiver 

operating characteristic (ROC) curve, area under the 

curve (AUC), and f1 score [27]. the details of 
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performance matrices are described below. 

Precision: Precision is a statistical measure that 

quantifies the ratio of true positive instances out of 

the total positive predictions made. [28]. 

Recall: Recall is a statistical indicator utilized to 

quantify the fraction of true positive outcomes 

within the entirety of actual positive instances [28]. 

ML algorithms have shown promising results in 

automating software testing tasks. Some of the 

promising algorithms are Neural networks, Decision 

trees, Support vector ma- chines, and Random 

Forest. 

TABLE II: SUMMARY OF THE SELECTED STUDIES 

SL Source Year Publisher 

Name 

Findings 

1 [29] 2022 ACM Authors proposed an approach utilizing Deep Reinforcement 

Learning (RL) for automating the exploration of Android apps. Authors 

developed a tool called ARES along with FATE that integrates with ARES. 

2 [30] 2022 MDPI This paper analyzed ML frameworks in the context of software automation 

and evaluated the performance of testing tools considering various factors. 

Accuracy or error rate, scope are important factors to determine the 

effectiveness of frameworks. 

3 [31] 2022 Science 

Direct 

This study investigates the efficacy of machine learning, data mining, 

and deep learning methodologies in predicting software faults. This 

investigation reveals that data mining and machine learning techniques are 

utilized more than deep learning techniques. 

4 [32] 2022 ACM This paper introduces Keeper, a novel testing tool. Keeper adopts a unique 

approach where it creates pseudo-inverse functions for ML APIs. Keeper 

significantly enhances branch coverage . 

5 [33] 2021 IEEE This study presents DeepOrder, a regression machine learning model based 

on deep learning techniques. DeepOrder can prioritize test cases and identify 

failed test cases when it considers various factors such as test case duration 

and execution status. 

6 [34] 2021 Science 

Direct 

This study investigated reward function and reward strategy within the 

context of continuous integration (CI) testing. The authors proposed three 

strategies in terms of the reward strategy. Proposed strategies showed 

promising results. 

7 [5] 2021 IEEE This paper introduces Deep GUI. Deep GUI utilizes deep learning 

techniques to create a model of valid GUI interactions, based solely on 

screenshots of applications. 

8 [35] 2021 IEEE This study finds that most ML libraries lack a high-quality unit test suite. 

Moreover, the study also discovers recurring trends in the unexamined code 

throughout the five assessed ML libraries. 

9 [36] 2021 IEEE This study presents a deep learning approach to predict the validity of test 

inputs for RESTful APIs. The proposed network achieved 97% accuracy for 

the new APIs. 

 

10 

 

[37] 

 

2019 

 

IEEE 

This paper introduces Humanoid, a deep learning approach for generating 

GUI test inputs by leveraging knowledge gained from human interactions. It 

learns from traces of interactions generated by humans, enabling the 

automatic prioritization of test inputs based on their perceived importance 

to users. 

11 [38] 2019 ACM This study finds equivalent mutants are effective for augmenting data and 

improving the detection rate of metamorphic relations. 

 

12 

 

[39] 

 

2019 

 

MDPI 

This study introduces an enhanced CNN model specifically designed to 

improve the learning of semantic representations from source-code. This 

study also showed enhancements of the global pattern capture capability of 

the models which improve the model’s generalization performance. 
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13 

 

[40] 

 

2019 

 

IEEE 

This study used three supervised machine learning algorithms for predicting 

software bugs. To enhance the accuracy of models, random forest ensemble 

classifiers have been used. The developed models effectively work for 

various scenarios. 

14 [41] 2019 IEEE This study finds ML algorithms have predominantly been employed in 

different areas of software testing. Test case generation, evaluation, test 

oracle construction, and cost predicton for testing activitires can be 

performed using ML. 

15 [42] 2018 ACM This study presents an approach for automating the test oracle mechanism in 

software using machine learning (ML). By incorporating a captured 

component into the application, historical usage data have been gathered. 

These data later generate an appropriate oracle. 

16 [43] 2018 SCITE 

PRESS 

This paper describes a tool that generates test data for programs. 

The tool operates by clustering input data from a corpus folder and creating 

generative models for each cluster. These models are recurrent neural 

networks. 

17 [44] 2018 ACM This paper introduces a methodology called DaOBML, which offers tool 

support to enhance the quality of environmental models that generate 

complex artifacts like images or plots. In this study, among six ML 

algorithms, ANN shows the best performance. 

18 [45] 2017 ACM This study introduces DeepXplore, an innovative whitebox system designed 

to systematically test DL systems and detect faulty behaviors. DeepXplore 

can solve joint optimization problems. 

19 [46] 2016 Wiley 

Online 

Library 

This study, proposed a ML approach that can predict metamorphic relations 

in software programs. To achieve this, authors utilized a graph-based 

representation of the program. 

20 [47] 2016 IEEE This study proposed an approach for prioritizing test cases in manual testing. 

The proposed approach considers black-box metadata, including test case 

history. SVM Rank ML algorithm is used in this study. 

 

TABLE III: TESTING ACTIVITIES AUTOMATED BY 

ML TECHNIQUES 

Software Testing 

Activity 

Total No. of Studies 

Test Case Generation 4 

Defect Prediction 3 

Test Case Prioritization 3 

Metamorphic Testing 2 

Android Testing 2 

Test Case Validation 1 

White Box Testing 1 

 

VI. CONCLUSIONS 

 

Software testing plays a key role in the development 

of software. However, as software systems become 

more complex, traditional manual testing methods 

are becoming less practical. There has been growing 

interest in leveraging AI techniques for software 

testing. This study explores the current state of the 

art of AI techniques in software testing. Also, this 

study examines various approaches, techniques, and 

tools employed in this field, assessing their 

effectiveness. The research articles selected for this 

review study were obtained from different research 

databases using a search string. The title, abstract, 

keywords, and methods of these articles were also 

checked manually. Initially, 90 articles were 

retrieved, and after rigorous filtering following the 

PRISMA guideline, 20 articles were chosen for final 

analysis. This study finds that AI techniques can 

help in the automation of several software testing 

tasks. These tasks include Test Case Generation, 

Defect Prediction, Test Case Prioritization, 

Metamorphic Testing, Android Testing, Test Case 

Validation, and White Box Testing. The integration 

of AI techniques in software testing is shown to 

simplify software testing activities and enhance 

performance. In the future, incorporating AI 

techniques in different software testing activities 

will make it easier to perform testing activities. A 

limited number of studies have been examined in 

this study, which is a limitation. Conducting a 
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review of a larger number of studies would provide 

the opportunity to gain deeper insights. 
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