
© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3186

Artificial Intelligence in Software Testing: A Systematic

Review

Km.Ananya Koushik

Department Of Computer Science and Engineering, Shobhit University Gangoh SRE

Summary software testing is a critical stage in the

software development lifecycle and ensures the

reliability and quality of your software system. With

modern software becoming more and more complex,

we can see that traditional manual testing rates are

inefficient and not scalable. In recent years, artificial

intelligence (AI) has been proven to be powerful in

automation and improve many aspects of software

testing. This systematic review aims to analyze current

trends and cutting edge trends in AI control software

te sting. This study examines a variety of approaches,

techniques an d tools to assess their effectiveness in a

variety of test contexts. Initially, 90 articles were

retrieved from the main research database using

precisely defined search queries. The multiphase filter

process selected 20 high quality articles for incoming

analyses and abo ut 50 related studies were checked to

gain a comprehensive under standing of the domain.

The results show that AI is effectively use d to

automate several test tasks, including test cases, defect

prediction, test case prioritization, transformation test,

android application testing, test case validation, test

case validation, white customer testing, among others,

particularly through machine learning (ML) and deep

learning (DL). This review concludes that AI

integration in software testing not only optimizes the

testing process, but also improves accuracy, efficiency

and coverage. This work provides a general overview

of how AI technology can change traditional software

testing practices.

I. INTRODUCTION

Software testing plays an important role in software

engineering as it is essential to ensure the quality,

performance, safety and reliability of your software

system. Running tests allows developers to identify

and fix software errors or defects. It improves

overall functionality and ensures that the software

meets the needs and expectations of the customers.

Since AI is a wide area, this study examines AI's

Sabar a, which is primarily a software testing ML

and DL technique. The field of software testing

currently faces many challenges. When software

systems become increasingly complex, it becomes

more difficult to manually test all possible

scenarios. Furthermore, traditional approaches to test

automat ion require time-consuming and complex

time implementation. Apart from that, catching up to

agile development is a challenge as it requires rapid

testing. AI may overcome these challenges by

providing an optimized and effective testing strategy.

The aim of this study is to find the recent trends and

the current state of the field of software testing

automation using AI. This study examines the

various methods, techniques, and tools utilized in

this domain and evaluates their efficiency. The

motivation for this study comes from the potential

benefits of AI that can be offered in the field of

software testing to improve the existing software

testing practices. AI has the potential to automate

the testing process and optimize testing strategies.

AI can make software testing more efficient,

effective, and accessible. Moreover, AI can address

the shortage of skilled testers. Also, It can help to

keep pace with the rapid development cycles of

agile development methodologies. There are several

challenges in software testing that can be solved

using AI. Some of these issues include manually

generating test cases, test optimization, test results

analysis, etc. We tried to identify the recent trends in

software testing using AI and came up with the

following research questions which have been

investigated in this research study.

RQ1: Does manual testing have drawbacks?

RQ2: Can integration of AI in software testing help

to overcome the drawbacks of manual testing?

RQ3: What software testing tasks can be automated

by AI? RQ4: What techniques do researchers use to

assess AI techniques when used in software testing?

In this research study, 90 articles or research studies

have been screened from different research libraries.

In three different phases using PRISMA guidelines,

we came out with 20 research studies for final

review. The contributions of this study are

mentioned below.

• To identify recent trends in software testing

using AI.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3187

• To identify AI tools and techniques for

automating software testing.

• To identify software testing activities automated

by AI.

The remaining paper is structured in this way.

Related works and the background of software

testing and AI are discussed in sections 2 and 3

consecutively. The methodology of this systematic

review, results, and conclusions are discussed in

sections 4,5 and 6.

II. RELATED WORKS

They [1] proposed a deep learning model to rank

test cases. In this work, they consider historical

records of test case executions and based on that

deep learning model rank test cases. They [2]

conducted an empirical study on continuous

integration testing. They found the strategy of

reward function of Reinforcement learning improves

the existing test case prioritization practices. They

[3] developed a deep reinforcement learning

technique for performing black box testing on

Android apps. Their developed technique out-

performs existing techniques in terms of fault

identification. They [4] proposed a deep learning-

based approach for prioritizing test cases from the

interaction of humans with software applications.

They showed that test case prioritization can be

performed successfully from human interactions

using their proposed model. They [5] presented an

approach to generate input for the graphical user

interface of software applications by only capturing

screenshots of applications.

They [6] proposed an ML-based approach to predict

metamorphic relations of scientific software using

graph kernels. They concluded that features

extracted from graphs help to achieve a good result.

They [7] presented an approach to automate test

oracle mechanism using ML. Their proposed

approach captures historical usage data and based on

that generates an oracle. They [8] detected

metamorphic relations using graph kernels and

support vector machines (SVM). They [9] analyzed

software defect predictions using ML algorithms.

They found that linear classifier performs well

compared to other algorithms. They [10] proposed

an improved CNN model to predict software defects

and their proposed model outperformed existing

models.

III. SOFTWARE TESTING & ARTIFICIAL

INTELLIGENCE

Software Testing is a process to evaluate the

software and identify defects [11]. It is crucial for

software to work or perform as per requirements but

it is natural having bugs or defects in software. The

bugs can be generated during development, bug

fixing, feature addition, code refactoring, and even

during software maintenance [12]. Therefore, it is

crucial for the development team to test the software

under different scenarios before releasing it to the

client. There are different strategies and techniques

for software testing. Based on the nature of the

software it is decided which software testing

technique should be used [13]. Software testing

techniques are very tedious therefore, automation

comes here to ease the process. How AI can

automate software testing and why it is getting more

acceptance than any other technique is discussed in

this section. AI is a broad area that consists of

various subareas, and ML is one of the most

prominent and widely applied subareas within AI.

Deep Learning (DL) and Machine Learning (ML)

can be collectively referred to as Machine Learning

(ML).

A. Software Testing Using Machine Learning

ML is a process where machines learn from data

using algorithms and can further predict or make

decisions based on the data [14]. The data-centric

learning approach has made ML powerful and

widely accepted in different areas including the

software industry. Fig. 1 presents the general

approach to applying ML techniques in software

testing.

There are different software testing activities such as

defect prediction, test case generation, test case

prioritization, test optimization, API testing, etc that

can be done using ML [15].

Bug Prediction using ML: Bug prediction can be

per- formed using ML. ML algorithms analyze

software code and predict the likelihood of future

bugs in the code. For performing bug prediction,

ML models need to be trained on historical data

from past software projects to identify patterns.

Once the model is trained, then it can predict the

likelihood of bugs occurring in new code [16]. They

[17] used supervised ML algorithms to predict

software faults based on historical data.

Test Case Generation using ML: In software

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3188

development, Test case generation from the

requirement specifications document is one of the

significant challenges in software testing. Software

test cases can be generated using ML. ML model

needs to be trained on a set of data where a set of

software features are considered as input and the

corresponding test cases as output. Finally, the

model uses training data to generate new test cases

[18].

Test Case Prioritization using ML: Test case

prioritization can be performed using ML. ML

algorithms determine the most critical test cases to

execute based on the likelihood of failure and the

potential effect on the system. For prioritizing test

cases, an ML model needs to be trained on a set of

labeled data, where a set of software features is

considered as input and the corresponding priority

level of each test case as output. Finally, the model

uses this training data to prioritize new test cases

based on their predicted priority level [1].

IV. METHOD

A review is a systematic study that helps to identify

the existing work, research questions improvement

scope, and existing empirical studies [19]. In this

study, 20 research studies have been reviewed from

the past 7 years. these studies were collected from 6

different databases such as Science Direct, IEEE,

SCITEPRESS, ACM, Wiley Online Library and

MDPI.

A. Eligibility Criteria and Search String

Eligibility criteria for selecting articles for a

systematic literature review include relevance to the

research questions, publication time frame,

language, publisher, and study design [20]. In this

study, 20 articles were selected for final review out

of 90 articles from the last 7 years, after filtering

using PRISMA guidelines. Articles relevant to

software testing using AI techniques such as ML

and DL were chosen. In this process, we have used

a search string which was formed to find articles

related to the research study’s area of interest.

Boolean operators (AND, OR, NOT) have been

used to combine and exclude keywords in the search

query [21]. Our search string was

[(”Software Testing” AND ”Artificial Intelligence”)

AND (”Testing Automation Technique” OR

”Machine Learning” OR ”Deep Learning” OR

”Black-box Testing” OR ”Integration Testing” OR

”Metamorphic Testing” OR ”White Box Testing”)

NOT (”Manual Testing” OR ”Adhoc testing”)].

In addition to the search string approach, titles,

keywords, abstracts and methods have been

examined to find out relevant publications.

Fig. 1. A general approach to apply ML techniques in software testing

B. Data Screening and Extraction

Each paper examines different aspects of

applications of ML techniques in software testing.

In these studies, the authors applied different ML

techniques, compared their performance in software

testing, and came out with the best ML strategy to

use in software testing. For collecting the research

studies, PRSIMA [22] guidelines have been

followed. The PRISMA flow diagram to select the

articles for this systematic review study is presented

in Fig. 2. In three different stages, the articles were

screened. In the first stage, which is the

identification stage, there were initially 90 articles in

the database and 12 articles in the registers. In the

second stage, articles were excluded due to being

out of scope and poor quality. We read the title,

keywords, abstract, and methods of each article to

identify whether the article is relatable or not.

Finally, 20 articles were included for final review.

The inclusion and exclusion criteria used in this

study to select the articles are presented in Fig. 3.

Fig. 2. PRISMA flow diagram used in this study for

finding literature

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3189

Data extraction means the process of retrieving

relevant data from various sources for a specific

purpose, such as a literature review [23]. In the

context of software testing using AI, data extraction

may involve searching through academic journals,

and conference proceedings to gather information

on the latest developments and trends in software

testing using AI. This information can then be used

to summarise a comprehensive review of the current

state of the field, identify gaps in existing

knowledge, and provide insights into future

directions for research and practice. Table I shows

the details of the selected number of studies in

different stages and their publishers.

Fig. 3. Inclusion and Exclusion Criteria

V. RESULTS

This section provides insights into state-of-the-art

techniques and their effectiveness in improving the

quality and efficiency of software testing using AI

techniques. This study aims to provide a

comprehensive synopsis of the existing research in

this domain by analyzing a number of studies. 20

studies have been reviewed in the study and the

details findings and analysis of these studies have

been presented in Table II. We also investigated to

the answers to the research questions from the

relevant research papers.

RQ1: Does manual testing have drawbacks?

Manual testing has several drawbacks. Some of the

draw- backs of manual testing are it is time-

consuming, it does not cover all possible scenarios

and use cases, it is costly, it is susceptible to human

errors and it can not reproduce test cases accurately

[24]. ML techniques can help to overcome the

mentioned drawbacks of manual testing. By

leveraging the power of ML algorithms, the software

testing process can be automated, and more accurate

testing can be performed [25].

RQ2: Can integration of AI in software testing help

to overcome the drawbacks of manual testing?

Integration of AI techniques in software testing can

help to overcome the drawbacks of manual testing

by improving the efficiency, accuracy, and

effectiveness of the testing process. ML algorithms

can be trained to automate repetitive testing tasks,

which reduces the required effort for manual testing.

This improves the efficiency of the software testing

process and enables faster testing. ML algorithms

can also analyze large amounts of data that help to

identify defects in the software system.

Identification of the defects improves the accuracy

of the software testing. Apart from that, ML

algorithms can generate test cases using historical

data or existing code, and optimize the testing by

prioritizing test cases [26].

TABLE I: SELECTED NUMBER OF RESEARCH

STUDIES IN DIFFERENT STAGES

Publisher

Name

First Stage:

Identification

Second

Stage:

Screening

Third

Stage:

Included

IEEE 22 14 8

ACM 23 12 6

Science

Direct

12 5 2

MDPI 18 4 2

Wiley 10 3 1

SCITEPRESS 5 2 1

Total 90 40 20

RQ3: What software testing tasks can be automated

by AI ?

ML techniques can automate different types of

software testing tasks such as test results analysis,

test case prioritization, defect prediction, test

execution, test case evaluation, test case refinement,

testing cost estimation, test oracle construction,

identification of metamorphic relations, and test

case generation [26]. Table III shows testing

activities automated by ML techniques.

RQ4: What techniques do researchers use to assess

AI techniques when used in software testing?

Researchers consider different performance matrices

to assess ML algorithms when used in software

testing. The performance matrices are cross-

validation, accuracy, precision, recall, receiver

operating characteristic (ROC) curve, area under the

curve (AUC), and f1 score [27]. the details of

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3190

performance matrices are described below.

Precision: Precision is a statistical measure that

quantifies the ratio of true positive instances out of

the total positive predictions made. [28].

Recall: Recall is a statistical indicator utilized to

quantify the fraction of true positive outcomes

within the entirety of actual positive instances [28].

ML algorithms have shown promising results in

automating software testing tasks. Some of the

promising algorithms are Neural networks, Decision

trees, Support vector ma- chines, and Random

Forest.

TABLE II: SUMMARY OF THE SELECTED STUDIES

SL Source Year Publisher

Name

Findings

1 [29] 2022 ACM Authors proposed an approach utilizing Deep Reinforcement

Learning (RL) for automating the exploration of Android apps. Authors

developed a tool called ARES along with FATE that integrates with ARES.

2 [30] 2022 MDPI This paper analyzed ML frameworks in the context of software automation

and evaluated the performance of testing tools considering various factors.

Accuracy or error rate, scope are important factors to determine the

effectiveness of frameworks.

3 [31] 2022 Science

Direct

This study investigates the efficacy of machine learning, data mining,

and deep learning methodologies in predicting software faults. This

investigation reveals that data mining and machine learning techniques are

utilized more than deep learning techniques.

4 [32] 2022 ACM This paper introduces Keeper, a novel testing tool. Keeper adopts a unique

approach where it creates pseudo-inverse functions for ML APIs. Keeper

significantly enhances branch coverage .

5 [33] 2021 IEEE This study presents DeepOrder, a regression machine learning model based

on deep learning techniques. DeepOrder can prioritize test cases and identify

failed test cases when it considers various factors such as test case duration

and execution status.

6 [34] 2021 Science

Direct

This study investigated reward function and reward strategy within the

context of continuous integration (CI) testing. The authors proposed three

strategies in terms of the reward strategy. Proposed strategies showed

promising results.

7 [5] 2021 IEEE This paper introduces Deep GUI. Deep GUI utilizes deep learning

techniques to create a model of valid GUI interactions, based solely on

screenshots of applications.

8 [35] 2021 IEEE This study finds that most ML libraries lack a high-quality unit test suite.

Moreover, the study also discovers recurring trends in the unexamined code

throughout the five assessed ML libraries.

9 [36] 2021 IEEE This study presents a deep learning approach to predict the validity of test

inputs for RESTful APIs. The proposed network achieved 97% accuracy for

the new APIs.

10

[37]

2019

IEEE

This paper introduces Humanoid, a deep learning approach for generating

GUI test inputs by leveraging knowledge gained from human interactions. It

learns from traces of interactions generated by humans, enabling the

automatic prioritization of test inputs based on their perceived importance

to users.

11 [38] 2019 ACM This study finds equivalent mutants are effective for augmenting data and

improving the detection rate of metamorphic relations.

12

[39]

2019

MDPI

This study introduces an enhanced CNN model specifically designed to

improve the learning of semantic representations from source-code. This

study also showed enhancements of the global pattern capture capability of

the models which improve the model’s generalization performance.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3191

13

[40]

2019

IEEE

This study used three supervised machine learning algorithms for predicting

software bugs. To enhance the accuracy of models, random forest ensemble

classifiers have been used. The developed models effectively work for

various scenarios.

14 [41] 2019 IEEE This study finds ML algorithms have predominantly been employed in

different areas of software testing. Test case generation, evaluation, test

oracle construction, and cost predicton for testing activitires can be

performed using ML.

15 [42] 2018 ACM This study presents an approach for automating the test oracle mechanism in

software using machine learning (ML). By incorporating a captured

component into the application, historical usage data have been gathered.

These data later generate an appropriate oracle.

16 [43] 2018 SCITE

PRESS

This paper describes a tool that generates test data for programs.

The tool operates by clustering input data from a corpus folder and creating

generative models for each cluster. These models are recurrent neural

networks.

17 [44] 2018 ACM This paper introduces a methodology called DaOBML, which offers tool

support to enhance the quality of environmental models that generate

complex artifacts like images or plots. In this study, among six ML

algorithms, ANN shows the best performance.

18 [45] 2017 ACM This study introduces DeepXplore, an innovative whitebox system designed

to systematically test DL systems and detect faulty behaviors. DeepXplore

can solve joint optimization problems.

19 [46] 2016 Wiley

Online

Library

This study, proposed a ML approach that can predict metamorphic relations

in software programs. To achieve this, authors utilized a graph-based

representation of the program.

20 [47] 2016 IEEE This study proposed an approach for prioritizing test cases in manual testing.

The proposed approach considers black-box metadata, including test case

history. SVM Rank ML algorithm is used in this study.

TABLE III: TESTING ACTIVITIES AUTOMATED BY

ML TECHNIQUES

Software Testing

Activity

Total No. of Studies

Test Case Generation 4

Defect Prediction 3

Test Case Prioritization 3

Metamorphic Testing 2

Android Testing 2

Test Case Validation 1

White Box Testing 1

VI. CONCLUSIONS

Software testing plays a key role in the development

of software. However, as software systems become

more complex, traditional manual testing methods

are becoming less practical. There has been growing

interest in leveraging AI techniques for software

testing. This study explores the current state of the

art of AI techniques in software testing. Also, this

study examines various approaches, techniques, and

tools employed in this field, assessing their

effectiveness. The research articles selected for this

review study were obtained from different research

databases using a search string. The title, abstract,

keywords, and methods of these articles were also

checked manually. Initially, 90 articles were

retrieved, and after rigorous filtering following the

PRISMA guideline, 20 articles were chosen for final

analysis. This study finds that AI techniques can

help in the automation of several software testing

tasks. These tasks include Test Case Generation,

Defect Prediction, Test Case Prioritization,

Metamorphic Testing, Android Testing, Test Case

Validation, and White Box Testing. The integration

of AI techniques in software testing is shown to

simplify software testing activities and enhance

performance. In the future, incorporating AI

techniques in different software testing activities

will make it easier to perform testing activities. A

limited number of studies have been examined in

this study, which is a limitation. Conducting a

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3192

review of a larger number of studies would provide

the opportunity to gain deeper insights.

REFERENCES

[1] Sharif, A., Marijan, D. and Liaaen, M., 2021,

September. DeepOrder: Deep learning for test

case prioritization in continuous integration

test- ing. In 2021 IEEE International

Conference on Software Maintenance and

Evolution (ICSME) (pp. 525-534). IEEE.

[2] Yang, Y., Li, Z., He, L. and Zhao, R., 2020. A

systematic study of reward for reinforcement

learning based continuous integration testing.

Journal of Systems and Software, 170,

p.110787.

[3] Romdhana, A., Merlo, A., Ceccato, M. and

Tonella, P., 2022. Deep reinforcement

learning for black-box testing of android apps.

ACM Transactions on Software Engineering

and Methodology (TOSEM), 31(4), pp.1-29.

[4] Li, Y., Yang, Z., Guo, Y. and Chen, X., 2019,

November. Humanoid: A deep learning-based

approach to automated black-box android app

testing. In 2019 34th IEEE/ACM International

Conference on Automated Software

Engineering (ASE) (pp. 1070-1073). IEEE.

[5] YazdaniBanafsheDaragh, F. and Malek, S.,

2021, November. Deep GUI: black-box GUI

input generation with deep learning. In 2021

36th IEEE/ACM International Conference on

Automated Software Engineering (ASE) (pp.

905-916). IEEE.

[6] Kanewala, U., Bieman, J.M. and Ben-Hur, A.,

2016. Predicting metamorphic relations for

testing scientific software: a machine learning

approach using graph kernels. Software

testing, verification and reliability, 26(3),

pp.245-269.

[7] Braga, R., Neto, P.S., Rabeˆlo, R., Santiago, J.

and Souza, M., 2018, September. A machine

learning approach to generate test oracles. In

Proceedings of the XXXII Brazilian

Symposium on Software Engineering (pp.

142-151).

[8] Nair, A., Meinke, K. and Eldh, S., 2019,

August. Leveraging mutants for automatic

prediction of metamorphic relations using

machine learning. In Proceedings of the 3rd

ACM SIGSOFT International Workshop on

Machine Learning Techniques for Software

Quality Evaluation (pp. 1-6).

[9] Singh, P.D. and Chug, A., 2017, January.

Software defect prediction analysis using

machine learning algorithms. In 2017 7th

International Conference on Cloud Computing,

Data Science & Engineering- Confluence (pp.

775-781). IEEE.

[10] Pan, C., Lu, M., Xu, B. and Gao, H., 2019. An

improved CNN model for within-project

software defect prediction. Applied Sciences,

9(10), p.2138.

[11] Myers, G.J., Sandler, C. and Badgett, T., 2011.

The art of software testing. John Wiley &

Sons.

[12] Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y.

and Zhai, C., 2014. Bug characteristics in

open source software. Empirical software

engineering, 19, pp.1665-1705.

[13] Jamil, M.A., Arif, M., Abubakar, N.S.A. and

Ahmad, A., 2016, November. Software testing

techniques: A literature review. In 2016 6th

international conference on information and

communication tech- nology for the Muslim

world (ICT4M) (pp. 177-182). IEEE.

[14] Jordan, M.I. and Mitchell, T.M., 2015.

Machine learning: Trends, perspectives, and

prospects. Science, 349(6245), pp.255-260.

[15] Zhou, Z.H., 2021. Machine learning. Springer

Nature.

[16] Efendioglu, M., Sen, A. and Koroglu, Y.,

2018. Bug prediction of systemc models using

machine learning. IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems, 38(3), pp.419-429.

[17] Hammouri, A., Hammad, M., Alnabhan, M.

and Alsarayrah, F., 2018. Software bug

prediction using machine learning approach.

Interna- tional journal of advanced computer

science and applications, 9(2).

[18] Zhang, D., 2006, November. Machine learning

in value-based software test data generation.

In 2006 18th IEEE International Conference

on Tools with Artificial Intelligence

(ICTAI’06) (pp. 732-736). IEEE.

[19] Kitchenham, B. and Brereton, P., 2013. A

systematic review of sys- tematic review

process research in software engineering.

Information and software technology, 55(12),

pp.2049-2075.

[20] Papaioannou, D., Sutton, A. and Booth, A.,

2016. Systematic ap- proaches to a successful

literature review. Systematic approaches to a

successful literature review, pp.1-336.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3193

[21] Mohamed Shaffril, H.A., Samsuddin, S.F. and

Abu Samah, A., 2021. The ABC of systematic

literature review: the basic methodological

guidance for beginners. Quality & Quantity,

55, pp.1319-1346.

[22] Page, M.J., McKenzie, J.E., Bossuyt, P.M.,

Boutron, I., Hoffmann, T.C., Mulrow, C.D.,

Shamseer, L., Tetzlaff, J.M., Akl, E.A.,

Brennan, S.E. and Chou, R., 2021. The

PRISMA 2020 statement: an updated

guideline for reporting systematic reviews.

International journal of surgery, 88, p.105906.

[23] Jonnalagadda, S.R., Goyal, P. and Huffman,

M.D., 2015. Automating data extraction in

systematic reviews: a systematic review.

Systematic reviews, 4(1), pp.1-16.

[24] Leitner, A., Ciupa, I., Meyer, B. and Howard,

M., 2007, January. Reconciling manual and

automated testing: The autotest experience. In

2007 40th Annual Hawaii International

Conference on System Sciences (HICSS’07)

(pp. 261a-261a). IEEE.

[25] Zhang, J.M., Harman, M., Ma, L. and Liu, Y.,

2020. Machine learning testing: Survey,

landscapes and horizons. IEEE Transactions

on Software Engineering, 48(1), pp.1-36.

[26] Durelli, V.H., Durelli, R.S., Borges, S.S., Endo,

A.T., Eler, M.M., Dias, D.R. and Guimara˜es,

M.P., 2019. Machine learning applied to

software testing: A systematic mapping study.

IEEE Transactions on Reliability, 68(3),

pp.1189-1212.

[27] Song, Q., Guo, Y. and Shepperd, M., 2018. A

comprehensive investiga- tion of the role of

imbalanced learning for software defect

prediction. IEEE Transactions on Software

Engineering, 45(12), pp.1253-1269.

[28] Tatbul, N., Lee, T.J., Zdonik, S., Alam, M. and

Gottschlich, J., 2018. Precision and recall for

time series. Advances in neural information

processing systems, 31.

[29] Romdhana, A., Merlo, A., Ceccato, M. and

Tonella, P., 2022. Deep reinforcement

learning for black-box testing of android apps.

ACM Transactions on Software Engineering

and Methodology (TOSEM), 31(4), pp.1-29.

[30] Fatima, S., Mansoor, B., Ovais, L., Sadruddin,

S.A. and Hashmi, S.A., 2022. Automated

Testing with Machine Learning Frameworks:

A Critical Analysis. Engineering Proceedings,

20(1), p.12.

[31] Batool, I. and Khan, T.A., 2022. Software fault

prediction using data mining, machine

learning and deep learning techniques: A

system- atic literature review. Computers and

Electrical Engineering, 100, p.107886.

[32] Wan, C., Liu, S., Xie, S., Liu, Y., Hoffmann,

H., Maire, M. and Lu, S., 2022, May.

Automated testing of software that uses

machine learning apis. In Proceedings of the

44th International Conference on Software

Engineering (pp. 212-224).

[33] Sharif, A., Marijan, D. and Liaaen, M., 2021,

September. DeepOrder: Deep learning for test

case prioritization in continuous integration

test- ing. In 2021 IEEE International

Conference on Software Maintenance and

Evolution (ICSME) (pp. 525-534). IEEE.

[34] Yang, Y., Li, Z., He, L. and Zhao, R., 2020. A

systematic study of reward for reinforcement

learning based continuous integration testing.

Journal of Systems and Software, 170,

p.110787.

[35] Wang, S., Shrestha, N., Subburaman, A.K.,

Wang, J., Wei, M. and Nagappan, N., 2021,

May. Automatic unit test generation for

machine learning libraries: How far are we?.

In 2021 IEEE/ACM 43rd Interna- tional

Conference on Software Engineering (ICSE)

(pp. 1548-1560). IEEE.

[36] Mirabella, A.G., Martin-Lopez, A., Segura, S.,

Valencia-Cabrera, L. and Ruiz-Corte´s, A.,

2021, June. Deep learning-based prediction of

test input validity for RESTful APIs. In 2021

IEEE/ACM Third International Workshop on

Deep Learning for Testing and Testing for

Deep Learning (DeepTest) (pp. 9-16). IEEE.

[37] Li, Y., Yang, Z., Guo, Y. and Chen, X., 2019,

November. Humanoid: A deep learning-based

approach to automated black-box android app

testing. In 2019 34th IEEE/ACM International

Conference on Automated Software

Engineering (ASE) (pp. 1070-1073). IEEE.

[38] Nair, A., Meinke, K. and Eldh, S., 2019,

August. Leveraging mutants for automatic

prediction of metamorphic relations using

machine learning. In Proceedings of the 3rd

ACM SIGSOFT International Workshop on

Machine Learning Techniques for Software

Quality Evaluation (pp. 1-6).

[39] Pan, C., Lu, M., Xu, B. and Gao, H., 2019. An

improved CNN model for within-project

software defect prediction. Applied Sciences,

9(10), p.2138.

© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002

IJIRT 178236 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3194

[40] Immaculate, S.D., Begam, M.F. and

Floramary, M., 2019, March. Software bug

prediction using supervised machine learning

algorithms. In 2019 International conference

on data science and communication

(IconDSC) (pp. 1-7). IEEE.

[41] Durelli, V.H., Durelli, R.S., Borges, S.S., Endo,

A.T., Eler, M.M., Dias, D.R. and Guimara˜es,

M.P., 2019. Machine learning applied to

software testing: A systematic mapping study.

IEEE Transactions on Reliability, 68(3),

pp.1189-1212.

[42] Braga, R., Neto, P.S., Rabeˆlo, R., Santiago, J.

and Souza, M., 2018, September. A machine

learning approach to generate test oracles. In

Proceedings of the XXXII Brazilian

Symposium on Software Engineering (pp.

142-151).

[43] Paduraru, C. and Melemciuc, M.C., 2018,

July. An Automatic Test Data Generation

Tool using Machine Learning. In ICSOFT (pp.

506- 515).

[44] de Santiago, V.A., da Silva, L.A.R. and de

Andrade Neto, P.R., 2018, September. Testing

environmental models supported by machine

learning. In Proceedings of the III Brazilian

Symposium on Systematic and Automated

Software Testing (pp. 3-12).

[45] Pei, K., Cao, Y., Yang, J. and Jana, S., 2017,

October. Deepxplore: Automated whitebox

testing of deep learning systems. In

proceedings of the 26th Symposium on

Operating Systems Principles (pp. 1-18).

[46] Kanewala, U., Bieman, J.M. and Ben-Hur, A.,

2016. Predicting meta- morphic relations for

testing scientific software: a machine learning

approach using graph kernels. Software

testing, verification and reliability, 26(3),

pp.245-269.

[47] Lachmann, R., Schulze, S., Nieke, M., Seidl,

C. and Schaefer, I., 2016, December. System-

level test case prioritization using machine

learning. In 2016 15th IEEE International

Conference on Machine Learning and

Applications (ICMLA) (pp. 361-368). IEEE.

