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Abstract—Diffusion-based generative models have 

eclipsed GAN and VAE architectures in fidelity, 

robustness and mode coverage, but their iterative 

denoising chains impose steep com- putational and 

energy budgets. We present a complete stack that (i) 

fuses Transformer self-attention and convolution into a 

lightweight denoiser, (ii) compresses a 1 000-step 

teacher into a four-step student via progressive 

distillation, (iii) applies loss- aware pruning, mixed-

precision kernels and adaptive timestep scheduling, and 

(iv) embeds a real-time bias-detection guardrail. 

Trained on a 550 k image–text corpus filtered for legal 

and ethical compliance, the system delivers an FID of 

6.9 on MS- COCO while running 4.6× faster and 4.5× 

greener than a 50- step baseline, and it surpasses 

Stable Diffusion 1.5 by 1.2 FID at 38 % lower energy. 

Experiments on desktop GPUs, laptop GPUs and edge 

NPUs confirm viability for interactive design, AR 

filters and mobile creativity apps, moving diffusion 

models closer to trustworthy, resource-aware 

deployment. 

 

Index Terms—Generative AI, diffusion models, 

model com-pression, image synthesis, AI fairness, 

energy efficiency 

 

I. INTRODUCTION 

 

Context. The last three years have witnessed an 

explosion of denoising diffusion probabilistic models 

(DDPMs) that beat GANs and VAEs in every major 

perceptual metric [1], [2]. Their advantages stem 

from stable log-likelihood training and explicit noise 

scheduling, yet practical adoption stalls where real-

time latency or constrained power envelopes are 

manda- tory (e.g., mobile UIs, AR headsets, point-of-

care medical imaging). 

Challenge. A vanilla DDPM typically runs 50–250 

reverse denoising steps per sample, each resembling 

a UNet forward pass: at 512px this is hundreds of 

milliseconds on a high- end GPU and seconds on 

edge hardware. The dual mandate is therefore clear: 

slash compute without harming fidelity—and do so 

while preventing demographic or toxic bias from 

large crawled datasets. 

Contributions. 

• Hybrid Transformer–Diffusion architecture that re- 

duces parameters by 18 % while widening 

receptive fields. 

• Four-step progressive distillation augmented with 

loss- aware channel pruning, float16 kernels and 

timestep adap- 

tation, yielding 54 ms latency at 512px on an RTX 

3080- Laptop. 

• Real-time fairness guardrail built on CLIP 

embeddings, adding < 3 ms overhead with > 90 

% sensitive-content recall. 

• Comprehensive evaluation across quality, 

efficiency, fairness and edge deployment, including 

an ablation study disentangling each optimization. 

 

II. BACKGROUND AND RELATED WORK 

 

A. Foundations of Diffusion Modeling 

DDPMs treat generation as gradual noise removal; 

improved variants tighten ELBO bounds [3], frame 

the process as SDEs [4], or accelerate sampling with 

deterministic solvers such as DDIM and 

DPMSolver++ [5], [6]. 

 

B. Latent Diffusion and Large-Scale Text 

Conditioning 

Rombach et al. compress pixel-space diffusion into a 

learned latent code, enabling 768² image synthesis on 
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gaming GPUs [7]. GLIDE, DALL·E 2, Imagen and 

Stable Diffusion connect these backbones with 

transformer encoders to follow arbitrary text prompts 

[10]– [12]. 

 

C. Efficiency: Distillation and Consistency 

Progressive distillation collapses hundreds of steps 

into 4–8 with marginal fidelity loss [8]. Consistency 

models push to single-step generation via self-

supervised objectives [9], albeit with quality trade-

offs in high-resolution regimes. 

 

D. Fairness and Safety in Diffusion 

FairDiffusion, BiasAudit and related studies highlight 

gen- der and ethnic skew in synthetic faces and 

occupational stereo- types [13], [14]. Techniques 

range from post-hoc filtering to dataset balancing; 

our guardrail opts for lightweight in-loop scoring to 

meet real-time budgets. 

 

III. PROPOSED FRAMEWORK 

 

A. Problem Statement 

Formally, given a condition c (text, low-res image, or 

multi- 

modal embedding), generate x̂ ∈ RH×W ×3 that 

minimizes 

perceptual divergence from the data manifold, 

under latency Lmax and energy Emax constraints, 

while satisfying a fairness risk score r(c, x̂ )  ≤ τ . 

B. Hybrid Transformer–Diffusion Denoiser 

Each denoising stage alternates depth-wise conv 

blocks (local detail) with 8-head self-attention (global 

context). FiLM layers modulate channels using T5-

XL text embeddings. Weight sharing across blocks 

further trims memory. 

C. Optimization Pipeline 

1) Progressive Distillation: teacher trajectories (1 

000 steps) supervise a 4-step student via MSE + 

noise-pred loss. 

2) Loss-Aware Pruning: group-Lasso removes 30 % 

of filters whose gradients correlate least with FID 

improve- ment. 

3) Mixed Precision & FP8 Kernels: float16 ops 

every- where except LayerNorm; TensorRT FP8 

accelerates attention by 1.3×. 

4) Adaptive Step Scheduling: a tiny policy net 

allocates extra denoise budget to high-entropy 

spatial regions. 

D. Bias-Detection Guardrail 

Three CLIP-derived classifiers flag nudity, profanity 

and demographic imbalance. Trajectories exceeding 

threshold τ = 

0.4 are either resampled (if early) or pixel-masked (if 

late), keeping FID drop ¡0.02. 

 

IV. EXPERIMENTAL SETUP 

 

A. Hardware & Runtime Environment 

Training: 4× RTX 4090, PyTorch 2.2, CUDA 12.4. 

Deploy- ment: RTX 3080-Laptop, Apple M2 NPU 

(16-core), Snap- dragon 8-Gen-3 (Hexagon NPU). 

B. Dataset and Pre-processing 

We merge LAION-Aesthetics v2, OpenImages, Visu- 

alGenome to 550 k pairs. A filter pipeline removes 

water- marks, synthetic text, and explicit content. 

Images are center- cropped/ resized to 512² then VQ-

VAE-2 encoded to 64²×4 latent tensors; captions are 

tokenized with SentencePiece (32 k vocab) and 

embedded via frozen T5-XL. 

C. Evaluation Metrics 

Quality: FID, IS, CLIP-FID, CLIP-R. Efficiency: 

single- sample latency, FPS, energy (J/img) via 

Nvidia-SMI + NPU counters. Fairness: KL 

divergence between gender/ethnicity proportions in 

prompts vs. generations; toxic-content recall. 

 

V. RESULTS AND DISCUSSION 

 

A. Quantitative Results 

Table I benchmarks the four-step student against the 

50-step teacher and Stable Diffusion 1.5 on the MS-

COCO 30 k split. 

TABLE I 

QUALITY–EFFICIENCY TRADE-OFF (512PX, RTX 

3080-LAPTOP) 

 

Model FID ↓ Latency (ms) 

↓ 

Energy (J) ↓ 

50-step Teacher 6.71 248 81.3 

Stable Diffusion 

1.5 

8.12 87 27.4 

Ours (4-step) 6.89 54 18.0 

 

B. Ablation Study 

Latency rises to 165ms if distillation is removed 

(25- step student); energy climbs 31 % when mixed 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 178361 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2990 

precision is disabled. Excluding the guardrail leaves 

FID unchanged but raises fairness KL divergence 

from 0.06 to 0.21—well above policy threshold. 

C. Qualitative Assessment 

Figure omitted for brevity. Human raters (n=25) 

preferred our samples to Stable Diffusion by 62 % 

and found no significant realism gap relative to the 

teacher (p¿0.1). 

D. Edge Deployment 

Apple M2 delivers 0.9 FPS (8 W system draw); 

Snapdragon 8-Gen-3 yields 0.4 FPS (5 W). Both 

sustain interactive AR or thumbnail use-cases. 
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