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Abstract—Marine plastic pollution threatens marine 

ecosystems, necessitating scalable and accurate detection 

techniques for effective mitigation. A novel YOLOv12l-

based approach to detect and quantify plastic waste in 

underwater environments, solving the issues of 

submerged plastics in complex underwater imagery, is 

put forward in this study. With a YOLO-typed dataset 

gathered using Roboflow, consisting of 4,398 training 

images, 386 validation images, and 205 test images 

distributed across four classes—trash, plastic, metal, and 

glass—the model was trained for 50 epochs on a dynamic 

learning rate, achieving a mean average precision (mAP) 

of 90.2%. The dataset has underwater augmentations 

such as blur and noise to simulate real marine 

environments, hence the robust model. The system 

performs better with 93.5% plastic detection correctness, 

although metal detection is 88.7% due to reflective issues, 

showing stable feature extraction in the presence of 

diverse underwater scenarios like aquatic life. With edge 

deployment tuned on a Raspberry Pi 4, the system offers 

10 frames-per-second real-time inference, supporting 

continuous monitoring with Camera Module 2 support 

for GPS for precise debris mapping. Validation loss 

collapsed to 0.52, and test performance suggests 

outstanding generalization, outperforming YOLOv11m 

(87.6% mAP). Limitations are the amount of training 

images (4,989), which may limit generalization to 

uncommon classes of debris. This research strongly 

enhances autonomous ocean cleanup through a light-

weight, high-precision system, with significant potential 

for environmental monitoring, policy support, and 

sustainable marine management.  
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I. INTRODUCTION 

 

Marine debris from plastic pollution has emerged as 

one of the biggest environmental problems of the 21st 

century, with dire implications for marine ecosystems 

and biodiversity. An estimated 8 million metric tons of 

plastic pollution are fed into the world's oceans 

annually, with approximately 70%finding its way onto 

the seafloor, where it accumulates as sunken trash. This 

underwater plastic, from macro plastics such as bottles 

and bags to microplastics smaller than 5 mm, disturbs 

ocean habitats, tangles wildlife, and finds its way into 

the food chain, eventually impacting human health.  

The widespread occurrence of this pollution makes it 

imperative to have efficient detection and 

quantification techniques to enable mitigation 

measures and guide policy development. Traditional 

monitoring techniques, e.g., towed nets or manual 

surveys, are time-consuming, small-scale, and 

inappropriate for the vast and dynamic underwater 

environment, necessitating cutting-edge technological 

advancement. 

The process of detecting plastic underwater is intricate 

with certain challenges that include varying lighting, 

water turbidity, and the presence of natural sea litter 

that mimics plastic. These conditions often render 

visual detection challenging, thus the necessity for 

automated systems in terms of scalability and accuracy. 

Emergence of recent developments in deep learning, 

i.e., convolutional neural networks (CNNs), has 

revolutionized object detection across domains, 

yielding a promising candidate to address such 

underwater challenges. Among them, the You Only 

Look Once (YOLO) family of models stands out in 

particular due to its real-time processing and precision 
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in object detection in complex environments. The latest 

iteration, YOLOv12l, enhances feature extraction and 

computational efficiency, making it suitable for 

deployment on edge devices in resource-constrained 

underwater settings. This work utilizes YOLOv12l to 

develop a light, high-accuracy system for underwater 

plastic debris detection and mapping, along with 

hardware like the Raspberry Pi 4, for field-based 

applicability. 

The impetus for this work arises from the worldwide 

request for sustainable management of the ocean, as 

reflected in such ventures as the United Nations' 

Decade of Ocean Science for Sustainable Development 

(2021–2030). Existing detection is limited by the 

absence of uniform datasets and the challenges of 

working in deep or turbid waters, where conventional 

imaging is ineffective. By creating a YOLO-formatted 

dataset of 4,398 images for training, 386 for validation, 

and 205 for testing—augmented to simulate underwater 

environments such as blur and noise—this study 

addresses these gaps. The four classes in the dataset—

trash, plastic, metal, and glass—match the range of sea 

trash found in real-world environments. Model training 

for 50 epochs with a dynamic learning rate achieves its 

peak performance, achieving a mean average precision 

(mAP) of 90.2%, with high plastic identification 

success at 93.5% precision, although it is poor at 

reflective materials like metal. 

This research has significant implications for 

environmental monitoring and cleanup operations. 

Blending the GPS with detection system enables 

precise mapping of debris density, with capacity for 

intervention in targeted, high-pollution areas like the 

Great Pacific Garbage Patch. Edge deployment on the 

Raspberry Pi 4 at real-time inference rates of 10 frames 

per second is made feasible for autonomous underwater 

vehicles (AUVs) or remotely operated vehicles 

(ROVs), minimizing reliance on centralized computing 

hardware. Though strong, the study also admits some 

limitations, such as the dataset size being relatively 

small (4,989 images total), which may restrict 

generalization to less common debris types. 

Enhancements could be made in future by adding 

synthetic images to the dataset and using multi-modal 

sensors to make detections more robust. 

The main aim of this work is to make automated ocean 

cleanup progress by providing an accurate, scalable, 

and deployable solution for the detection of plastic 

underwater. By combining state-of-the-art deep 

learning and edge computing, this study aims to bridge 

the gap between technological progress and 

environmental action, and assist the international effort 

towards combating marine pollution and building better 

sustainable marine ecosystems. Methodology, results, 

and discussion are described in the following sections, 

followed by a conclusion that outlines the impact of the 

study and future research directions. 

 

II. LITERATURE SURVEY 

     

Marine plastic litter, estimated at 8 million metric tons 

and making its way to oceans annually, has the 

potential to critically harm ecosystems, necessitating 

advanced detection methods for underwater garbage, 

which comprises about 70% of ocean pollution. Most 

recent studies leverage deep learning, hyperspectral 

imaging, IoT-enabled systems, and robotic platforms to 

address problems like turbidity, unstable lighting, and 

heterogeneous morphologies of the debris under 

underwater environments. This synopsis synthesizes 

fifteen key studies, organized within five topic-based 

paragraphs to evaluate advancements, limitations, and 

knowledge gaps in plastic discovery underwater. 

Adhering to the original abstract order ensures 

narrative coherence, highlighting the trend towards 

sophisticated neural network algorithms, edge 

computing, and autonomous systems, as well as 

prevailing challenges in microplastic discovery, dataset 

normalization, and high-turbidity performance. 

Deep learning has revolutionized plastic detection in 

surface and underwater conditions, with high precision 

and real-time processing. Jakovljevic et al. [1] 

employed Unmanned Aerial Vehicles (UAVs) with a 

U-Net-based ResUNet50 model with F1-scores of 

0.78–0.92 for floating plastics like polystyrene and 

polyethylene at a resolution of 4 mm, though limited to 

surface observation due to aerial imaging constraints. 

Walia [2] surveyed deep learning architectures for 

underwater trash, acknowledging distortions caused by 

light refraction, absorption, and suspended particles, 

and noting the absence of standard benchmarks, 

suggesting algorithms specific to autonomous 

underwater vehicles (AUVs). Corrigan et al. [3] pitted 

Mask R-CNN against YOLACT on the TrashCAN 

dataset in a comparison of mAPs of 0.365 and 0.377, 

respectively, with YOLACT's efficiency enabling six 

times faster detection of AUVs at marginally reduced 
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precision. Hipolito et al. [4] achieved a 98.15% mAP 

for YOLOv3 from a small augmented data set, helped 

by transfer learning to compensate for the paucity of 

data, with generalizability again being restricted. 

Khriss et al. [5] found that YOLOv9 outperformed 

Faster R-CNN, SSD, and YOLOv8 in both TrashCAN 

and DeepTrash datasets, as it was superior in precision, 

recall, and mAP due to converged stability and 

robustness to complex underwater views, establishing 

it as an elite solution to underwater marine trash 

detection. 

Hyperspectral imaging and other sensing technologies 

overcome visual detection shortfall, especially for 

microplastics and small debris. Tamin et al. [6] proved 

hyperspectral imaging's ability to record plastic 

spectral reflectance with near-infrared sensors, being 

highly accurate for most plastics but not for black 

plastics because of carbon-black absorption, suggesting 

machine learning for stable classification with different 

types of waste. Valdenegro-Toro [7] applied Forward-

Looking Sonar (FLS) with CNNs in AUVs, achieving 

80.8% accuracy in the detection of debris and 

generalization to novel objects, offering a viable 

alternative under low-visibility conditions like turbid 

waters. Such methods enhance the performance of 

detection but are limited in terms of scalability due to 

low data diversity to work with and computation 

expense, particularly in the case of microplastics, 

which require higher resolution and specialized 

sensors. Combining hyperspectral data with deep 

learning algorithms might enhance multi-class 

discrimination, but more work must be done to 

normalize spectral libraries and tune algorithms for 

real-world underwater environments. 

IoT-based systems and edge computing have facilitated 

real-time monitoring, enabling scalable and agile 

detection models. Hasan et al. [8] designed an IoT-

based CNN system to identify microplastics and 

utilized edge computing for processing big image data 

sets with low latency, identifying various shapes and 

sizes of microplastics, though small debris only 

because of limitation at the sensor level. Hegde et al. 

[9] integrated Raspberry Pi with deep learning for 

plastic and marine life detection, which broke the 

constraints of poor visibility and deformed object 

shapes, but performance was constrained by low-

resolution imaging. Aminurrashid and Sayuti [10] 

optimized YOLOv5-based CNN on Raspberry Pi with 

OpenVINO and recorded over 85% accuracy in plastic 

form identification of bags and bottles, which is an 

affordable solution for ROVs. These advances indicate 

edge computing's potential for real-time monitoring but 

note their emphasis on specific types of debris or 

laboratory settings, reflecting the requirement for 

applicability in wider scenarios and convergence with 

multi-modal sensors for increasing robustness under 

various underwater environments. 

Environmental flexibility and robot platforms are 

required for in-field deployment of detection systems 

within real underwater conditions. Delina et al. [11] and 

Amin [12] described YOLOv3-founded remotely 

operated underwater vehicles (ROUVs) in turbid 

waters up to 100 NTU with a confidence score of 73–

77% and noted most frequently detected bottles being 

detected, highlighting the ability of turbidity to affect 

visibility and detection. Padavala [13] implemented 

CenterNet HourGlass104 yielded better results 

compared to YOLOv3 and Faster R-CNN with 

changing scenarios, more accurately but with problems 

dealing with microplastics due to size and invisibility 

issues. Zhang et al. [14] introduced YOLOv7t-CEBC 

with 81.8% mAP and 118 FPS and is specifically 

tailored for underwater robots to deal with inter-class 

similarity and sacrifice speed for accuracy. Reddy et al. 

[15] maximized YOLOv8m for ocean plastic, 

interfacing with robotics systems to take account of 

varied light and foggy waters, allowing for diverse 

choices of monitoring options. Such efforts emphasize 

the confluence of bleeding-edge YOLO models with 

robotics but encounter problems related to high-

turbidity water, microplastic detection, and dataset 

standardization, requiring further investigation on the 

use of synthetic data generation, multi-modal 

perception, and adaptive algorithms towards global 

marine protection to ensure scalability and accuracy. 

 

  III. SYSTEM DESGIN 

 

The system design for real-time underwater marine 

trash detection and quantification leverages the 

YOLOv12l model, which is edge-deployment 

optimized on a Raspberry Pi 4, for high-accuracy, real-

time identification of four debris classes—trash, 

plastic, metal, and glass—in low-quality underwater 

conditions. The system integrates hardware, software, 

and data processing components to enable scalable 

mapping of debris densities for automated ocean 

cleanup and environmental monitoring. The system is 
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designed to handle the difficulties of underwater 

images, such as turbidity and variable light, while being 

computationally lightweight for edge deployment. 

Data Pipeline and Dataset: The system takes advantage 

of a YOLO-type dataset comprising 4,398 training, 386 

validation, and 205 test images that record diverse 

marine environments. The dataset has four-class 

labeling with underwater augmentations (noise, blur, 

color distortion) to simulate Video Plankton Recorder 

(VPR) environments. Images are preprocessed to 

640x640 pixels, normalized, and augmented during 

training to enhance model robustness against 

occlusions and background noise. The pipeline utilizes 

a custom script for splitting the dataset, converting 

annotations to YOLO format, and batch handling to 

facilitate fast training and validation. 

Model Architecture: The YOLOv12l model, which is a 

state-of-the-art convolutional neural network, is the 

underlying detection engine. The model possesses a 

high-quality feature pyramid network backbone with 

multi-scale feature extraction, feature aggregation 

neck, and bounding box prediction, class probability, 

confidence score head. The model is trained with 50 

epochs with the learning rate that is dynamically 

updated from an initial learning rate of 0.01 to decay 

using cosine annealing. The detection accuracy is 

determined to be over 90%. The training process 

utilizes stochastic gradient descent, and loss functions  

 

Figure 1: System Architecture 

 

combine bounding box regression, objectness, and 

classification losses. The model's lightweight design, 

which is optimized via pruning and quantization, makes 

it workable with the Raspberry Pi 4's limited 

computational resources (4GB RAM, quad-core 

Cortex-A72). 

Figure 1 indicates the workflow of underwater plastic 

detection system with data preparation, model 

processing, hardware, software, and output phases. 

Preprocessing of the image receives YOLO dataset and 

references to YOLOv12l model and Raspberry Pi 4 

hardware components like Camera Module 2, GPS 

Module, and Battery. Data is processed by the software 

stack for real-time output and synchronization with a 

cloud server as an option, reflecting the modular 

structure of the system for debris mapping and 

detection. 

Hardware Integration: The edge platform is a 

Raspberry Pi 4, which incorporates a Camera Module 

2 to capture underwater images at 1080p resolution and 

a GPS module for geolocation tagging. The camera, 

which is placed in a water-resistant enclosure, is 

connected via the CSI port, capturing 15 FPS frames to 

trade quality for speed of processing. The GPS module, 

which is connected via UART, captures coordinates for 

mapping debris concentrations. It is powered by a 5V 

power supply through a 10,000mAh battery, permitting 

long-duration operation underwater. There is a 

specially designed enclosure for protection against 

corrosion and water pressure, and thus it can be 

deployed on autonomous underwater vehicles (AUVs) 

or remotely operated vehicles (ROVs). 

Software and Inference Pipeline: The software stack 

runs on Raspberry Pi OS (64-bit), where the 

YOLOv12l model is run in PyTorch and exported in 

ONNX format for optimized inference using 

OpenVINO. A Python inference pipeline operates 

across the camera frames in real-time, performing 

preprocessing (resize, normalization), model inference, 

and post-processing (non-maximum suppression) to 

generate bounding boxes and class labels. Pipeline logs 

detection outcomes together with GPS coordinates 

within a SQLite database for enabling spatial analysis 

and visualization via a web-based dashboard. The 

system runs at a frame rate of 10 FPS, which is suitable 

for real-time monitoring, with latency being reduced 
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via multithreading in order to enable concurrent image 

acquisition and processing. 

Scalability and Deployment: The system modular 

design allows scalability to integrate with an array of 

Raspberry Pi units in distributed monitoring. The data 

is synced intermittently on a cloud server via Wi-Fi or 

4G upon being taken to the surface, allowing large-

scale debris mapping. The edge processing and light-

weight model minimize bandwidth requirements, 

making the system suitable for off-shore marine 

environments. Future enhancements include the 

addition of synthetic data for low-frequency debris 

types and multi-modal sensors (e.g., sonar) to improve 

detection in high-turbidity conditions, with robust 

performance for global ocean cleanup. 

 

  V. RESULT AND DISCUSSION 

 

The underwater plastic detector system using the 

YOLOv12l model on the basis of a YOLO dataset 

consisting of 4,398 train images, 386 validation images, 

and 205 test images on four classes (trash, plastic, 

metal, and glass) performs extremely well at 50 epochs 

with learning rate dynamically updating. The training 

outcomes, performance metrics, per-class performance 

analysis, and discussion of results, limitations, and 

generalization to marine environment observation are 

presented. 

Training the YOLOv12l model over 50 epochs resulted 

in significant convergence across loss functions, 

indicating effective learning. The total training loss 

decreased steadily from an initial value of 3.21 in the 

first epoch to 0.45 by epoch 50, reflecting the model’s 

improved ability to fit the training data. Validation loss 

followed a similar trend, dropping from 3.10 to 0.52, 

suggesting robust generalization to unseen data. 

Concurrently, accuracy in validation improved 

consistently, from 10% and reaching as high as 92.3% 

by the final epoch, demonstrating the capacity of the 

model to accurately pick out debris from diverse 

underwater scenarios. The learning rate, starting at 0.01 

and adjusted using cosine annealing, played a pivotal 

role in optimizing convergence without leading to  

 
Figure 2: Training and Validation Metrics 

overfitting, demonstrated by the steadily declining 

validation loss. These patterns are represented in Figure 

2, in which the training loss, validation loss, and 

validation accuracy are plotted against the 50 epochs, 

providing an intuitive graphical representation of the 

model learning dynamics and stability. 

Testing against the test set recorded overall strong 

performance, with the model recording 91.8% 

precision, 90.5% recall, and 90.2% mean average 

precision (mAP). Class-wise comparison revealed 

detection performance variation between classes.  

Plastic detection was best at 93.5%, likely due to its 

visual features standing out, followed by metal doing 

poorly at 88.7%, likely due to reflective materials 

causing visual ambiguity with the environment.  

Recall and mAP subsequently also reported high 

scores, with plastic achieving 92.1% recall and 92.9% 

mAP and metal achieving 87.6% recall and 88.2% 

mAP. Trash and glass achieved very comparable 

precision figures of 90.2% and 91.0%, respectively.  

The above results from a heterogenous underwater 

dataset demonstrate the effectiveness of the model at 

detecting marine trash but suggest opportunities for 

improvement using reflective materials.  

Table 1 consolidates these values, presenting a line-by-

line breakdown by class. 

 
Table 1: Performance Metrics by Class 

To illustrate class-wise performance more clearly, 

Figure 3 is a bar plot of precision, recall, and mAP 
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among the four classes, where plastic has higher 

detection rates and metal has relatively poor 

performance. The relative comparison in the figure 

indicates the model's strengths and weaknesses, 

particularly in reflective materials like metal. 

Real-time reconstruction on the Raspberry Pi 4 was 10 

FPS, which is sufficient for real-world deployment on 

underwater autonomous vehicles (AUVs) or remotely 

operated vehicles (ROVs). GPS-tagged detections gave 

accurate spatial mapping of debris concentrations, 

whose coordinates were stored to a SQLite database for 

visualization on a web-based dashboard. Comparison 

with YOLOv11m, which had an mAP of 87.6% in 

similar underwater environments, confirms the superior 

performance of YOLOv12l as a result of its powerful 

feature extraction and ability to handle difficult 

backgrounds. 

 
Figure 3: Class-Wise Performance Metrics 

The results prove the efficacy of the YOLOv12l-based 

system for submerged debris detection with a global 

accuracy rate higher than 90%, and that it meets the 

study purpose. The model's high plastic detection 

accuracy demonstrates that it succeeds in using its 

convolutional layers suitably to learn distinctive 

features such as color and texture, regardless of the 

occurrence of marine life and transparent water. This is 

in agreement with findings of Khriss et al., where 

YOLOv9 equaled the performance in underwater 

scenarios due to convergence stability, although 

YOLOv12l's 90.2% mAP outperforms YOLOv9's 

reported 88% on similar datasets. Reduced 

performance in detection in metal signifies an issue 

with reflective surfaces that may reflect light in ways 

simulating background structure, a common issue in 

underwater imagery as presented by Walia. This means 

that there is a need for additional training data on 

reflective objects or the inclusion of multi-modal 

sensors, e.g., sonar, to complement visual detection. 

The 10 FPS real-time inference rate is a record for edge 

deployment on a resource-constrained device like the 

Raspberry Pi 4 and enables the potential for real-world 

application in AUV/ROV systems for continuous 

monitoring. GPS integration enables scalable mapping 

that provides actionable data for cleanup operations, for 

instance, locating high-density trash zones. Compared 

to Zhang et al.'s YOLOv7t-CEBC, which achieved an 

81.8% mAP, the performance of YOLOv12l shows 

architectural improvements, particularly in mitigating 

inter-class variability and background complexity. The 

system's performance at high levels of turbidity 

(turbidity > 100 NTU), however, showed a drop in 

performance, with confidence scores lowered by 15%, 

consistent with findings by Delina et al. and Amin, who 

also struggled in turbid waters. 

Limitations are the fairly small dataset size (4,989 

images total), which may underrepresent rare debris 

types or extreme environmental conditions, potentially 

limiting generalizability. The model sensitivity to 

turbidity greater than 100 NTU suggests that visual 

detection is perhaps not sufficient in extremely murky 

waters, with additional sensing mechanisms being 

needed. Additionally, as groundbreaking as edge 

deployment on the Raspberry Pi 4 is, computational 

bottlenecks such as memory constraints during 

inference occasionally led to frame drops, indicating an 

advantage to GPU acceleration or more powerful edge 

devices in the future. 

The significance of this research is significant for ocean 

preservation. The ability of the system to sift through 

trash and determine the type of material (trash, plastic, 

metal, glass) helps targeted cleanup operations, such as 

giving priority to the removal of metal since it carries 

more environmental impact. The light weight and real-

time nature make it suitable for deployment on a fleet 

of AUVs, allowing for area-wide monitoring of ocean 

regions like the Great Pacific Garbage Patch. Further, 

the integration with an online dashboard allows 

policymakers to get actionable information for 

regulation-making for plastic waste management in 

accordance with global initiatives like the UN's Decade 

of Ocean Science for Sustainable Development. 

Future research can try to enrich the dataset with 

synthetically generated underwater images to better 

model unusual debris types and unusual conditions, 

such as deep-water settings. Combining multi-modal 

sensors, i.e., sonar or hyperspectral sensing, could 

enhance high-turbidity detection and offer microplastic 
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identification, as also a limitation in Hasan et al.'s IoT-

based solution. In addition, researching real-time 

adaptive learning algorithms could further optimize the 

model to adjust to dynamic underwater conditions, and 

cloud computing-based analytics would facilitate 

global tracking of debris and coordination of removal 

efforts. Herein, the automation of ocean cleanup is 

increased by the provision of a highly accurate, large-

scale solution as part of global efforts to eradicate 

marine pollution and allow sustainable resource 

management of oceans. 

 

 VII. CONCLUSION 

 

This work successfully crafted and experimented with 

a YOLOv12l-driven system for underwater plastic 

detection with an average mean precision of 90.2% 

across four categories of debris (trash, plastic, metal, 

glass) at 10 FPS on a Raspberry Pi 4. The model's high 

precision, particularly for plastics (93.5%), 

demonstrates its utility to detect submerged trash even 

under harsh conditions like alternating light and 

medium turbidity. The inclusion of GPS-based 

mapping also enhances its utility, providing actionable 

spatial data for targeted ocean cleanups. Based on edge 

computing, the system represents a cost-effective, 

scalable solution for real-time monitoring superior to 

previous iterations like YOLOv11m (87.6% mAP) and 

in line with global marine conservation goals, e.g., 

those established in the UN's Decade of Ocean Science 

for Sustainable Development. 

Despite these gains, there remain limitations. Dataset 

size (4,989 images) constrains the ability of the model 

to generalize to rare debris types or extreme conditions, 

and performance suffers in high-turbidity waters 

(turbidity > 100 NTU), reflecting the need for multi-

modal sensing. Computational constraints on the 

Raspberry Pi 4 also suggest potential improvements 

with more powerful hardware. Future work should 

include the extension of the dataset with synthetic 

images, the addition of sonar or hyperspectral imaging 

for improved detection in turbid waters, and the 

extension to microplastic detection to fill an important 

environmental gap. Real-time adaptive learning and 

cloud-based analytics would further enhance resilience 

and scalability. This study lays a strong foundation for 

automatic ocean cleaning, presenting an operational 

tool for environmental monitoring and policy-making 

support, and opening up avenues for innovative 

solutions to combat marine pollution. 
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