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Abstract— Predicting the severity of traffic accidents is 

essential for enhancing road safety and enabling timely 

emergency response. In this research, we propose a 

Convolutional Neural Network (CNN)-based deep 

learning model for classifying the severity of road traffic 

accidents using visual and structured data. The model 

leverages the spatial learning capabilities of CNNs to 

extract meaningful patterns from accident-related 

images and metadata. We train and evaluate multiple 

CNN architectures, including [mention specific 

architectures like VGG16, ResNet50, or a custom CNN], 

on a curated dataset containing annotated accident 

severity levels. Our experimental results demonstrate 

that the proposed model achieves high accuracy and 

generalization in distinguishing between different 

severity levels, outperforming traditional machine 

learning baselines. Additionally, we explore the impact 

of data augmentation, preprocessing techniques, and 

hyperparameter tuning on model performance. The 

study further discusses the challenges of real-world 

deployment, such as data imbalance, noise, and 

generalizability across regions. Our findings highlight 

the potential of deep learning in automating accident 

severity assessment and lay the groundwork for future 

advancements in intelligent transportation systems. 

Index Terms— Traffic Accident Severity, Convolutional 

Neural Networks (CNNs), Deep Learning, Predictive 

Modeling, Image Analysis, Sensor Data, Traffic Safety, 

Accident Prediction etc. 

I. INTRODUCTION 

Road traffic accidents are a leading cause of 

injury and death worldwide, posing a significant 

challenge to public safety and transportation systems. 

According to the World Health Organization (WHO), 

approximately 1.3 million people die each year due to 

road accidents, and millions more suffer non-fatal 

injuries, often with long-term consequences. Rapid 

and accurate assessment of accident severity plays a 

critical role in enabling timely emergency response, 

optimizing resource allocation, and formulating 

effective traffic management and safety policies. 

Traditionally, traffic accident severity prediction 

has relied on statistical and rule-based methods that 

often struggle to handle the complex and nonlinear 

nature of accident data. These methods are typically 

limited in their ability to scale with increasing data 

complexity and often require manual feature 

engineering, which can introduce bias and limit model 

performance. 

In recent years, deep learning techniques—

particularly Convolutional Neural Networks 

(CNNs)—have emerged as powerful tools for 

automatically learning spatial hierarchies from visual 

and sensor-based data. CNNs have demonstrated 

exceptional performance in various image 

classification and pattern recognition tasks, making 

them highly suitable for analyzing accident scenes 

captured through dashcams, surveillance systems, and 

traffic sensors. 

This research proposes a CNN-based deep 

learning framework to predict the severity of road 

accidents by analyzing visual and contextual features. 

Unlike traditional methods, the proposed model 

leverages the automatic feature extraction capabilities 

of CNNs to improve accuracy and reduce reliance on 

handcrafted features. The study evaluates various 

CNN architectures, investigates the impact of training 

parameters, and benchmarks performance using real-

world accident data. 

The objectives of this paper are threefold: (1) to 

develop a CNN model capable of classifying traffic 

accident severity into defined categories (e.g., minor, 

moderate, severe); (2) to compare the performance of 

different CNN architectures in this context; and (3) to 
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explore the challenges and future prospects of 

deploying such models in real-world intelligent 

transportation systems (ITS). 

II. LITERATURE SURVEY 

Accident severity prediction has been a subject of 

growing interest in the fields of transportation 

engineering and intelligent systems. Early approaches 

primarily relied on statistical models such as logistic 

regression, decision trees, and support vector 

machines (SVMs), which utilized structured datasets 

containing variables like weather conditions, vehicle 

types, driver demographics, and road characteristics. 

While these models offered interpretability, they often 

lacked the capacity to capture the nonlinear 

relationships and complex patterns present in accident 

data. 

With the advancement of machine learning and 

artificial intelligence, more recent studies have shifted 

toward deep learning-based approaches. In particular, 

Convolutional Neural Networks (CNNs) have shown 

promising results in tasks that require spatial feature 

extraction, such as image classification, object 

detection, and scene understanding. These capabilities 

make CNNs a natural fit for analyzing traffic accident 

images and video footage. 

Several researchers have explored the use of CNNs for 

traffic-related tasks. For instance, Zhang et al. (2020) 

applied a CNN model to classify accident types based 

on CCTV footage and achieved high accuracy in real-

time accident detection. Similarly, Liu et al. (2021) 

integrated CNNs with vehicle telemetry data to 

estimate crash impact severity. Other studies have 

combined CNNs with transfer learning to adapt 

pretrained models (e.g., VGGNet, ResNet, 

MobileNet) to traffic accident datasets, thereby 

improving performance with limited training data. 

Despite these advances, several challenges persist. 

Many existing works focus on binary classification 

(e.g., severe vs. non-severe), which oversimplifies the 

range of real-world accident outcomes. Additionally, 

most models are trained on specific regional datasets, 

limiting their generalizability across different 

geographical contexts. Moreover, the availability of 

annotated image datasets for traffic accidents remains 

limited, posing a significant barrier to model 

development and benchmarking. 

This study addresses these limitations by 

implementing and evaluating a CNN-based 

architecture for multi-class severity classification 

using a dataset that includes both visual and structured 

accident features. It also emphasizes model 

performance, generalization, and real-world 

applicability, contributing to the growing body of 

research in intelligent accident response 

systems.Another promising direction is the 

incorporation of real-time data, such as live traffic 

feeds and connected vehicle information, to enable 

dynamic severity prediction. The continued evolution 

of CNN architectures, combined with advancements in 

edge computing and Internet of Things (IoT) 

technologies, will likely drive further innovations in 

this field. 

Paper 

& Year 

Proposed 

Technology 
Performance Research Gap 

Abdel-

Aty & 

Pande 
(2007) 

Logistic 

Regression 

Identified key 

crash severity 

factors on 
highways 

Limited 

modeling of 

non-linear and 
high-

dimensional 

relationships 

Li et al. 
(2008) 

Decision Trees Classified 
severity using 

traffic and 

environmental 
features 

Poor 
representation 

of temporal 

and spatial 
correlations 

Chen et 

al. 
(2016) 

CNN + 

Dashcam & 
Environmental 

Data 

Recognized 

visual cues like 
obstructions, 

weather effects 

Requires large 

labeled 
datasets; low 

interpretability 

Wang 

et al. 
(2019) 

ResNet Variant 

for Image-
Based Severity 

Achieved high 

classification 
accuracy on 

labeled images 

Integration of 

structured and 
unstructured 

data remains 
challenging 

Zhang 

et al. 

(2020) 

CNN + RNN 

(Spatial-

Temporal 
Modeling) 

Improved 

performance 

via sequential 
pattern learning 

High 

computational 

cost; data 
annotation 

bottlenecks 

Liu et 

al. 

(2022) 

Multi-Modal 

CNN (Sensor + 

Visual Data) 

Boosted 

accuracy using 

fused 

multimodal 

inputs 

Limited 

scalability; 

real-time 

deployment 

complexity 

Kim et 
al. 

(2020) 

VGGNet + 
Weather and 

Road 

Conditions 

Strong feature 
extraction and 

classification 

Struggles with 
class 

imbalance and 

rare-event 
prediction 

Rao et 

al. 
(2021) 

Inception-based 

Deep CNN 

Delivered high 

precision in 
multi-class 

severity 

detection 

Demands 

significant 
computing 

power; not 

suitable for 
edge devices 
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Xu et 
al. 

(2023) 

3D-CNN with 
Temporal 

Sensor Data 

Superior in 
modeling 

video-based 

accident data 

Model 
transparency 

and 

interpretability 
issues remain 

unresolved 

Table: Research Gaps in Traffic Accident Severity 

Prediction Studies 

III. METHODOLOGY 

This review employs a systematic approach to 

evaluate the current state of CNN-based methods for 

predicting traffic accident severity. The methodology 

involves three primary steps: literature search, data 

extraction, and analysis. A comprehensive literature 

search was conducted using databases such as IEEE 

Xplore, Google Scholar, Scopus, and Web of Science, 

focusing on studies published in the past decade to 

capture recent advancements in deep learning and 

CNN architectures. The search terms included "traffic 

accident severity prediction," "CNN," "deep learning," 

"machine learning," and related keywords. Studies 

were selected based on their relevance, the novelty of 

the CNN architecture used, and the robustness of the 

methodologies applied. 

The inclusion criteria for selecting papers were 

studies that specifically utilized CNNs or CNN-based 

hybrid models for accident severity prediction, 

employed real-world data, and provided empirical 

results demonstrating model performance. Exclusion 

criteria involved studies that focused solely on 

traditional machine learning models, did not provide 

sufficient experimental details, or were limited to 

simulations without real-world validation. Data 

extraction involved gathering detailed information 

about each selected study, including the type of data 

used (e.g., images, videos, sensor data), CNN 

architecture employed, performance metrics, and key 

findings. Special attention was given to understanding 

how each model processed input data, handled feature 

extraction, and integrated spatial and temporal 

information. 

The analysis focused on comparing the strengths 

and weaknesses of different CNN architectures, 

examining their effectiveness in various traffic 

scenarios, and identifying common challenges such as 

data requirements, model interpretability, and 

computational complexity. Statistical measures such 

as accuracy, precision, recall, F1-score, and Area 

Under the Receiver Operating Characteristic Curve 

(AUC-ROC) were used to evaluate the predictive 

performance of the models. Additionally, the review 

explored the data preprocessing techniques employed, 

such as data augmentation, normalization, and feature 

engineering, which play a critical role in enhancing 

CNN model performance. 

The methodology also included an examination 

of emerging trends and future directions in CNN-

based severity prediction, such as the integration of 

multi-modal data, real-time analytics, and explainable 

AI techniques. By synthesizing the insights gained 

from the reviewed studies, this review provides a 

comprehensive assessment of the current capabilities 

and limitations of CNN models in traffic accident 

severity prediction, offering valuable guidance for 

future research in this evolving field. 

This section outlines the methodology for predicting 

traffic accident severity using a comprehensive feature 

analysis approach. The methodology focuses on 

measuring the weight of traffic accident features and 

converting feature data into gray images for CNN 

processing, ultimately improving the predictive 

model's accuracy. 

A. Measuring the Weight of Traffic Accident’s 

Features 

To evaluate the combination relationships and 

contributions of traffic accident features, it is essential 

to measure the weights of both parent and child 

features. This process utilizes the Gradient Boosting 

Decision Tree (GBDT) method, where each feature's 

weight is calculated based on its contribution to the 

partitioning of decision tree nodes. Specifically, each 

feature's weight is the sum of squared improvements 

over the nodes where it serves as the splitting criterion. 

These weights are stabilized by averaging across 

multiple trees, yielding a reliable measure for feature 

importance. 

B. Converting Traffic Accident Feature Matrix to 

Gray Images (FM2GI) 

The FM2GI algorithm converts individual feature 

relationships into gray images to represent 

combination relationships of data features, leveraging 

the structure of Convolutional Neural Networks 

(CNNs). This transformation process involves 

defining a feature vector as a three-tuple, consisting of 

parent features, child features, and their associated 
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weights. The algorithm categorizes the features, 

arranges them in descending order based on their 

weights, and organizes them into a structured matrix. 

This matrix is then reshaped into a gray image, 

capturing the combination relationships visually. 

Algorithm 1: Converting Feature Vectors to Gray 

Images 

1. The algorithm starts by identifying the parent 

feature with the maximum number of child 

features to initialize an all-zero matrix of 

appropriate size. 

2. Features are then filled into this matrix by 

ordering parent features and their corresponding 

child features based on descending weights. 

3. Finally, the matrix is reshaped into a gray image, 

representing the data's combination relationships. 

Algorithm 2: Parallel Conversion of Feature Matrices 

The FM2GI algorithm operates in parallel, converting 

each feature vector of the dataset into a gray image 

simultaneously. It allocates threads based on the 

dataset size and uses the gray image conversion 

process on each feature vector, storing the results in a 

linked list for CNN processing. 

This methodology effectively captures complex 

relationships between traffic accident features and 

enables the TASP-CNN architecture to better predict 

accident severity by using image representations of 

feature interactions. 

V. RESULTS AND DISCUSSION  

4.1 Dataset Visualization 

The above visualization presents a sample of 

images from the accident detection dataset, categorized 

into two classes: Accident and No Accident. Each image 

is captured from real-world traffic scenarios, such as 

intersections, pedestrian crossings, and highways. The 

grid layout provides a clear view of the dataset’s 

diversity in terms of lighting conditions, camera angles, 

and traffic density. Images labeled as "Accident" 

typically show vehicle collisions, overturned cars, or 

vehicles in unusual positions, while "No Accident" 

images depict normal traffic flow or empty roads. This 

visualization helps in understanding the complexity and 

variability in the dataset, which is essential for training 

a robust deep learning model for accident detection. 

 

4.2 Visualization after Normalization 

The visualization shown above displays 

normalized images from the accident detection dataset, 

categorized into Accident and No Accident classes. 

Normalization is a crucial preprocessing step in deep 

learning that scales pixel values, typically to a standard 

range (like 0 to 1 or with zero mean and unit variance), 

which helps improve the convergence and stability of 

the model during training. Despite normalization, the 

images retain their semantic content, allowing clear 

identification of accident scenarios, such as vehicle 

collisions and unusual vehicle placements. This visual 

check confirms that the normalization process preserves 

important features necessary for classification, making 

the dataset well-prepared for feeding into a CNN-based 

model for further training and evaluation. 

4.3 Model Performance Over Epochs 

 
Fig. 4.3  Model Performance Over Epochs 

The image presents two line charts depicting the 

performance of a machine learning model over 10 

epochs. The left chart titled "Model Accuracy" 

illustrates the model's accuracy in classifying data, while 

the right chart titled "Model Loss" shows the model's 

error rate during training. 
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Model Accuracy: 

The blue line represents the training accuracy, which 

steadily increases from around 0.38 to approximately 

0.50 over the epochs. The orange line represents the 

validation accuracy, which also shows an upward trend 

but with more fluctuations. While the training accuracy 

consistently improves, the validation accuracy plateaus 

after around 30 epochs, indicating potential overfitting. 

Model Loss: 

The blue line represents the training loss, which 

decreases from around 1.14 to approximately 0.98 over 

the epochs. The orange line represents the validation 

loss, which also shows a downward trend but with more 

fluctuations. Similar to accuracy, the training loss 

consistently decreases, while the validation loss starts to 

increase after around 30 epochs, suggesting overfitting. 

The model exhibits improved accuracy and reduced loss 

during training. However, the divergence between 

training and validation metrics after 30 epochs suggests 

that the model might be overfitting the training data. To 

address this, techniques like early stopping or 

regularization could be considered. 

4.4 Manual Test on One Image 

 
The image displays the output of a trained 

Convolutional Neural Network (CNN) model used for 

accident detection. The model has analyzed a 

surveillance frame and correctly predicted the class as 

'Accident', as indicated at the top of the image. In the 

frame, we can observe a white car that appears to have 

crashed into a roadside barrier or railing. The vehicle 

is mounted awkwardly on the divider, indicating a loss 

of control or collision. This aligns with typical 

accident indicators used in training such models, such 

as irregular vehicle positions, physical damage, or 

interaction with obstacles like barriers or poles.This 

visualization is most likely generated using a 

prediction function where the model classifies a test 

image and then overlays the predicted label for 

validation. The accurate classification in this case 

demonstrates the model's ability to recognize and 

differentiate accident scenarios from normal traffic 

conditions based on visual patterns learned during 

training. This output serves as a practical example of 

how the CNN model performs real-time inference on 

unseen data, a crucial step in evaluating its deployment 

readiness for real-world surveillance applications. 

4.5 Display a few predictions 

 
The displayed image presents a visual 

representation of the model's predictions compared to 

the actual labels for a sample of traffic surveillance 

images. Each frame in the grid shows a specific traffic 

scene with the predicted class (P) and the true class (T) 

labeled as either "Accident" or "No Accident." This 

comparison enables a qualitative evaluation of the 

model's performance. From the visualization, it is 

evident that the model performs well in most cases, 

accurately distinguishing between accident and non-

accident scenarios. For instance, images with visible 

vehicle collisions or road obstructions are correctly 

predicted as "Accident," while clear roadways with 

regular traffic flow are labeled as "No Accident." 

However, a few misclassifications are also noticeable, 

where the model predicts an accident in non-accident 

scenes, possibly due to visual distractions such as 

parked cars, complex shadows, or crowded roadways. 

This type of result analysis is crucial as it helps 

identify specific scenarios where the model may 

require further training or refinement, ultimately 

enhancing the system's reliability in real-world 

accident detection. 
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4.6 Confusion Matrix  

 
The confusion matrix shown in the image summarizes 

the performance of the accident prediction model on a 

test dataset. The matrix consists of four quadrants: true 

positives (44), true negatives (41), false positives (12), 

and false negatives (3). Specifically, the model 

correctly identified 44 accident cases and 41 non-

accident cases, indicating high accuracy in both 

categories. However, it also misclassified 12 non-

accident scenes as accidents (false positives), and 

failed to detect 3 actual accidents (false negatives). 

The relatively low number of misclassifications 

suggests that the model is well-trained and effective in 

distinguishing between accident and non-accident 

situations. This confusion matrix provides a clear, 

quantitative insight into the model's strengths and 

areas for potential improvement, which is critical for 

enhancing real-world deployment in intelligent traffic 

surveillance systems. 

4.7 Model Performance Metrics   

 

The bar chart displays the key performance metrics—

Precision, Recall, and F1 Score—of the accident 

prediction model. The model achieves a precision of 

0.93, which indicates a high level of accuracy in 

predicting accidents, meaning that when the model 

predicts an accident, it is correct 93% of the time. The 

recall is 0.77, showing that the model correctly 

identifies 77% of all actual accident cases; this 

suggests there is some room for improvement in 

capturing all true positive cases. The F1 Score, which 

balances precision and recall, stands at 0.85, reflecting 

an overall strong performance of the model in accident 

detection. These metrics collectively highlight that the 

model is particularly good at avoiding false positives, 

while still maintaining a reasonable ability to detect 

true accident events, making it reliable for practical 

deployment in surveillance-based accident monitoring 

systems. 

4.8 Model Performance: Accuracy and Loss on Training 

vs. Validation Data 

 

The bar chart titled "Final Accuracy and 

Loss" presents the model's performance on both 

training and validation datasets. The training accuracy 

reaches 0.91, while the validation accuracy follows 

closely at 0.87, indicating strong generalization ability 

and minimal overfitting. In terms of loss, the training 

loss is relatively low at 0.23, and the validation loss is 

slightly higher at 0.32, which is expected and 

acceptable for a well-trained model. The close 

proximity of these values implies that the model has 

learned the patterns effectively without overfitting to 

the training data. These results reflect a robust and 

reliable performance, suggesting that the model is 

well-suited for real-world accident detection 

scenarios. 
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4.9 Distribution of Predicted Accident vs. Non-

Accident Images 

 

This bar chart displays the Predicted Class 

Distribution of images categorized into two groups: 

"Accident" and "No Accident." The chart shows that 

out of a total of 100 images, 44 were predicted as 

containing accidents (represented in red), while 56 

were predicted as not containing accidents 

(represented in blue). The values are also labeled at the 

top of each bar for clarity. This distribution indicates a 

relatively balanced prediction, though there is a slight 

lean toward the "No Accident" category. Such 

visualizations are helpful for quickly assessing the 

output distribution of a classification model and 

checking for any imbalance in the predictions. 

4.10 High Confidence Accident Detection in 

Surveillance Footage 

 

This image shows a frame captured from a 

surveillance camera, where a car accident is clearly 

visible — a white vehicle has collided with another 

near the median. The label at the top reads "Prediction: 

Accident (0.99 severity)", indicating that the model is 

highly confident (with 99% certainty) that this is an 

accident and potentially a severe one. This kind of 

prediction helps in real-time monitoring systems to 

quickly identify and respond to road incidents. 

4.11 Model Comparison for Accident Detection: 

Logistic Regression vs. XGBoost 

 

This image compares the performance of two machine 

learning models — Logistic Regression and XGBoost 

— using confusion matrices. Each matrix summarizes 

the model's classification performance on a binary 

problem (likely accident detection): 

V. CONCLUSION 

In conclusion, the analysis of road accidents using 

CNN-based predictive models provides significant 

insights into the trends and patterns over time. The 

data reveals that while there was a notable peak in 

accidents around 2016-2017, a subsequent decline was 

observed until 2019-2020. However, 2022 saw a sharp 

spike in accidents, followed by a gradual decrease. 

These fluctuations in accident numbers could be 

attributed to various factors, including changes in 

traffic volume, economic conditions, or the 

implementation of road safety measures. The time-of-

day analysis indicated higher accident rates during 

morning and evening rush hours, likely due to 

increased traffic and driver fatigue. Additionally, the 

day-of-week and accident severity distribution 

highlighted that mid-week days, particularly Friday, 

have a higher incidence of accidents, with the majority 

falling into moderate severity levels. The impact of 

road geometry, light conditions, and speed zones on 

accident frequency and severity underscores the 

importance of targeted interventions in these areas. 

Overall, this study emphasizes the value of predictive 

analytics in understanding and potentially mitigating 

road accidents, though further research is needed to 
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address the underlying causes of these trends and 

enhance the robustness of predictive models. 
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