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Abstract—The integration of Artificial Intelligence (AI) 

in drug discovery has revolutionized pharmaceutical 

research, significantly reducing the time and cost 

associated with developing new drugs. AI, particularly 

Machine Learning (ML) and Deep Learning (DL) 

techniques, has enabled computer-aided drug discovery 

by leveraging vast biomedical datasets, advanced 

computing power, and cloud storage. DL models, such 

as artificial neural networks (ANNs), have enhanced 

predictive accuracy in key drug discovery processes, 

including drug–target interactions (DTIs), drug–drug 

similarity interactions (DDIs), drug sensitivity analysis, 

and side-effect predictions. Furthermore, AI-driven 

methodologies are accelerating the development of 

drugs for complex conditions, particularly central 

nervous system (CNS) disorders, where challenges such 

as blood–brain barrier permeability and high attrition 

rates persist. AI-powered techniques, including de novo 

drug design, virtual screening, and drug repurposing, 

have shown promise in tackling neurological diseases 

like Alzheimer's, Parkinson’s, and schizophrenia. 

Additionally, Explainable AI (XAI) is being 

incorporated to enhance transparency in drug 

discovery models, while digital twinning (DT) is 

emerging as a future research avenue. Open data 

sharing, model augmentation, and advancements in 

hybrid AI approaches will further strengthen AI’s role 

in pharmaceutical innovation, offering more efficient, 

cost-effective, and successful drug discovery strategies. 
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I. INTRODUCTION 

 

The course of research and development of drugs is 

comprised of drug-target recognition, target 

authentication, hit-to-lead fructification, lead 

refinement, preclinical molecule determination, and 

preclinical evaluation, as well as clinical testing. To 

advance a new prescription drug to market, the mean 

pretax spending is almost USD 2.6 billion, requiring 

roughly 10–15 years. However, considering the huge 

financial stakes, the predicted clinical approval 

realization frequency for novel small agents during 

the discovery and development of drugs is a meager 

13%, with a rather steep possibility of ultimate non-

fruition. 

 

The advance of computer-enabled drug design 

technology has been hailed as the most resourceful 

method for altering this bleak scenario dependent 

upon prudent navigation in the development process. 

The methodology pertinent to drug discovery and the 

associated computer-enabled drug design approaches 

can be located in the treatise “Computer-Assisted 

Drug Design.” The computational approaches assure 

a methodical appraisal of the molecular attributes 

(such as physicochemical properties, selectivity, side 

effects, bioactivity, and pharmacokinetic parameters) 

at the speculative level, in concert with engendering 

optimized molecules having agreeable attributes in 

silico. 

 

Moreover, computational approaches with multi-

objective refinement can be engaged to reduce the 

failure frequency of the preclinical lead molecules. In 

the vista of drug design, artificial intelligence (AI) 

invokes computer software programs that evaluate, 

learn, and reveal pharmaceutical-associated big data 

to unravel new medicine molecules, by assimilating 

the advances in machine learning (ML) in a highly 

unified and mechanized way. Deep learning (DL) 

models are advancing rapidly, and as the volume of 

drug-related data grows, innovative DL-based 

approaches are emerging at every stage of the drug 

development process (Kim et al., 2021). Major 

pharmaceutical companies are decisively shifting 

towards AI technologies, abandoning outdated and 

ineffective methods to maximize patient outcomes 

and their own profitability (Nag et al., 2022). While 
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DL has demonstrated impressive performance, the 

challenges it presents are significant, and there is a 

clear opportunity for researchers to create algorithms 

that enhance drug discovery. This paper delivers a 

comprehensive systematic literature review (SLR) 

that consolidates the latest DL technologies and 

applications in drug discovery.  

 
Figure 1. Conceptual Interrelationships between Artificial Intelligence(AI), Machine Learning(ML),& Deep 

Learning(DL) for drug development. 

 
Figure 2. A Summarized Notion of AI & ML Tools engaged in Drug Discovery & Development 

 

1.1. Artificial Intelligence: Important Considerations   

In recent years, there has been a significant increase 

in data digitalization within the pharmaceutical 

sector. This digital transformation has been driven by 

the necessity to collect, analyze, and utilize expertise 

to tackle complex clinical challenges. This has led to 

the application of AI, which has the capability to 

handle vast amounts of data with enhanced 

automation. AI employs a technology-driven strategy 

that involves various advanced tools and networks 

that mimic human intelligence. Importantly, it does 

not raise concerns about completely replacing human 

existence. AI makes use of software and systems that 

are designed to interpret data and are trained using 

input data to produce independent results aimed at 

achieving specific objectives. As highlighted in this 

review, its application has experienced steady growth 

within the pharmaceutical industry. The rapid 



© May 2025 | IJIRT | Volume 11 Issue 12 | ISSN: 2349-6002 

IJIRT 179038   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY        5286 

advancement of AI-driven automation is likely to 

significantly transform the societal work 

environment. 

 

1.2. AI: Networks and Tools   

AI encompasses a variety of methodological areas, 

including knowledge representation, problem-

solving, and reasoning, and among these is itself a 

fundamental illustration of ML. ML employs 

algorithmic approaches that can identify patterns 

within a dataset, which can then be organized further.   

A key aspect of ML is deep learning (DL), which 

utilizes artificial neural networks (ANNs). These 

networks consist of a collection of interconnected, 

advanced computational units known as 

'perceptrons,' which resemble neurons found in 

human neural tissue and mimic the transmission of 

electrical signals within the human central nervous 

system (CNS). ANNs are made up of multiple nodes, 

with each node receiving a unique input and 

ultimately transforming those inputs into outputs, 

either individually or collectively, through algorithms 

that solve problems.   

There are various types of ANNs, such as multilayer 

perceptron (MLP) networks, recurrent neural 

networks (RNNs), and convolutional neural networks 

(CNNs), which can be trained through either 

supervised or unsupervised methods. MLP networks 

are useful for applications including pattern 

recognition, optimization, decision-making 

processes, and control systems.   

 

RNNs feature a feedback loop, allowing them to store 

and memorize data, including components like 

Boltzmann machines and Hopfield networks. CNNs 

consist of a series of dynamic systems that utilize 

local connections, each governed by its specific 

topological structure, and are employed in tasks such 

as image and video processing, biological system 

simulation, managing intricate central neuronal 

functions, pattern recognition, and advanced signal 

processing.   

More complex architectures include Kohonen 

networks, Radial Basis Function (RBF) networks, 

Learning Vector Quantization (LVQ) networks, 

counter-propagation networks (CPNs), and Adaptive 

Linear Neuron networks, also known as Adaptive 

Linear Elements (ADALINE). Numerous algorithms 

have been developed based on the connections that 

form the foundational framework of AI systems.   

An example of this sophisticated tool utilizing AI 

methods is IBM's Watson supercomputer. This 

computing system was created to analyze a patient’s 

clinical information in relation to an extensive 

database, ultimately leading to the identification of 

treatment options for cancer. Additionally, this 

system can be employed for the rapid detection of 

diseases. Its effectiveness was demonstrated by its 

ability to diagnose breast cancer in just 60 seconds. 

 

II. FUTURE USES OF AI IN DRUG 

DEVELOPMENT 

 

The design and creation of drugs is a critical research 

focus for pharmaceutical firms and chemists. For a 

molecule to act as a potential drug, it must be deemed 

“druggable.” In the era following the genomic 

revolution, drug discovery has evolved to implement 

novel design principles for molecules or fresh 

strategies to bind, modulate, or degrade difficult 

biological targets for groundbreaking medicines. 

Historically, the pharmaceutical sector has 

concentrated on the creation of small molecules that 

are orally bioavailable and have well-defined targets 

(druggable targets). Lipinski’s Rule of Five (Ro5) 

emerged based on the physicochemical 

characteristics of Phase II drugs to predict poor 

absorption or permeation rates derived from factors 

like hydrogen-bond donors, acceptors, molecular 

weight, and calculated Log P values. 

 

Although the pursuit of small molecule Ro5 

compounds interacting with known “druggable” 

targets has yielded positive results, there is a growing 

need for innovative approaches to target new 

biological entities for transformative treatments. 

Consequently, the identification and validation of 

novel biological targets are now pivotal in the 

preliminary phases of drug discovery. 

Beyond Ro5, various molecular modalities like small 

molecules acting through alternative mechanisms 

(for instance, protein–protein interaction or PPI 

modulators), bifunctional small molecules (such as 

protein-targeted chimeras or PROTACs), 

peptides/peptidomimetics, and oligonucleotides 

(ONs) are being investigated. 

Research into carbohydrate-based drug discovery is 

emerging in the realm of medicinal chemistry. The 

discovery of bioactive carbohydrates has introduced 

a new avenue for drug development. Over 170 

carbohydrate-based pharmaceuticals have 

successfully been approved as anticoagulants, 

antitumor agents, antidiabetic agents, antibiotics, 

antiviral agents, and vaccines. However, the majority 
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of carbohydrates exhibit low druggability, creating a 

need for novel methods and strategies to enhance 

their therapeutic efficacy. 

Lipids play a crucial role in living organisms. They 

reserve energy, form cellular membranes, act as 

signaling molecules, and modify proteins. Numerous 

medications targeting lipid receptors and the 

enzymes that govern lipid metabolism and function 

have been developed for diverse illnesses. The 

pathways and proteins involved in lipid signaling 

provide extensive opportunities within drug 

discovery. 

Incorporating AI and ML into these processes holds 

the potential to transform drug discovery by refining 

molecular interactions, decreasing rates of failure, 

and hastening development timelines. 

 

2.1 Digitizing and Standardizing Synthesis Methods 

Far-sighted plans are developing to harness AI to 

fully mechanize chemical synthesis with a minimum 

of manual operations. Already proven processes, 

such as the 'solid phase' strategy in which the growing 

polymer chain is attached to some highly insoluble 

matrix, have mechanized the syntheses of many 

classes of agents, such as peptides or 

oligonucleotides. 

 

Nevertheless, there are specific protocols governing 

these as there is no standardized digital 

mechanization of computer monitoring of the 

chemical reactions, and no universal software is 

associated with computational governance of 

chemical operation systems. The "Chemputer 

platform" was newly advanced as a standard 

benchmark that integrated codified standard recipes, 

or chemical codes, for compound synthesis. 

The scheme was executed with the "Chempiler 

program," which obtains codified methods from a 

scripting language called "Chemical Assembly 

(ChASM)." This language also regulates distinct 

low-level execution rules for the modules that make 

up the structure of the robotic system. ChASM draws 

upon a chemical descriptive language (XDL), which 

exclusively and methodically amasses the complete 

obligatory information for a synthesis operation. 

The physical modules (e.g., the source flask and the 

target flask) and their network arrangement and 

portrayal are depicted as a directed graph by 

engaging an open-source markup language termed 

"GraphML." With GraphML, Chempiler is capable 

of governing robotic procedures in a manner that 

allows users to execute chemical syntheses without 

manual restructuring. 

The first presents very convincing results of 

automatic synthesis of three different, distinct 

pharmaceutical patient molecules: diphenhydramine 

hydrochloride, rufinamide, and sildenafil, without 

any human involvement but with output and quality 

levels either equivalent or better than the manipulated 

ones. This is a gigantic leap on the whole 

mechanization of bench-scale chemistry, coupled 

with other improvements in replicability, security, 

and approachability to complex compounds. 

Table 1. Enumeration of AI-Aided Computational Tools for Facilitating Drug Discovery 

Tools Feature(s) Website(s) 

AlphaFold Protein 3D (tertiary) structure presage 

employing DNN 

https://deepmind.com/blog/alphafold 

https://www.sciencemag.org/news/2018/12/googl

e-s-deepmind-aces-protein-folding 

Chemputer An exhaustive regulated schema for 

documenting a chemical synthesis 

method 

https://zenodo.org/record/1481731 

Conv_qsar_fast Foretells molecular attributes aided 

by CNN algorithm 

https://github.com/connorcoley/conv_qsar_fast 

Chemical VAE Mechanized chemical crafting 

employing variational autoencoder 

(VAE) 

https://github.com/aspuru-guzik-

group/chemical_vae 

DeepChem A Python-aided AI technique for drug 

discovery predictions utilizing DL 

https://github.com/deepchem/deepchem 

DeepNeuralNet-

QSAR 

Foretells molecular activity engaging 

multilevel DNN 

https://github.com/Merck/DeepNeuralNet-QSAR 

DeepTox Toxicity predictions of chemical 

agents utilizing a DL algorithm 

www.bioinf.jku.at/research/DeepTox 
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DeltaVina Presages small molecule interaction 

affinity with drug using RF and 

AutoDock 

https://github.com/chengwang88/deltavina 

Hit Dexter ML schemes for predicting 

compounds sensitive to biochemical 

assays 

http://hitdexter2.zbh.uni-hamburg.de 

InnerOuterRNN Foretells chemical, physical, and 

biological attributes using RNNs 

https://github.com/Chemoinformatics/InnerOuter

RNN 

JunctionTree 

VAE 

De novo molecule origination using 

junction tree variational autoencoder 

(VAE) 

https://github.com/wengong-jin/icml18-jtnn 

Neural Graph 

Fingerprints 

Attribute augury of novel molecules 

employing CNN algorithms 

https://github.com/HIPS/neural-fingerprint 

NNScore Foretells affinity of protein–ligand 

binding using neural network scoring 

http://rocce-

vm0.ucsd.edu/data/sw/hosted/nnscore/ 

http://www.nbcr.net/software/nnscore 

ODDT An exhaustive toolkit for 

chemoinformatics and molecular 

modelling 

https://github.com/oddt/oddt 

ORGANIC A molecular generation tool to 

originate molecules with favorable 

attributes 

https://github.com/aspuru-guzik-

group/ORGANIC 

PotentialNet Foretells ligand-binding affinity 

using graph CNN 

https://pubs.acs.org/doi/full/10.1021/acscentsci.8

b00507 

PPB2 Poly-pharmacology prediction using 

nearest neighbour and ML schemes 

http://ppb2.gdb.tools/ 

QML A Python toolkit for quantum ML https://www.qmlcode.org 

https://github.com/qmlcode/qm 

REINVENT De novo design of molecules using 

RNN and RL 

https://github.com/MarcusOlivecrona/REINVEN

T 

SCScore A scoring scheme to determine the 

synthesis complexity of a compound 

https://github.com/connorcoley/scscore 

SIEVE-Score An upgraded technique for structure-

aided virtual screening 

https://github.com/sekijima-lab/SIEVE-Score 

 

III. TECHNIQUES OF DEEP LEARNING (DL) 

 

The uses of machine learning (ML) in research 

applications have ranged from spam detection to 

video recommendations, image classification, and 

multimedia information retrieval. Deep learning 

(DL) is one of the most frequently employed 

techniques in ML applications. New strivings into DL 

research have come due to the ever elusive 

acquisition of data and the phenomenal advancement 

of hardware technologies. Deep learning is an extra 

mile ahead of the traditional neural networks that 

form the architectural basis of the technique, by using 

transformations and graph technology in constructing 

multi-layer-feature learning models. These were 

thousands of miles away from the original world-

from out-of-the-box thinking of much thinking much 

differently. 

 

3.1 Classic Neural Networks  

The most often applied representation for neural 

networks is multi-layer perceptrons. This translates to 

encoding the algorithm into simple two-digit data 

inputs going into it. The model allows for input of 

both linear and nonlinear functions. While the linear 

function takes the shape of a single line maintained at 

a constant multiplier that changes its inputs, the 

nonlinear functions include the Sigmoid Curve, 

Hyperbolic Tangent, and Rectified Linear Unit. 

Therefore, this model is the most suited for 

categorization and regression problems involving 

real-valued data and a flexible model of any kind. 
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Convolutional Neural networks (CNNs) are a 

commonly used neural network to process both 

images and non-images. CNNs can go through four 

phases: 

 

Input Layer: The raw sensory mechanism processes 

data, such as that corresponding to an image, as a 

two-dimensional array of neurons. 

Convolutional Layers: These layers analyze images 

based on their inputs using a single-dimensional 

output layer of neurons. 

Sampling Layer: This is the layer restricting the 

number of neurons that can participate in the 

subsequent levels of the network. 

Fully Connected Layers: These layers link the 

sampling and the output layers, thus enabling CNNs 

to extract meaningful vision information, layer by 

layer. 

 

When the input data is integrated into the 

convolutional model, CNNs are processed in the 

following four stages:  

Convolution: Generates feature maps on the basis of 

supplied data.  

Max-Pooling: Facilitates detecting an image by 

modification of input data.  

Flattening: Adaptation of data into configurations for 

further processing by CNN.  

Full Connection: Also called "hidden layer," it 

establishes the loss function for a model.  

CNN is used in image recognition, image analysis, 

image segmentation, video analysis, and natural 

language processing tasks. 

 

3.2 Recurrent Neural Networks (RNNs) 

The idea of RNNs emerged to predict sequences. 

These networks use streams of data, which could 

have different lengths, as inputs. For the latest 

forecast, the knowledge gained in the previous state 

serves as input, thereby facilitating some short-term 

memory. 

 

LSTMs, a type of RNN, are best known for their extra 

flexibility in many applications. The strength of 

LSTMs in time-sequenced data predictions hinges on 

their three gates, namely Input, Output, and Forget, 

which control the flow of information. Generally, 

Gated RNNs serve well in the prediction of temporal 

sequences and memory-based data analysis. 

Activities include, but are not limited to, image 

classification, sentiment analysis, video 

classification, and language translation. 

 

3.3 Generative Adversarial Networks (GANs) 

GANs consist of two neural networks, namely, a 

Generator and a Discriminator. The Discriminator is 

used to distinguish between real and fake data, while 

the Generator is tasked with creating synthetic data. 

 

These networks work against each other: the 

Discriminator keeps getting better at telling real and 

fake data apart, while the Generator tries harder and 

harder to make the data it generates look real. The 

Generator network is especially relevant for image 

and text generation, image enhancement, and even 

drug development.  

 

3.4 Self-Organizing Maps (SOMs) 

Self-Organizing Maps apply with minimal 

supervision and use the data to diminish the number 

of random variables within a system. Each synapse is 

linked both to an input node and to an output node 

arranged in a two-dimensional model. 

In the processing phase, there occurs competition 

between the data points and their representation in the 

model, whereupon the winners or the closest nodes 

(Best Matching Units) get adjusted. The weight of the 

BMUs is dependent on their distance, which denotes 

where they stand in the network in relation to other 

BMUs. This is an effective method for analyzing 

datasets for which there is no preset Y-axis value, or 

for work in an exploration. 

 

3.5 Boltzmann Machines 

Boltzmann Machines are a type of neural network 

model that is different, wherein nodes are 

interconnected in a loop without orientation. This 

deep learning technique works mainly in generating 

model parameters because of its stochasticity, which 

separates it from deterministic network models. 

Boltzmann Machines find applications for 

monitoring the behavior of systems, constructing 

binary recommendation engines, and analyzing 

particular datasets. 

The architecture of the Boltzmann Machine consists 

of two layers: 

Visible/Input Layer: Receives the raw data. 

Hidden Layer: Processes the input data with neuron-

like nodes. 

The connections between the nodes in the different 

layers are at different levels, but there is no 

interconnectivity within a layer. The lack of direct 

interconnectivity across nodes in the same layer is 

one of the drawbacks of Boltzmann Machines. 
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Data upon introduction is transferred to a graph 

setting for the network to process, learn patterns and 

relationships, and decide accurately. With these 

features, the Boltzmann M 
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