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Abstract—Detecting defects in steel materials is 

essential for ensuring product quality and reliability 

across various industrial applications. Conventional 

defect detection methods are often labor-intensive, 

time-consuming, and susceptible to human error. 

However, advancements in deep learning have paved 

the way for automated solutions that significantly 

enhance accuracy and efficiency. This study presents a 

Steel Defect Detection system utilizing a custom 

designed deep neural network inspired by the ResNet 

architecture. The model integrates novel attention 

layers, which have not been previously incorporated 

into similar architectures, to improve predictive 

performance. Additionally, data augmentation 

techniques are employed to enhance the model’s ability 

to generalize and accurately detect defects in complex 

and subtle patterns. The proposed multiclass semantic 

segmentation model achieves an accuracy exceeding 

91%, making it a viable solution for automating the 

defect detection process. This automation substantially 

reduces inspection costs and time, optimizing industrial 

workflows. 
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I. INTRODUCTION 

 

The steel manufacturing industry forms the 

backbone of modern infrastructure, supplying 

critical materials for construction, transportation, and 

industrial applications. Ensuring the quality and 

integrity of steel products is essential for safety, 

operational efficiency, and cost reduction. 

Traditional defect detection methods primarily rely 

on manual inspection, which is time-consuming, 

costly, and prone to human error and inconsistency. 

These limitations have prompted researchers and 

industry experts to explore automated solutions 

capable of delivering faster and more reliable defect 

identification. In recent years, deep learning 

techniques, particularly convolutional neural 

networks (CNNs), have emerged as powerful tools 

for image-based defect detection, offering significant 

improvements in accuracy and efficiency over 

conventional methods. 

 

This study proposes a novel approach that combines 

the strengths of ResNet, a deep residual neural 

network known for its effective feature extraction, 

with attention mechanisms that allow the model to 

focus on critical defect regions within steel surface 

images. Additionally, the application of Fourier 

transform techniques transforms spatial image data 

into the frequency domain, enabling the model to 

capture subtle defect patterns that might be less 

apparent in the raw images. A high bandpass filter is 

applied in the frequency domain to enhance the 

visibility of defect-related features by isolating 

important frequency components before converting 

the data back to the spatial domain for classification. 

By integrating these advanced methods, the proposed 

model achieves enhanced defect detection 

performance, addressing challenges such as small or 

low-contrast imperfections that often evade 

traditional inspection. 

 

The research includes a comprehensive review of 

related works in steel defect detection, an 

explanation of the proposed architecture and 

preprocessing steps, details about the dataset used, 

and a thorough analysis of experimental results. The 

findings demonstrate that this integrated approach 

improves classification precision and robustness, 

making it a promising solution to meet the growing 

demand for high-quality steel in industrial 

production. The paper concludes with discussions on 

the implications of this work and directions for future 

research, including potential expansions to other 

materials and incorporation of cutting-edge deep 

learning models. 

 

II. RELATE WORKS 

 

The field of image classification has undergone 

transformative changes with the advent of 
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Convolutional Neural Networks (CNNs), which 

have become the de facto standard for tasks 

involving image recognition, object detection, and 

visual analysis. Numerous CNN architectures have 

been developed, each aiming to enhance 

performance in terms of classification accuracy, 

computational efficiency, and scalability. This 

section reviews significant contributions that align 

with the CNN models evaluated in this project: 

Manual CNN, LeNet, and InceptionNet. 

 

One of the earliest and most influential CNN 

architectures is LeNet-5, developed by Yann LeCun 

et al. in 1998 [1]. Originally designed for handwritten 

digit recognition using the MNIST dataset, LeNet 

introduced key concepts such as convolutional 

layers, subsampling (pooling) layers, and fully 

connected layers in a structured manner. Despite its 

relatively shallow depth, LeNet achieved impressive 

accuracy and efficiency, making it a foundational 

model in the field of deep learning. Due to its 

lightweight design, LeNet continues to be widely 

used in embedded systems and as a baseline model 

in academic studies. 

 

With increasing demand for higher accuracy on more 

complex datasets like ImageNet, deeper and more 

sophisticated architectures emerged. One such 

architecture is InceptionNet (GoogleNet), introduced 

by Szegedy et al. in 2015 [2]. This model 

revolutionized CNN design by introducing inception 

modules, which perform multiple convolutions with 

different kernel sizes (1x1, 3x3, 5x5) in parallel, and 

then concatenate their outputs. This allowed the 

network to capture spatial information at different 

scales while maintaining computational efficiency. 

InceptionNet also employed techniques like 

dimensionality reduction using 1x1 convolutions and 

auxiliary classifiers to improve convergence. It 

significantly outperformed traditional models and 

won top accolades in the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC). 

 

While pre-designed architectures such as LeNet and 

InceptionNet are optimized for specific use cases or 

datasets, manually constructed CNNs offer the 

flexibility of being tailored to specific tasks or 

hardware constraints. These networks are often used 

in research and education to help practitioners 

understand the fundamental working principles of 

CNNs. Although they may not match the 

performance of highly optimized architectures, 

manual CNNs allow for experimentation with layer 

configurations, filter sizes, and activation functions, 

making them ideal for prototyping and custom 

applications. 

 

Several comparative studies have explored the 

performance trade-offs between different CNN 

models. Simonyan and Zisserman introduced 

VGGNet [3], a deep architecture emphasizing the use 

of small (3x3) convolution filters, which showed that 

deeper models generally yield better performance. 

However, this increase in depth also leads to higher 

computational costs and memory usage. Similarly, 

Han et al. [4] and Tan & Le [5] proposed 

optimization techniques like pruning, quantization, 

and compound scaling to make CNNs more efficient 

without sacrificing accuracy. 

 

A common theme in these works is the balance 

between model complexity and deployment 

feasibility. While deep networks like InceptionNet 

offer state-of-the-art accuracy, they are resource-

intensive and may not be suitable for real-time or 

edge applications. Conversely, simpler models like 

LeNet and manual CNNs may offer slightly lower 

accuracy but train faster and require less 

computational power, making them suitable for low-

latency environments. 

 

This project builds on the foundation laid by these 

earlier works by implementing and evaluating three 

CNN architectures—Manual CNN, LeNet, and 

InceptionNet—on a standardized image 

classification dataset. The goal is to analyze their 

performance in terms of training accuracy, validation 

accuracy, and efficiency, and to determine the trade-

offs between architectural complexity and practical 

usability. By directly comparing these models under 

uniform experimental conditions, the study aims to 

provide insights into their relative strengths and 

potential application domains. 

 

III. THE PROPOSED METHOD 

 

The proposed method involves the design, 

implementation, and evaluation of three 

convolutional neural network (CNN) architectures—

Manual CNN, LeNet, and InceptionNet—for the 

purpose of comparative analysis in image 

classification tasks. The objective is to examine the 

performance differences among these models in 

terms of classification accuracy, training efficiency, 
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and computational complexity. A standardized 

dataset is used across all models to ensure 

consistency, and the models are developed using 

Python with TensorFlow and Keras frameworks. The 

Manual CNN is a custom-built model designed from 

scratch using a series of convolutional, pooling, and 

fully connected layers, allowing control over every 

aspect of the architecture. It serves as a baseline 

model and is optimized for simplicity and fast 

training. LeNet, one of the earliest and most efficient 

CNN models, is implemented with two 

convolutional layers, subsampling layers, and fully 

connected layers; it is particularly effective on small-

scale datasets and is known for its minimal 

computational overhead. In contrast, InceptionNet, 

also known as GoogleNet, is a deeper and more 

sophisticated model that utilizes inception modules 

to perform parallel convolutions of varying kernel 

sizes, effectively capturing multi-scale features 

while maintaining parameter efficiency. All three 

models are trained under identical hyperparameters, 

including the number of epochs, batch size, and 

learning rate, to ensure a fair comparison. The 

evaluation is based on training and validation 

accuracy, loss metrics, and model efficiency. Results 

are analyzed using accuracy scores, confusion 

matrices, and classification reports, along with 

training time and parameter count. The comparison 

highlights the trade-offs between accuracy and 

computational load, demonstrating how deeper 

models like InceptionNet achieve superior accuracy 

at the cost of higher training time, while simpler 

models like LeNet and Manual CNN offer faster 

execution and are more suitable for lightweight or 

real-time applications.. 

            
                        Figure 1: System Architecture. 

 

In conclusion, the proposed method offers a 

structured and fair comparison of three widely used 

CNN architectures by training them under identical 

conditions and evaluating their performance across 

critical metrics such as accuracy, training time, and 

computational complexity. By analyzing the 

behavior of Manual CNN, LeNet, and InceptionNet 

on the same dataset, this study provides practical 

insights into the trade-offs between model depth, 

resource requirements, and classification 

performance. The findings serve as a valuable guide 

for selecting suitable CNN models based on specific 

application needs, such as real-time deployment, 

hardware limitations, or accuracy prioritization. 

Ultimately, this comparative framework contributes 

to a deeper understanding of CNN architecture 

selection and helps optimize model choices for 

efficient and scalable image classification solutions. 

 

IV. RESULTS 

 

The evaluation of the proposed system was 

conducted by training the three selected CNN 

architectures—Manual CNN, LeNet, and 

InceptionNet—on a common image classification 

dataset using identical training configurations to 

ensure a fair and controlled comparison. Each model 

was trained using the same number of epochs, batch 

size, and learning rate, and their performance was 

assessed through multiple parameters including 

training accuracy, validation accuracy, model loss 

trends, and computational efficiency. The results 

demonstrated clear distinctions among the three 

models in terms of performance and resource 

utilization. 

 

InceptionNet achieved the highest overall accuracy, 

demonstrating its superior ability to capture complex 

image features through its deep architecture and 

inception modules, which combine multiple kernel 

operations in parallel. This enabled it to learn multi-

scale representations, resulting in strong 

generalization and high classification precision. 

However, the enhanced performance of InceptionNet 

came at the cost of increased computational 

demands, longer training times, and higher memory 

usage, making it more suitable for high-performance 

computing environments rather than resource-

constrained systems.  

 
Figure 3: Validation accuracyof ResNet and Attention 

ResNet models 
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LeNet, on the other hand, delivered a commendable 

balance between accuracy and training efficiency. 

While its classification performance was slightly 

lower than InceptionNet, LeNet trained significantly 

faster and required fewer computational resources. 

Its simple yet effective architecture, consisting of 

two convolutional layers and two fully connected 

layers, proved adequate for moderate-scale image 

classification tasks and suitable for real-time or 

embedded applications.  

 

 
Figure 3: Architecture of the implemented ResNet 

model  

 

The Manual CNN model, though the simplest in 

design, demonstrated rapid training convergence and 

minimal computational overhead. While its accuracy 

was comparatively lower than LeNet and 

InceptionNet, it successfully completed 

classification tasks with reasonable performance. Its 

simplicity allowed for quick experimentation and 

deployment, especially in educational settings or 

applications where processing capabilities are 

limited. 

  

V. CONCLUSION 

 

This study has conducted a comprehensive 

comparative analysis of three distinct convolutional 

neural network architectures—Manual CNN, LeNet, 

and InceptionNet—for image classification. The 

experimental results highlight that InceptionNet, 

with its deep and sophisticated inception modules, 

consistently achieves the highest classification 

accuracy by effectively capturing complex and 

multi-scale features from images. However, this 

improvement in accuracy comes at the cost of 

increased computational complexity and longer 

training durations, making it more suitable for 

deployment in environments with robust processing 

capabilities such as cloud or high-performance 

servers. 

In contrast, LeNet and the manually designed CNN 

model demonstrated faster training and inference 

times, with significantly reduced computational 

demands, which makes them attractive for 

applications requiring real-time processing or 

deployment on resource-constrained devices such as 

embedded systems and mobile platforms. Although 

their classification accuracy is lower compared to 

InceptionNet, the performance of these simpler 

architectures remains satisfactory for many practical 

scenarios where rapid execution and efficiency are 

prioritized over marginal gains in accuracy. 

 

The study also examined the learning behavior of the 

models through detailed analysis of training and 

validation curves, loss metrics, and classification 

reports. The use of regularization techniques like 

dropout proved effective in mitigating overfitting, 

allowing each model to generalize well to unseen 

data. These observations reaffirm that model 

selection is a critical step that must consider the 

trade-offs between accuracy, speed, resource 

availability, and the complexity of the target 

application. 

 

Looking forward, this research opens several 

avenues for further exploration. Incorporating 

advanced deep learning strategies such as transfer 

learning could help leverage pre-trained weights to 

improve accuracy while reducing training time. 

Additionally, model optimization techniques 

including pruning, quantization, and knowledge 

distillation could be applied to create more 

lightweight models without significant loss of 

performance. Testing these models on larger and 

more diverse datasets would also help to validate the 

robustness and scalability of the findings, facilitating 

broader applicability in real-world image 

classification tasks. 

 

In conclusion, this study provides valuable insights 

into the strengths and limitations of different CNN 

architectures, guiding researchers and practitioners 

in making informed decisions about the most 

appropriate model for their specific needs, thereby 

advancing the effective deployment of deep learning 

models in various domains. 
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