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Abstract—The area of reinforcement learning (RL) has 

evolved significantly, particularly in first-person 

games and simulation environments like VizDoom, in 

which agents can be trained directly from raw pixels. 

Yet transferring RL to third-person action games, like 

Devil May Cry 3, presents additional challenges such as 

partial observability, high-dimensional pixel data, and 

the need for stylistic fighting behavior. This work 

introduces a learning framework that, in contrast to 

earlier methods dependent on raw sensor feedback, 

uses learned latent dynamics (world models) to 

model game worlds and train policies in a dense, 

imagination-based representation space. A 

convolutional neural network processes gameplay 

frames to obtain low- dimensional latent vectors 

describing key environmental features, including 

opponent positions and player positions. To predict 

future states and rewards, the hidden representations 

are then passed to a Recurrent State-Space Model 

(RSSM). In this hidden space, an actor-critic 

reinforcement learning agent decides the optimal 

action by finding a compromise between short-term 

tactics and long-term planning. As compared to end-

to-end pixel- based learning, this process vastly 

improves training efficiency while allowing adaptive 

play. The reward system is optimized not only for 

success, but also for flair—obtaining high-ranked 

performances (e.g., S-rank) by means of combo 

diversity and spatial awareness. A modular training 

paradigm is employed, partitioning combat, 

exploration, and boss battles into separate learning 

tasks, enabling targeted optimization and later 

integration. This method shows enhanced agent 

performance, flexibility, and potential generalization 

to other visually rich, multi-objective tasks. The results 

are used to advance AI technology towards real- time 

decision making in visually dense settings with 

changing objectives. 

 

Index Terms—Reinforcement Learning, Q-Learning, 

Sensorimotor Control, Devil May Cry 3, Game AI, 

Style Evaluation, Vision-Based Learning, Modular 

Training 

 

I. INTRODUCTION 

 

Reinforcement Learning (RL) has made substantial 

gains in areas concerning structured environments 

and well-defined goals, especially in 2D and first-

person games such as Atari-based and VizDoom 

games. Much of this has been based on agents 

learning from raw pixel inputs to acquire best 

actions through mechanisms of rewards. But third-

person games like Devil May Cry 3 introduce a new 

difficulty with their dynamic camera viewpoints, 

intricate visual surroundings, and multi- 

dimensional gameplay that calls for both efficiency 

and flair. 

 

The main goal of this research is to investigate the 

structure of world models, so the agent can ’dream’ 

about latent states and learn on loss without 

experimenting with the actual environment of the 

game. In contrast to conventional games where 

survival is the main measure, this game has a 

’Style’ system where agents are rewarded for 

performing different and creative combat actions. 

This makes learning more complex as the agent 

must not only decide based on success, but also on 

how skillfully an action is carried out. 

 

To tackle this, we introduce a modular training 

scheme where various aspects of the game, 

including combat, exploration, and boss fights, are 

learned separately through specialized world 

models and latent space policies. Visual frames are 

initially compressed into compact latent vectors, 

allowing for efficient prediction of future states and 

rewards across each game module. An actor-critic 

reinforcement learning agent is also trained on 

such latent representations in order to maximize 

decision making and performance. Further, a 

concurrent Q-learning head is used for value 

analysis in order to have interpretability as well as 

contribute to the evaluation of action quality 

without directly impacting policy behavior. The 

integration tries to produce an adaptive and context- 

aware agent which can not just survive but excel in 

visually rich, multi-objective environments. This 
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paper assesses the effectiveness of this strategy and 

its potential use in other complex gaming and real-

world scenarios. 

 

II. METHODOLOGY 

 

This section presents the architecture and logic of 

the proposed hybrid reinforcement learning model 

designed for third-person action games. The 

methodology integrates Q- Learning for decision-

making with sensorimotor learning to process 

sensory inputs and respond in real-time. The 

approach is modular, allowing independent training 

of various gameplay components before integrating 

them into a unified policy network. 

 

A. Q-Learning Module 

The Q-Learning module enables the agent to learn 

an optimal action policy by associating state-action 

pairs with reward values. The agent receives state 

representations derived from the game environment 

and selects the best possible action based on its 

learned Q-values. 

Each Q-value is updated using the Bellman 

equation: 

 

where: 

• Q(st, at) is the current Q-value 

• α is the learning rate, 

• rt is the reward at time t 

• γ is the discount factor 

• max Q(st+1, a) is the estimated optimal 

future value. The action space includes combat 

moves (e.g., attack, jump, combo), 

environmental interactions, and evasive 

maneuvers. 

 

B. Sensorimotor Control Module 

The sensorimotor control module takes high-

dimensional in- put like visual and auditory 

information from the environment. Convolutional 

Neural Networks (CNNs) are employed to learn 

meaningful features from raw image frames, 

whereas Long Short-Term Memory (LSTM) 

networks assist in maintaining historical context 

across time steps, which is critical for dealing with 

partial observability in third-person games. 

The processed sensory information is then fed 

into the Q-Learning module to improve action 

selection with richer environmental knowledge. 

C. Reward Mechanism 

The reward mechanism is designed to optimize both 

effectiveness and style. The system provides 

positive rewards for stylistic gameplay, varied 

combos, and damage avoidance, while penalizing 

repetitive behavior and inefficient actions. 

Reward Examples: 

• +10: Executing varied combos 

• +20: Achieving S-rank style 

• −10: Repetitive or ineffective moves 

• −15: Significant health loss 

This shaping allows the agent to learn a nuanced 

policy that emphasizes both survival and high-

ranked performance. 

 

D. Modular Training Approach 

In order to tackle the complexity involved in multi- 

objective gameplay situations characteristic of 

third-person action games, the system in question 

employs a modular training approach. Each 

module is tasked with specializing in a specific 

gameplay element, thus making the learning 

problem easier and allowing for targeted 

optimization. This breakdown enables the agent to 

learn domain-specific skills more effectively prior 

to combining them into a single policy that can 

dynamically adapt to contexts. 

TABLE I 

MODULAR TRAINING BREAKDOWN 

Module Objective Learning Focus 

Combat 

Exploration 

Boss Battle 

High Style 

Rating 

Fast Navigation 

Survive and 

Attack 

Combos, Evasion, 

Timing 

Map Awareness, 

Pathfinding 

Strategy, Health, 

Pattern ID 

Every module is trained in isolation with 

dedicated reward functions and environment 

settings that highlight its main goal. As an example, 

the combat module targets style- driven rewards, 

favoring the execution of diverse and intricate 

attack sequences, while discouraging repetitive or 

defensive play. The exploration module favors 

timely and optimal route completion, with the focus 

being on path optimality and map coverage. The 

boss fight module is calibrated for strategic 

decision-making, paying out for consistent health 

and damage over long, high-risk battles. 

 

After individual competence is attained in all 

modules, a policy distillation step is utilized to 

merge the acquired behaviors into one cohesive 
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agent. The ultimate policy is controlled by a 

context-aware selector that dynamically enables 

applicable sub-policies depending on real-time 

analysis of game state, allowing for smooth 

switching between combat, movement, and boss 

fights. Such an architecture not only speeds up 

convergence during training but also provides strong 

performance in intricate, mixed-objective gameplay 

situations. 

 

E. Feature Extraction via Deep Learning 

The deep learning module combines CNN and 

LSTM architectures: 

• CNNs: Extract spatial features from frames 

(enemy detection, power-ups). 

• LSTMs: Follow time patterns and hold memory 

of previous states. 

This pairing increases the model’s capacity to 

perform in real-time, responding to the visually 

dynamic third-person world. 

 

F. Flow Diagram of Proposed System 

Figure 1 illustrates the complete workflow of the 

system. 

 
Fig. 1. Proposed Hybrid Reinforcement Learning 

Framework 

 

III. LITERATURE REVIEW 

 

The domain of reinforcement learning (RL) has 

seen dramatic progress in the last ten years with the 

advent of deep neural networks that can efficiently 

process high-dimensional sensory information. 

Such breakthroughs have made RL accessible to 

dynamic and high-dimensional worlds like games. 

Most of the success, though, has been witnessed for 

2D and first-person applications, with third-person 

games still remaining a major challenge. This 

section summarizes background and recent 

literature pertinent to the present research. 

 

A. Reinforcement Learning Foundations 

Sutton and Barto established the theoretical 

foundation for RL in their seminal work [1]. Their 

book presented essential concepts like the Markov 

Decision Process (MDP), policy functions, value 

estimation, and Q-learning. Q-learning, a value-

based approach, enables agents to learn optimal 

action- selection policies without a model of the 

environment. It is the central decision-making 

algorithm used in this research, enabling the agent 

to learn through trial and error by exploring the 

environment and getting reward feedback. 

 

B. Deep Reinforcement Learning in High-

Dimensional Environments 

Deep learning’s combination with RL was shown 

by Mnih et al. with their Deep Q-Networks (DQNs) 

learning to play Atari games from raw pixel inputs 

directly [2]. They used convolutional neural 

networks (CNNs) to transform raw visual input into 

state representations that the Q-learning algorithm 

could utilize. This research demonstrated that deep 

RL could be successful in visual-based 

environments, but it was mostly applied to 2D 

games with fixed viewpoints, not the complexity of 

third-person games. 

 

C. Modular Learning and Policy 

Optimization 

Silver et al. pushed the boundaries of RL through 

the introduction of modular learning architectures 

and self-play techniques in their AlphaGo system 

[3]. Their method focused on training domain-

specific components for various gameplay 

functionalities, such as value estimation and policy 

improvement. This modularity drives the current 

approach, where gameplay functionalities such as 

combat, exploration, and boss battles are trained in 

independent modules to improve specialization and 

scalability. 

 

D. Sensorimotor Learning and Perceptual 

Feedback 

Historical scalar reward functions tend to not have 

the granularity needed for high-complexity 

environments with delayed or multi-objective 
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feedback. Sensorimotor learning resolves this by 

processing two parallel streams: high-dimensional 

sensory input (vision, hearing) and lower-

dimensional measurement streams (health, location, 

combo count). The techniques enable agents to 

make decisions informed not only by immediate 

consequences but by long-term change in the 

environment. In third-person games, perception 

being indirect, sensorimotor models enhance the 

agent’s context-awareness and action-selection 

strategy. 

 

E. Optimization and Efficiency Methods 

Ioffe and Szegedy proposed Batch Normalization to 

enhance the stability of training and convergence 

rate of deep networks [4]. The method is especially 

helpful when training CNNs on high-dimensional 

sensory inputs. Hinton et al. subsequently proposed 

Knowledge Distillation as a way to transfer 

knowledge from large, accurate models to smaller, 

more efficient networks without a drastic loss of 

performance [5]. Both methods are used in game-

playing agents to decrease computational overhead 

and ensure performance while making decisions in 

real-time. 

 

IV. RESULTS AND ANALYSIS 

 

This part introduces the analysis of the proposed 

hybrid reinforcement learning system implemented 

to Devil May Cry 

3. The AI agent’s performance was gauged in terms 

of some major gameplay-specific indicators: style 

ranking, health maintenance, efficiency in killing 

enemies, navigation capacity, and boss fight 

success rate. These indicators were selected in 

order to cover both functional proficiency and 

stylistic performance—a fundamental goal in this 

game context. 

 

A. Evaluation Metrics 

The performance of the trained agent was evaluated 

on the following criteria: 

• Style Ranking: Tests the agent’s capacity to 

perform original, non-repetitive combos that 

yield maximum in- game style score. 

• Health Preservation Rate: Demonstrates the 

success of the agent’s defense techniques by 

monitoring the rate of health preserved per 

encounter. 

Enemy Elimination Efficiency: Checks the quantity 

and diversity of enemies slain over a specified 

period with continued stylistic variety. 

Navigation Efficiency: Traces the efficiency with 

which the agent navigates the map, gathers items, 

and achieves goals. 

Boss Battle Performance: Checks for win rate, time 

to kill bosses, and amount of health left after battle. 

 

B. Experimental Setup 

The training and testing were done based on the 

MT- Framework SDK, facilitating real-time 

interaction with the game environment. A dataset 

specific to the game was created from gameplay 

video and sensory state logs comprising 

player/enemy positions, health values, frame-wise 

camera angles, and style point updates. The agent 

was trained with TensorFlow and PyTorch, 

employing CNN and LSTM architecture for feature 

extraction and temporal memory, respectively. 

Training was conducted on an NVIDIA RTX 2080 

GPU with independent training of each module 

(combat, exploration, boss battle) prior to 

integration. 

 

C. Quantitative Results 

The quantitative results of the trained agent on 

various tasks are presented in Table II. 

TABLE II 

PERFORMANCE EVALUATION METRICS 

Metric Achieved Value 

Average Style Rank A to S 

Health Preservation Rate 78% 

Enemy Elimination 

Efficiency 

85% 

Boss Battle Win Rate 90% 

Average Level Completion 

Time 

1.3x faster than 

baseline 

Navigation Path Optimality 88% 

The agent consistently had high style ranks 

(primarily A and the occasional S), showing that it 

could perform varied and dynamic combos. Health 

conservation and enemy killing metrics showed 

enhanced survivability and tactical sense. During 

boss battles, the agent showed smart positioning, 

counter-timing, and effective use of power-ups. 

 

D. Qualitative Observations 

Visual observations of play showed that the agent 

was able to: 

• Variably chain attacks to prevent repetition 

penalties. 

• Counter enemy attack patterns adaptively based 

on LSTM memory. 
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• Optimize movement to scout the environment 

efficiently with minimal retracing. 

• Focus on low-health targets and execute 

evasive maneuvers effectively. 

Moreover, the modular training mechanism enabled 

the system to maintain specialized behaviors in 

various game situations. This flexibility was 

effective in high-stress, multi- enemy situations and 

intricate boss battles. 

 

E. Trade-Offs and Tuning 

We noticed that there were trade-offs based on the 

training focus. When reward weighting was 

introduced toward style, the agent would 

occasionally sacrifice health. In contrast, tuning for 

survival resulted in slightly redundant but safer 

play. Tuning through hyperparameters created an 

agent that balanced both style and efficiency. 

 

F. Limitations 

The model is based on a fixed camera data set and 

might underperform in procedurally or dynamically 

changing environments. Additionally, the speed of 

real-time frame processing might be improved for 

use on lower-end hardware. 

 

V. CONCLUSION AND FUTURE WORK 

 

This work introduced a hybrid reinforcement 

learning architecture integrating Q-Learning with 

sensorimotor control for training an AI agent to 

perform in a third-person game setting, namely 

Devil May Cry 3. The special challenges of third- 

person views, including indirect camera angles, 

complicated visual input, and multi-objective 

gameplay, were met with modular training, deep 

neural feature extraction, and a specially crafted 

reward mechanism concerned with both efficacy 

and stylistic performance. 

With the incorporation of CNNs for visual 

perception, LSTMs for temporal memory, and 

modular learning for task specialization, the ensuing 

system illustrated significant performance 

improvement in gameplay. Quantitative and 

qualitative outcomes emphasized the agent’s 

capacity to attain high style ranks, ensure 

survivability, and learn varied combat and 

navigation situations. 

The results of the research demonstrate the 

feasibility of pairing traditional RL approaches 

with perception-driven learning systems for visually 

dense, strategically rich situations. This compound 

model not only enhances real-time performance but 

creates a basis for more general game-playing 

agents. 

 

A. Future Work 

A variety of areas to develop in the future are 

discovered: 

• Generalization to Other Games: Applying the 

structure to other third-person or open-world 

games through minimal retraining. 

• Multi-Agent Systems: Facilitating cooperative 

gameplay situations involving multiple AI 

agents acting in concert. 

• Adaptive Reward Systems: Adding dynamic 

reward shaping that adapts to the player’s play 

style and difficulty. 

• Real-Time Deployment: Minimizing model 

size and inference latency for real-time running 

on lower-resource devices or embedded 

platforms. 

• Emotion-Driven AI Behavior: Investigating the 

incorporation of affective computing to enable 

the agent to mimic emotional behaviors for 

more human-like interactions. 

The presented framework adds to current research 

in the field of game AI, paving the way for more 

interactive and intelligent agent behaviors in digital 

environments. 
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