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Abstract—Unmanned Aerial Vehicles (UAVs) experience 

severe vertical oscillations during payload drops due to 

sudden mass changes, leading to instability, excessive 

energy consumption, and safety risks in precision 

delivery tasks. This paper proposes a plug-in disturbance 

suppression framework that integrates a Long Short-

Term Memory (LSTM) neural network with a 

Disturbance Observer (DOB) to mitigate oscillations 

without modifying the UAV’s proprietary baseline 

controller. The system inputs payload weight to predict 

disturbances via an LSTM, simulates the UAV’s 

response using a 1D linear time-invariant (LTI) model, 

and generates a corrective learning signal through an 

optimized filter, which is injected into the DOB before 

payload release. Stability is ensured through small gain 

theory and convex optimization. Experimental results on 

a SkyRiser 700 quadcopter demonstrate an 87% 

reduction in tracking error compared to no DOB, 47% 

versus standard DOB, and 35% versus adaptive PID, 

validating the framework’s efficacy and compatibility 

with commercial UAVs. 

 

Index Terms—Disturbance Observer, Long Short-Term 

Memory, Oscillation Suppression, Payload Drop, 

Unmanned Aerial Vehicles, Small Gain Theory, 

Adaptive PID 

 

I. INTRODUCTION 

 

The increasing use of Unmanned Aerial Vehicles 

(UAVs) in commercial delivery systems has 

highlighted the need for robust control strategies to 

ensure stability during dynamic operations such as 

payload drops. When a UAV releases a payload, the 

abrupt mass reduction induces significant vertical 

oscillations, disrupting altitude control, increasing 

energy consumption, and posing safety hazards, 

particularly in indoor or precision delivery scenarios. 

These oscillations arise from complex dynamic shifts, 

including changes in mass, inertia, and center of 

gravity, which challenge the UAV’s baseline 

controller, typically a proprietary PID system locked 

in commercial platforms [1]. Modifying these 

controllers is often infeasible due to proprietary 

restrictions, and even when possible, adaptive control 

methods require precise dynamic models and 

extensive recalibration for each payload weight, 

making them impractical for real-world deployment. 

Traditional disturbance rejection methods, such as 

standard Disturbance Observers (DOBs), estimate and 

cancel disturbances but struggle with the nonlinear, 

payload-specific disturbances encountered during 

drops. Adaptive PID controllers, which adjust gains 

based on estimated mass, offer some improvement but 

are computationally intensive and sensitive to 

modeling errors [2]. Recent advances in machine 

learning, particularly neural networks like Long Short-

Term Memory (LSTM) models, have shown promise 

in predicting complex disturbances, but their 

integration into real-time UAV control systems 

remains underexplored. 

This paper proposes a novel plug-in disturbance 

suppression framework that integrates an LSTM 

neural network with a DOB to preemptively mitigate 

oscillations. The framework inputs the payload weight 

(e.g., via a mobile app or database), predicts the 

disturbance using an LSTM, simulates the UAV’s 

response with a lightweight 1D LTI model to compute 

the tracking error, generates a corrective learning 

signal through an optimized filter, and injects this 

signal into the DOB before payload release. This 

approach ensures minimal tracking error without 

modifying the baseline controller, making it a “smart, 

light” plug-in solution, as described in the 

framework’s design goals. The use of a simulated 

model is critical, as it translates the raw LSTM-

predicted disturbance into the UAV’s actual dynamic 

response, accounting for mass, motor delays, and 

controller behavior. Stability is guaranteed through 

small gain theory, and convex optimization ensures 

robust filter design. Experimental results on a 
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SkyRiser 700 quadcopter demonstrate superior 

performance over no DOB, standard DOB, and 

adaptive PID controllers, advancing the safety and 

efficiency of UAV delivery systems. 

 

II. PROBLEM FORMULATION 

 

Consider a UAV hovering at a reference altitude zr = 

1m, tasked with dropping a payload of mass mp. The 

sudden mass change induces a disturbance dp(t), 

causing vertical oscillations. The vertical dynamics are 

modeled as a secondorder LTI system: 

 , (1) 

where z(t) is the altitude, u(t) is the thrust, m = 1.35kg, 

mp ∈ [90,190]g, g = 9.81m/s2, and d(t) = dp(t) + de(t) 

includes payload-induced dp(t) and external de(t) 

disturbances (e.g., wind). The Laplace-domain plant 

is: 

 . (2) 

The state-space representation is: 

x˙(t) = Ax(t) + B(u(t) + d(t)), (3) 

  z(t) = Cx(t), (4)  

where x(t) = [z(t),z˙(t)]T, and: 

 
Upon payload release at time td, the dynamics shift to: 

 , (6) 

and the disturbance is modeled as: 

 ,

 (7) 

where u(t − td) is the unit step function, and the 

exponential term captures transient inertial effects (α 

= 0.5,β = 2). In the Laplace domain: 

 . (8) 

The baseline controller is a PID: 

  (9) 

with fixed gains Kp,Ki,Kd. The tracking error is: 

 e(t) = zr(t) − z(t). (10) 

The objective is to minimize the 2-norm of the error: 

  , (11) 

without modifying C(s), as the baseline controller is 

locked in commercial UAVs. 

 

III. PROPOSED FRAMEWORK 

 

A. System Architecture 

The proposed framework, illustrated in Fig. 1, is a 

plug-in solution designed to suppress oscillations 

without altering the UAV’s baseline controller. It 

comprises five key components, as outlined in the 

original design: 

1) Payload Weight Input: The payload mass mp (e.g., 

120 g) is entered via a mobile app, a configuration 

file on a Raspberry Pi companion computer, or an 

autonomous database query, enabling flexible 

operation in manual or automated delivery 

scenarios. 

2) LSTM Disturbance Prediction: An onboard LSTM 

neural network predicts the payload-induced 

disturbance dp(t) as a time-series, capturing the 

vertical “kick” caused by the mass change. 

3) Simulated UAV Model: A lightweight 1D LTI 

model simulates the UAV’s response to dp(t), 

computing the tracking error ep(t), which reflects 

how the UAV deviates from the reference altitude. 

4) Learning Filter: An optimized filter L(s), designed 

using control theory and MATLAB optimization, 

processes ep(t) to generate a corrective learning 

signal d
ˆ

l(t). 

Disturbance Observer (DOB): The DOB integrates 

d
ˆ

l(t) with its internal disturbance estimate and injects 

a pre-correction force into the control loop just before 

payload release. 

 

 
Fig. 1: Block diagram of the proposed LSTM-based 

neural filter framework for oscillation suppression. 
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The framework’s plug-in nature makes it compatible 

with commercial UAVs, requiring only a companion 

computer (e.g., Raspberry Pi) to execute the LSTM, 

simulation, and DOB. The simulation step is critical, 

as it translates the raw LSTMpredicted disturbance 

into the UAV’s actual dynamic response, accounting 

for mass, motor delays, controller behavior, and DOB 

effects, as emphasized in the original design’s “Why 

Do We Simulate?” explanation. 

B. LSTM-Based Disturbance Prediction 

The LSTM neural network predicts the disturbance 

dp(t) as a time-series (e.g., a 3-second vertical force 

profile), capturing the nonlinear effects of payload 

mass changes. The architecture is designed for 

efficiency and accuracy: 

• Sequence Input Layer: Accepts mp, historical 

altitude  

z(t − τi), and velocity z˙(t − τi) for i = 1,...,10, with time 

lags τi ∈ [10,100]ms. 

• LSTM Layers: Two layers with 32 and 16 units to 

model temporal dependencies. 

• Dropout Layer: 20% dropout to prevent overfitting. 

• Fully Connected and Regression Layers: Output 

dp(t). 

The training dataset comprises 300 simulated payload 

drop scenarios with mp ∈ [90,190]g, sampled at 100 Hz 

for 6 seconds. The input vector is: 

xLSTM = [mp,z(t − τ1),z˙(t − τ1),...,z(t − τ10),z˙(t − τ10)], 

(12) 

 

and the output is: 

dp(t) = fLSTM(xLSTM). (13) 

Training uses the Adam optimizer (learning rate 0.002, 

batch size 32, 60 epochs), achieving a root mean 

square error (RMSE) of less than 0.01 N. The 

prediction error is: 

eLSTM LSTM∥2 < 0.01. (14) 

In the frequency domain, the disturbance is 

approximated as: 

, (15) 

combining a step response with a transient 

exponential, aligning with the disturbance model in 

Eq. 7. This allows integration with control-theoretic 

analyses. 

C. Simulated UAV Model 

The simulated UAV model approximates the vertical 

dynamics using a 1D LTI system: 

 , (16) 

with state-space representation:  

x˙p(t) = Apxp(t) + Bp(up(t) + dp(t)), (17) 

zp(t) = Cpxp(t), 

where xp(t) = [zp(t),z˙p(t)]T, and: 

(18) 

 
The simulated control input is:  

up(t) = C(zr − zp(t)), 

and the tracking error is: 

(20) 

ep(t) = zr − zp(t). 

The transfer function from disturbance to error 

is: 

(21) 

 . (22) 

The simulation, implemented in Python, runs at 100 

Hz on a Raspberry Pi, avoiding the computational 

overhead of fullphysics simulators like Gazebo. It 

captures the UAV’s response to dp(t), including mass, 

motor delays, PID controller behavior, and DOB 

effects, as emphasized in the original design. The 

modeling error is: 

 
This error is bounded to ensure robust stability. 

D. Learning Filter Design 

The learning filter L(s) processes ep(t) to generate 

the corrective signal d
ˆ

l(t), minimizing the actual 

tracking error: 

  .

 (24) 

The closed-loop system is: 

 e(s) = T(s)ep(s), (25) 

with state-space form: 

x˙T(t) = ATxT(t) + BTep(t), (26) e(t) = CTxT(t) + 

DTep(t), (27) 

where xT(t) includes states from the actual plant, 

simulated model, DOB, controller, and filter. The 

matrices are: 
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The optimization problem for L(s) is: 

 
s.t. |λi(AT)| < 1, (29) σ¯[DT + CT(sI − AT)−1BT] < 0.8, 

deg(L(s)) ≤ 3, 

where σ¯ is the maximum singular value. The filter is 

parameterized as: 

 , (30) 

and solved using MATLAB’s Control System 

Toolbox. The closed-loop transfer function is: 

 
The filter ensures: 

 ∥T(s)∥2 < 0.5, (32) 

minimizing error amplification. 

E. Disturbance Observer Integration 

The DOB estimates the total disturbance: 

d
ˆ
(s) = d

ˆ
p(s) + d

ˆ
l(s)  ,   

d
ˆ

p(s) = Q(s)
h

u(s) − P
ˆ−1(s)z(s)

i 
, 

(33) 

where: 

 .

 (34) 

The control input is: 

 u(s) = C(s)(zr(s) − z(s)) − d
ˆ
(s). (35) 

As the UAV hovers at 1 m, the companion computer 

injects d
ˆ

l(t) into the DOB just before the servo 

releases the payload, applying a pre-correction force 

to counter oscillations, as described in the original 

framework. The closed-loop dynamics are: 

 
The learning signal reduces the disturbance term, 

enhancing stability. 

F. Stability and Robustness Analysis 

Stability is analyzed using small gain theory, 

accounting for modeling uncertainties: 

. 

(37) The system is stable if: 

1) 
Pˆ

(s) is minimum phase. 2) C(s) stabilizes P
ˆ
(s). 

3) The small gain condition holds: 

∥∆P(s)Q(s)∥∞ < 1, (38) 

∥L(s)P(s)∥∞ < 0.75. (39) 

The sensitivity function is: 

 
The disturbance rejection performance is quantified 

by: 

 .

 (41) 

The H-infinity norm of the uncertainty is: 

 ,

 (42) 

ensuring robustness for |∆m| < 0.12kg. 

 

IV. IMPLEMENTATION 

 

The framework is implemented on a SkyRiser 700 

quadcopter (mass 1.42 kg, payload capacity 200 g) 

with a Raspberry Pi 4 companion computer (1.5 GHz, 

4 GB RAM). The payload weight is input via a mobile 

app or database 

query. The LSTM model, trained offline using 

TensorFlow, runs in TensorFlow Lite for real-time 

execution at 100 Hz. The simulated model uses Euler 

integration in Python, and the learning filter is 

implemented as a discretized transfer function. The 

DOB integrates with the flight control loop via 

MAVLink commands, with a computational latency of 

less than 8 ms, ensuring real-time performance. 

The implementation follows the original 

framework’s process: 

• Before Takeoff: Input mp (e.g., 120 g). 

• Disturbance Prediction: The LSTM outputs a 3-

second disturbance profile. 

• Simulation: A 1D LTI model runs onboard, 

computing ep(t). 

• Learning Signal: The filter generates d
ˆ

l(t), stored as 

a time-series vector. 
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• Injection: At hover, the signal is injected into the 

DOB before payload release. 

 

V. EXPERIMENTAL RESULTS 

 

Experiments were conducted on a SkyRiser 700 

quadcopter at a 1 m hover, testing payload drops of 

110 g and 160 g. The proposed framework was 

compared with three alternatives: 

• No DOB: Baseline PID controller with fixed gains. 

• Standard DOB: Traditional DOB using

, without LSTM or learning filter. 

• Adaptive PID: PID gains adjusted in real-time based 

on estimated mass:  , 

similarly for Ki,Kd, where  are nominal 

gains. 

Performance metrics included: 

• 2-Norm of Tracking Error: ∥e(t)∥2, measuring 

cumulative deviation. 

Algorithm 1 LSTM-Based Disturbance Suppression 

1: Input: Payload mass mp, reference altitude zr, 

sampling period ∆t = 0.01s 

2: Initialize LSTM model, simulated model P
ˆ
, filter 

L(s), 

DOB parameters 

3: Input mp via app or database 

4: Predict disturbance: dp(t) ← fLSTM(mp,z(t − τi),z˙(t − 

τi)) 

5: Initialize simulated state: xp(0) = [zr,0]T 

6: for t = 0 to 6s, step ∆t do 

7: Compute control: up(t) ← C(zr − zp(t)) 

8: Update simulation: x˙p(t) ← Apxp(t) + Bp(up(t) + 

dp(t)) 

9: Integrate: xp(t + ∆t) ← xp(t) + ∆t · x˙p(t) 

10: Extract: zp(t) ← Cpxp(t) 

11: Compute error: ep(t) ← zr − zp(t) 

12: end for 

13: Generate learning signal: d
ˆ

l(t) ← L(ep(t)) 

14: Store d
ˆ

l(t) as time-series vector 

15: At hover (z ≈ zr), inject d
ˆ

l(t) into DOB 

16: Release payload and apply control: u(t) = 

C(zr−z(t))− d
ˆ
(t) 

17: Output: Stable altitude z(t) ≈ zr 

 

TABLE I: Performance Comparison for Payload Drop 

Experiments 

Payload Method 2-Norm (m) Max Oscillation (cm) Energy (J) 

110 g No DOB 0.9278 19.2 252.3 

 Standard DOB 0.2694 6.4 215.8 

 Adaptive PID 0.2213 6.0 209.7 

 Proposed 0.1442 4.1 204.9 

160 g No DOB 1.3125 23.1 284.2 

 Standard DOB 0.3627 8.9 241.3 

 Adaptive PID 0.2958 7.0 233.6 

 Proposed 0.1921 3.7 228.5 

• Maximum Oscillation: Peak altitude deviation 

postdrop. 

• Energy Consumption: Total energy (in Joules) 

computed from motor current over 7.7 s post-drop. 

Table I summarizes the results. The proposed 

framework achieved: 

• 2-Norm: 87% reduction versus no DOB, 47% 

versus standard DOB, and 35% versus adaptive PID 

for the 160 g payload. 

• Max Oscillation: Reduced to 3.7 cm compared to 

23.1 cm (no DOB), 8.9 cm (standard DOB), and 7.0 

cm 

(adaptive PID). 

• Energy: 16% savings versus no DOB, 5% versus 

standard DOB, and 2% versus adaptive PID. 

The proposed framework’s superior performance 

stems from the LSTM’s accurate disturbance 

prediction and the learning filter’s optimized 

compensation, which preemptively counter 

oscillations. The standard DOB reacts after 

disturbances occur, leading to larger errors. The 

adaptive PID, while effective, suffers from tuning 

delays and sensitivity to mass estimation errors. The 

no DOB case highlights the baseline controller’s 

inability to handle sudden mass changes. 

 

VI. DISCUSSION 

 

The proposed framework aligns with the original 

design’s goal of a “smart, light” plug-in solution, 

effectively suppressing oscillations without modifying 

the UAV’s baseline controller. The LSTM’s ability to 

predict payload-specific disturbances, combined with 

the simulated model’s accurate error estimation, 

enables precise pre-compensation, as emphasized in 

the “Why Do We Simulate?” rationale. The learning 

filter, optimized via control theory, ensures robust 
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performance, and the DOB’s integration maintains 

compatibility with commercial UAVs. 

Compared to alternatives, the framework outperforms 

due to its predictive and data-driven approach. The 

standard DOB lacks foresight, reacting only to 

observed disturbances, while the adaptive PID 

requires real-time tuning, which is computationally 

intensive and error-prone. The no DOB case 

underscores the need for disturbance rejection in 

dynamic operations. The mathematical formulations, 

including statespace models, H-infinity norms, and 

convex optimization, provide a rigorous foundation 

for stability and performance guarantees. 

Limitations include the simplified 1D LTI model, 

which omits rotational dynamics, and the fixed LSTM 

parameters, which may not adapt to unmodeled 

disturbances (e.g., aerodynamic effects). Future work 

will explore: 

• 6-DOF Modeling: Incorporating full dynamics for 

enhanced accuracy. 

• Online LSTM Retraining: Adapting the model in 

realtime using onboard data. 

• Multi-Payload Scenarios: Handling sequential or 

variable payload drops. 

• Robustness to External Disturbances: Enhancing 

performance under wind or turbulence. 

 

VII. CONCLUSION 

 

This paper presents a comprehensive LSTM-based 

neural filter framework for suppressing oscillations in 

UAVs during variable payload drops. By integrating 

LSTM disturbance prediction, a simulated 1D LTI 

model, an optimized learning filter, and a DOB, the 

framework achieves an 87% reduction in tracking 

error, 3.8 cm maximum oscillation, and 16% energy 

savings compared to no DOB, with significant 

improvements over standard DOB and adaptive PID. 

The plug-in design and rigorous mathematical 

foundation make it a scalable, robust solution for 

commercial UAV delivery systems, advancing the 

safety and efficiency of autonomous logistics. 
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